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Abstract

Recent advances in genome wide sequencing techniques and analytical methods allow for more 

comprehensive examinations of the genome than microarray-based genome-wide association 

studies. The present report provides the first application of whole genome sequencing to identify 

low frequency variants involved in cannabis dependence across two independent cohorts. The 

present study used low-coverage whole genome sequence data to conduct set-based association 

and enrichment analyses of low frequency variation in protein-coding regions as well as regulatory 

regions in relation to cannabis dependence. Two cohorts were studied: a population-based Native 

American tribal community consisting of 697 participants nested within large multi-generational 

pedigrees and a family-based sample of 1832 predominantly European ancestry participants 

largely nested within nuclear families. Participants in both samples were assessed for DSM-IV 

lifetime cannabis dependence, with 168 and 241 participants receiving a positive diagnosis in each 

sample, respectively. Sequence kernel association tests identified one protein-coding region, 

C1orf110 and one regulatory region in the MEF2B gene that achieved significance in a meta-

analysis of both samples. A regulatory region within the PCCB gene, a gene previously associated 

with schizophrenia, exhibited a suggestive association. Finally, a significant enrichment of regions 

within or near genes with multiple splice variants or involved in cell adhesion or potassium 

channel activity were associated with cannabis dependence. This initial study demonstrates the 

potential utility of low pass whole genome sequencing for identifying genetic variants involved in 

the etiology of cannabis use disorders.
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Introduction

Cannabis is the most widely used illicit drug in the United States, with lifetime rates of 

cannabis use disorders ranging from 1.5%–2.9 % (Hasin et al., 2015). Cannabis use is 

associated with substantial physical and psychiatric sequelae in some users (Volkow et al., 

2014 & 2016). Given that cannabis use is expected to increase in the United States with 

increased decriminalization and legalization, it is of great interest to identify etiological 

factors that may lead to dependence. Twin studies have shown a substantial genetic 

component to the etiology of cannabis use disorders, with a recent meta-analysis suggesting 

heritability estimates of 0.51 for males and 0.59 for females (Verweij et al., 2010). 

Nonetheless, molecular genetic studies attempting to identify the specific variants involved 

in this genetic risk have yielded primarily mixed results.

Candidate gene studies of the endocannabinoid receptor type 1 gene (CNR1) and/or the fatty 

acid amide hydrolase gene (FAAH), which is involved in endocannabinoid metabolism, have 

reported associations with cannabis use and dependence (e.g., Tyndale et al., 2007), 

marijuana withdrawal and craving (Haughey et al., 2008), and related phenotypes such as 

trait impulsivity (Ehlers et al., 2007). These results, however, have failed to achieve the 

current standards for genome-wide significance. Genome-wide association studies (GWAS) 

have identified novel loci related to cannabis use disorders, including ankyrin-repeat and 

fibronectin type III domain containing 1 gene, ANKFN1 (Agrawal et al., 2011), and a gene 

cluster located on chromosome 17q24 (c17orf58, BPTF, PPM1D (Agrawal et al., 2014)). 

Nonetheless, these results also failed to achieve genome-wide significance. More recently, 

the first genome-wide significant associations were reported with loci located in or near 

three genes, RP11-206M11.7, SLC35G1, CSMD1 (Sherva et al., 2016).

The application of next generation sequencing methods to the study of complex traits 

presents several potential advantages over GWAS microarrays that may allow for further 

progress to be made. First, GWAS microarrays have been primarily designed to measure 

common genetic variants (i.e., minor allele frequencies [MAF] > 0.05), and thus, are not 

well-positioned to capture genetic variants with lower allele frequencies (Nelson et al., 

2013). As a result, rare variation has been cited by some as a potential source of the 'missing' 

heritability, which refers to the gap between heritability estimates of complex traits derived 

from twin studies and the proportion of variation in a trait explained by measured genetic 

variants in a GWAS, as well as the 'still missing' heritability, which refers to the gap between 

heritability estimates of complex traits derived from twin studies and those derived from 

GWAS using genomic similarity approaches (Wray and Maier, 2014), including traits such 

as cannabis initiation (Stringer et al., 2016). In contrast, sequencing technologies, which 

directly interrogate each variant, do not have this limitation. Second, common genetic 

variation captured by GWAS microarrays varies as a function of the ancestral group under 

study thus complicating the study of diverse ancestral groups (Cantor et al., 2010). More 
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specifically, these microarrays have typically been designed to capture common variation in 

individuals of specific ancestral groups (e.g., European ancestry). Thus, variants specific to 

populations outside of these groups (e.g., American Indians) may not be captured.

Given the described advantages, the present report utilized low-coverage whole genome 

sequencing (WGS) to identify low-frequency risk variants for cannabis use disorders that 

would typically not be captured by a GWAS microarray in two independent cohorts, a 

population-based sample of Native American Indians and a family-based study of 

individuals of predominantly European descent initially selected for alcohol dependence. 

The inclusion of a Native American cohort should also be emphasized given that this cohort 

represents an understudied population with some of the highest rates of substance use 

problems in the United States (Ehlers et al., 2004). The present study used WGS to study the 

relations of low frequency variants to Diagnostic and Statistical Manual of Mental Disorders 

- IV (DSM-IV) cannabis dependence using three primary analytic approaches: (1) set-based 

tests of association of low frequency variants (MAF < 0.02) located in protein-coding 

regions of the genome, (2) set-based tests of association of low frequency variants located in 

regulatory regions of the genome, and (3) enrichment analysis to evaluate whether genes 

related to associated sets shared similarities in structure or function.

Materials and Methods

Data were collected at The Scripps Research Institute and the Gallo Institute at the 

University of California at San Francisco (UCSF). Assessment procedures were approved by 

Institutional Review Boards at each institution. Data collection procedures by The Scripps 

Research Institute were also approved by a tribal group overseeing health issues for the 

communities where recruitment took place. Notably, human subject permissions and the 

wishes of the participating tribes do not allow study data to be entered into public databases. 

Ongoing management and analysis of data collected at the UCSF site was approved by the 

Institutional Review Board at the University of North Carolina at Chapel Hill. Participants at 

both sites were fully briefed on the nature of the study, provided written informed consent 

prior to enrollment, and were compensated for time spent in the study.

Participants

Native American Sample—Participants were recruited from 8 geographically contiguous 

Indian communities with a total population of ~3,000 individuals. Individuals of Native 

American heritage that were between the ages of 18 and 82 years were recruited to 

participate using a combination of a venue-based methods for sampling hard-to-reach 

populations (Muhib et al., 2001) and a respondent-driven procedure (Heckathorn, 1997), as 

reported previously (Ehlers et al., 2004). All subjects were assessed using the Semi-

Structured Assessment for the Genetics of Alcoholism (SSAGA) to collect demographic 

information and make DSM-IV cannabis dependence diagnoses. The SSAGA is a reliable 

and valid polydiagnostic psychiatric interview that has been successfully used in Native 

American populations (Bucholz et al., 1994).

Of the 775 participants in the Native American sample, 697 were successfully sequenced 

and included in the association analyses. Sixty-seven samples could not be sequenced 
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because of insufficient or low quality deoxyribonucleic acid (DNA), and 11, none of whom 

met criteria for cannabis dependence, were excluded because of sample misidentification as 

assessed by comparisons of self-reported familial relations to kinship coefficients derived 

from genotypes using PREST (Sun et al., 2002). Among sequenced participants, 168 were 

diagnosed with cannabis dependence. The average age of the sample was 31.2±0.5 years and 

57% were female, though cannabis dependent participants were more likely to be older and 

male (Table 1). Forty-two percent of participants reported at least 50% Native American 

heritage based on their federal Indian blood quantum (Bizon et al., 2014).

University of California at San Francisco (UCSF) Family Study Sample—The 

UCSF Family Study sample was recruited nationwide for inclusion in a study of the genetics 

of alcoholism and other substance dependence. Responding individuals were invited to 

participate if they met screening criteria for a lifetime alcohol dependence diagnosis and had 

at least one sibling or both parents available to participate. Permission was then obtained 

from the proband to invite relatives to participate by mail. Probands with serious drug 

addictions other than cannabis (e.g., stimulants, cocaine, or opiates) or a history of 

intravenous substance use were excluded. Also excluded were subjects reporting a current or 

past diagnosis involving psychotic symptoms, a life-threatening illness, or an inability to 

speak and read English.

Participants represent a subset of the UCSF Family Alcoholism Study. From the full sample, 

1886 were successfully sequenced and provided complete phenotype data. From this subset, 

a further 54 were excluded because of sample misidentification, 10 of whom met criteria for 

cannabis dependence, resulting in a sample size of 1832. Within the final sample, 241 

participants met criteria for cannabis dependence. The average age of the study sample was 

49.0±13.1 years, 62% (n=1134) were female, and 95% reported Caucasian ethnicity 

(n=1737) with the remaining individuals reporting African-American (n=52), Native 

American (n=25), 'Other' (n=17), and Asian (n=1) ancestry. Cannabis dependent participants 

were more likely to be male, younger, unmarried, and have an annual income <$20,000 (see 

Table 1).

Sequencing

Blood derived DNA was sequenced using Illumina low-coverage WGS, and genotyped using 

an Affymetrix Exome1A chip to assess accuracy of genotype calls from sequence data. Pair-

end sequencing was performed on HiSeq2000 sequencers (Illumina, San Diego, CA). For 

the Native American sample, approximately 80% of samples were sequenced at a coverage 

depth between 3X and 12X (range: 1X – 31X) with depth of coverage evenly distributed 

across the genome. For the UCSF Family Study sample, approximately 86% of the samples 

were sequenced at a coverage depth between 2X and 6X (range: 1X – 18X) with depth of 

coverage evenly distributed across the genome. Sequence reads were aligned using blocked 

multiple-sequence alignment (BMA), and realigned near indels with the Genome Analysis 

Toolkit (GATK). Because low-pass sequencing was used and to capitalize on the fact that 

participants were nested within families, variants were called using the LD-aware variant 

caller Thunder (Li, 2011) in order to increase the accuracy of the variant calls. Variant call 

quality was assessed through comparison of the sequencing results to exome array genotypes 
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for all subjects resulting in a 98% concordance rate in each sample. Because the number of 

rare variants identified within a single study increases with sample size due to their low 

frequency, this low-coverage approach allowed for the sequencing of a greater number of 

participants and inclusion of a larger number of rare variants. This led to a greater number of 

identified rare variants in the UCSF Family study relative to the Native American sample, 

given the former's larger size. The general methodology for sequencing and variant calling in 

this sample has been previously published (Bizon et al., 2014).

Data Analysis

To assess ancestry and admixture proportions in the Native American sample, we used a 

supervised clustering approach that used the algorithm implemented in ADMIXTURE 

(Alexander et al., 2009) in conjunction with a reference panel containing genotype 

information at about 300k strand-unambiguous SNPs. The ancestry estimates were then 

further refined through a noise reduction approach via bootstrapping (Libiger and Schork, 

2013) and identified as corresponding to the four major continental populations: African, 

East Asian, European, and Native American. For the UCSF Family Study, ancestry 

proportions were obtained using principal components analysis (Price et al., 2006). 

Regression analyses examining the relations between these ancestry proportions and the 

cannabis diagnosis were nonsignificant (p-values: 0.366–0.890).

Participants in both samples were nested in families. Thus, the linear mixed model approach 

implemented in EMMAX (Kang et al., 2010) was used to control for population substructure 

and genetic relatedness in all analyses. This approach calculates a genetic similarity matrix 

for all pairwise combinations of study participants using measured genotype data and 

includes this matrix as a random effect in the mixed model to partition variance in the 

phenotype that can be attributed to familial relatedness and population substructure. 

Ancestry estimates obtained as described above were included as covariates to fully account 

for potential inflation in the test statistics along with gender, age, and age-squared.

For the set-based analyses, low frequency variants (MAF < 0.02) were analyzed using the 

optimized sequence kernel association test (SKAT-O; Lee et al., 2012a) implemented within 

the EMMAX framework. Only sets for which at least 1% of participants in each sample 

carried a low frequency variant were included in the analysis. Specifically, if only a small 

proportion of the study participants carry a rare variant within a given set (i.e., < 1% of the 

study sample), the resulting analysis would be similar to analyzing a low frequency variant 

in isolation, and thus, will be particularly susceptible to chance fluctuations in the data, 

given that the result is based on only a handful of observations. For sets based on the coding 

regions of genes, all variants within the protein coding region were retained, including 

nonsynonymous, synonymous, start codon loss or gain, and stop codon loss or gain variants. 

For sets based on regulatory elements, the decision was made to focus on regulatory 

elements that showed evidence of persisting across tissue types, given that little is known 

regarding the etiology of cannabis dependence and alterations in gene expression both inside 

and outside of the central nervous system are of potential relevance. We considered 

restricting this analysis to only regulatory elements influencing genes expressed in the 

central nervous system; however, many regions were located in close proximity to more than 
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one gene or in intergenic regions, making it difficult to assign many of these regions to a 

specific gene. Because the primary effect of including non-CNS expressed genes in the 

analysis was the adoption of a more conservative significance threshold, the decision was 

made to include all regulatory regions in the analysis. Thus, data from the NIH Roadmap 

Epigenomics project focused on identifying epigenetic marks across tissues were accessed 

and used to define the boundaries of the regulatory elements (Roadmap Epigenomics 

Consortium et al., 2015); HoneyBadger2 dataset accessed on 12/15/2015 from http://

www.broadinstitute.org/~meuleman/reg2map/). Because some of these elements are quite 

small (150 bp) and frequently lie close together, elements within 2 kb of each other were 

combined into a single element.

All analyses were performed separately for each cohort within the EPACTS software 

pipeline (Kang, 2014). A weighted Z-score approach (Stouffer et al., 1949) was used to 

combine results across samples. Enrichment analyses were conducted using the Database for 

Annotation, Visualization and Integrated Discovery (DAVID; Huang et al., 2009) in which 

genes with p-values < 0.005 were evaluated to determine whether they were over-

represented in any gene categories. These analyses were conducted using a custom 

background that included only those genes tested in the set based tests of coding regions and 

regulatory elements, respectively.

Results

Analysis of Protein-Coding Regions

We first conducted set-based analyses of the genes in the RefSeq database. 12,662 genes 

were identified that met the described inclusion criteria, resulting in a critical p-value of 

3.9e–6 to determine significance. A single gene that met this criterion was identified in 

meta-analysis, a coiled-coil domain containing protein on chromosome 1, C1orf110 
(p=3.20e–6) (see Table 2; also see Supplementary Table 1 for top results in each cohort and 

Supplementary Figures 1 and 2 for q-q plots of the distribution of p-values in each cohort). 

Notably, these analyses were repeated when restricting the UCSF Family Study sample to 

participants that were of predominantly European ancestry (>70%; n=1641) as indicated by 

the principal components analysis. The number of excluded participants was greater than the 

number of participants that self-reported non-European ancestry due to discordances 

between self-report and genetically-derived ancestry estimates. The meta-analytic result for 

C1orf110 was similar (p=4.66e–6), but no longer met the significance threshold after 

dropping these participants. A similar, though slightly larger, drop in the p-value was 

observed when the same number of randomly selected European ancestry participants were 

dropped from the analysis (p=2.14e–5). Together, these results suggest the change in 

significance likely reflects a decrease in statistical power following the exclusion of almost 

200 participants rather than unaccounted for population substructure. Figure 1 displays the 

layout of the gene and the location of the variants included in the test for each sample. To 

further explore the relations of these variants to cannabis dependence, the Polyphen, SIFT, 

and Provean databases were queried to estimate the likely impact of these variants on gene 

function. The resulting values are shown in Table 3 alongside the single variant EMMAX 

results, which provide an indication of the direction and magnitude of their relation with 
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cannabis dependence. An examination of this table suggests that, within the UCSF Family 

Study sample, variants predicted to negatively impact protein function show stronger 

relations to the cannabis dependence diagnosis. The results are less clear for the Native 

American sample; however, the one variant that does show a relation with cannabis 

dependence (rs187742957) is predicted to negatively impact the encoded protein.

We then conducted an enrichment analysis based on the SKAT-O results using DAVID. This 

analysis suggested an over-representation of genes in several pathways related to potassium 

channel activity, including potassium ion transport (GO:0006813: Benjamini-Hochberg 

corrected p=0.013), cation channel complex (GO:0034703: Benjamini-Hochberg corrected 

p=0.036), voltage-gated potassium channel complex (GO:0008076: Benjamini-Hochberg 

corrected p=0.040), potassium channel complex (GO:0034705: Benjamini-Hochberg 

corrected p=0.040), and potassium channel activity (GO:0005267: Benjamini-Hochberg 

corrected p=0.043). The genes contributing to these results included KCNK17, RYR2, 
SLC24A3, KCNJ4, and SLC24A2.

Analysis of Regulatory Elements

We then conducted set-based analyses of regulatory elements identified by the NIH 

Roadmap Epigenomics project (Roadmap Epigenomics Consortium et al., 2015) that were 

consistently observed across tissue types. 165,586 elements were identified that met the 

inclusion criteria for this analysis resulting in a critical p-value of 3.0e–7 that was used to 

determine significance. One regulatory element met this threshold (Table 4; also see 

Supplementary Table 2 for top results in each cohort and Supplementary Figures 3 and 4 for 

q-q plots of the distribution of p-values in each cohort). Variants contained within the 1st 

intron of the myocyte enhancer factor 2B gene (MEF2B) showed a significant relation with 

cannabis dependence across samples (combined p-value = 1.28E–08). As shown in Figure 2, 

the significant region is characterized by the presence of both H3K9me3 and H3K36me 

histone marks, a pattern that has been associated with the preservation of exons from 

recombination and regulation of alternative splicing. A query of the Ensemble database does 

include a MEF2B transcript (ENST00000409447) that is annotated as having an 

untranslated exon in this region (bottom of Figure 2). This analysis was repeated when 

restricting the UCSF Family Study sample to those participants of predominantly European 

ancestry and again dropping the same number of European ancestry participants at random. 

The p-value for the association with the MEF2B element fell by an order of magnitude and 

became nonsignificant when non-European ancestry participants were removed from the 

analysis (p=3.52e–7). The p-value dropped by half an order of magnitude when a random set 

of European ancestry participants were removed from the analysis (p=7.80e–8), but 

continued to meet the significance threshold. Given the relative similarity in the decline of 

the p-value, it is likely that these changes resulted from reduced statistical power rather than 

unaccounted for population stratification.

A suggestive association was also observed for a regulatory element within the 3rd intron of 

the propionyl-CoA carboxylase beta subunit gene (PCCB; combined p-value = 1.55E–06). 

As shown in Figure 3, this regulatory element is characterized by the presence of H3K4me1 

histone marks as well as the absence of H3K27ac marks, which have been suggested to 
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reflect poised enhancers that become active during cell differentiation and reflect activity of 

the gene in the cell's adult state. Data from the Roadmap Epigenomics project suggest the 

presence of these marks in relation to this intronic regulatory region is most pronounced in 

brain tissues, suggesting a role for PCCB in neural development and function. This 

association became slightly stronger when the UCSF Family Study sample was restricted to 

participants of European ancestry (p=3.51e–7) and weaker when dropping a random set of 

European ancestry participants (p=3.04e–5).

Enrichment analyses were then conducted using DAVID by assigning individual regulatory 

elements to the nearest gene within 5000 kilobases. This analysis suggested an over-

representation of genes that exhibit multiple splice variants (uniprot keywords: alternative 

splicing - Benjamini-Hochberg corrected p=4.2e–07; uniprot sequence annotation: splice 

variant - Benjamini-Hochberg corrected p=4.6e–06) as well as genes related to cell adhesion 

(Panther BP00124 - Benjamini-Hochberg corrected p=0.010) and neurogenesis (Panther 

BP00199 - Benjamini-Hochberg corrected p=0.042).

Discussion

The present report represents, to our knowledge, the first study to utilize next generation 

sequencing technology to identify low-frequency genetic variants related to cannabis 

dependence. Three approaches were taken to accomplish this: (1) set-based tests of 

association of low frequency (MAF<0.02) coding variants, (2) set-based tests of association 

of low frequency variants within regulatory regions identified by the NIH Roadmap 

Epigenomics project, and (3) enrichment analysis to evaluate whether specific gene- or 

regulatory-based sets were associated with cannabis dependence. Analyses were conducted 

in two distinct cohorts, a Native American community sample and participants from the 

UCSF Family Alcoholism study, and results were combined to identify variants and genes 

that confer risk for cannabis dependence across samples.

The set-based analyses of low frequency variation in protein-coding regions yielded a single 

genome-wide significant association between cannabis dependence and the coiled-coil 

domain-containing protein gene (C1orf110) on chromosome 1. Adding to the strength of this 

finding, the pattern of results for the individual variants within the coding regions of this 

gene was highly concordant with predictions regarding the impact of the individual variants 

on C1orf110 function, at least in the UCSF study sample. Though the result was weaker in 

the Native American sample, the one variant that did show a relation with cannabis 

dependence was predicted to negatively impact the C1orf110 protein. Interpretation of this 

result is somewhat complicated given that little is known about the C1orf110 protein. 

Nonetheless, the gene does appear to be a downstream target of the NAD-dependent 

deacetylase sirtuin-2, which plays an important role in cellular responses to oxidative stress 

(Liu et al., 2013). Notably, SIRT-2 shows altered expression in the hippocampus following 

repeated exposure to Δ9-THC (Quinn et al., 2008), and thus, may provide an avenue of 

research for future studies investigating how C1orf110 may be related to cannabis 

dependence.
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The set-based analyses of regulatory regions also yielded a single genome-wide significant 

association. Variation within a regulatory region located in the first intron of MEF2B was 

associated with risk for cannabis dependence. This element was characterized by H3K9me3 

and H3K36me histone marks, suggesting the region may be important for protecting exons 

from recombination and regulation of alternative splicing (Schor et al., 2009). In contrast to 

variants in protein-coding regions where in silico tools (e.g., Polyphen, SIFT) can be used to 

make strong predictions regarding their impact on function, similar predictions regarding the 

impact of variants in regulatory regions on expression are not currently available, limiting 

the ability to determine which variants in the region might be most strongly related to 

cannabis dependence risk. Nonetheless, the MEF2B protein, and the MEF protein family in 

general, are of direct relevance to substance use phenotypes. In vitro studies have 

demonstrated that these proteins play important roles in synapse formation and plasticity 

(Flavell et al., 2006). In the anterior cingulate and hippocampus, where MEF2B is 

prominently expressed, increased MEF expression leads to decreases in dendritic spine 

density and has been shown to result in disrupted memory formation (Rashid et al., 2014). In 

the nucleus accumbens, suppression of MEF2 proteins is necessary for the observed increase 

in dendritic spine density that follows cocaine administration (Pulipparacharuvil et al., 

2008). Thus, it may be that variation in MEF2B influences memory formation and 

associative learning with respect to substance use.

Though not significant, a second regulatory element yielded suggestive evidence for 

association with cannabis dependence risk. This element was located in an intron of the 

PCCB gene, which encodes for the propionyl-CoA carboxylase (PCC) enzyme beta subunit, 

an enzyme involved in the metabolism of several amino acids, lipids and cholesterol. Loss of 

function mutations in this gene lead to propionic acidemia, a condition that leads to the toxic 

buildup of propionyl-CoA in the nervous system and can lead to developmental delays, 

intellectual disability, in some cases, psychosis (Dejean de la Bâtie et al., 2014). Of note, 

PCCB is also located in a region that was associated with increased risk for schizophrenia in 

the largest genome-wide association study of that disorder conducted to date (Schizophrenia 

Working Group of the Psychiatric Genomics Consortium, 2014), which is of interest given 

the putative link between adolescent cannabis use and increased risk for psychosis (Volkow 

et al., 2016).

In comparing the set-based tests of protein-coding and regulatory regions, a higher degree of 

concordance was observed across study samples for the latter tests. It is likely that risk 

variants unique to each population exist, which could explain the discrepant results for the 

analysis of protein-coding regions. Nonetheless, previous reviews suggest that such 

differences are unlikely to account for a substantial proportion of the heritability of 

substance use phenotypes (Ehlers and Gizer, 2013), and would not explain the higher 

concordance rates for the analysis of regulatory elements. An alternative explanation, though 

speculative, is that the difference in consistency may be a reflection of the contributions of 

variation in protein-coding relative to regulatory regions to the etiology of complex 

phenotypes such as marijuana dependence. Previous studies have indicated that variants 

associated with complex traits contained in the GWAS catalog are more likely to be located 

within intronic and other regulatory regions of a gene rather than the protein-coding region 

(Nicolae et al., 2010). As a result, it is possible that the greater consistency observed across 
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samples for the set-based tests of regulatory elements may reflect a greater proportion of 

'true' signals, relative to those in the protein-coding regions.

With respect to the significant results reported in the present study, it should be noted that 

the SKAT-O test analyzes the correlations among individual variant score tests within a set, 

and it cannot provide an estimate of explained variance attributable to the combined set of 

variants. Nonetheless, the effects sizes for the individual variants within sets ranged from R2 

= 0.0 – 0.015, suggesting effect sizes comparable to those found in GWAS. This has 

important implications for future studies seeking to relate low frequency variation to 

complex psychiatric traits such as substance use.

As noted, rare variation has been cited by some as a potential source of the 'missing' 

heritability of complex traits (Wray and Maier, 2014). The present report suggests that low 

frequency variants of modest-to-large effect are unlikely to play an outsized role in the 

etiology of cannabis dependence at the population level, though this does not rule out the 

possibility that such variants may have larger effects within families. Studies of de novo 
variation in autism and schizophrenia suggest that moderately penetrant rare variants related 

to these disorders may be distributed across a broad set of genes (Neale et al., 2012). If a 

similarly polygenic architecture can be assumed for substance use disorders, this suggests 

that large samples will be required to detect associations with low frequency variants even 

when set-based aggregation approaches, such as the SKAT-O test, are implemented.

This may also explain why there was little overlap observed with previous GWAS of 

cannabis dependence (Agrawal et al., 2011, 2014; Sherva et al., 2016). Although some 

discrepancies should be anticipated given the focus of GWAS on common variation and the 

focus of the present report on low-frequency variants, the genes involved should show some 

degree of replication if they are associated with risk for the disorder (Visscher et al., 2012). 

As sample sizes examining each type of variation increase allowing for more powerful tests 

of association, it would be expected that results from these studies would converge on an 

overlapping set of genes involved in risk for cannabis dependence.

Pathway analyses allow for the aggregation of even larger variant sets relative to set-based 

analyses of specific genomic elements, and thus, represent another approach for studying 

low frequency variation in relation to complex traits. Analyses conducted in the present 

study revealed the strongest relations between cannabis dependence and two gene-sets 

characterized by genes with multiple splice variants. This is of particular interest given that 

variants influencing the alternative splicing of a gene are overrepresented within the NHGRI 

GWAS catalog (Lee et al., 2012b). Additionally, alternative splicing processes are critically 

involved in human brain development (Johnson et al., 2009), and there is emerging evidence 

that these processes may be disrupted in psychiatric disorders, including schizophrenia 

(Barry et al., 2014) and substance use disorders (Moyer et al., 2011). Finally, previous 

GWAS have shown relations between genes included in potassium channel cocaine 

dependence (Gelernter et al., 2014b) and opioid dependence (Gelernter et al., 2014a) and 

between substance use disorders and cell adhesion genes (e.g., Edwards et al., 2015), 

providing further evidence supporting the role of these gene pathways in the etiology of 

cannabis use disorders.
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Given the promising nature of the described results, it is important to note that the modest 

sample size, though large for a whole genome sequencing study, represents a limitation of 

the present study. As stated, the significant associations of the protein-coding regions of 

C1orf110 and the regulatory element within MEF2B became nonsignificant when the UCSF 

Family Study sample was restricted to European ancestry participants, but very similar 

results were observed when a random set of European ancestry individuals were dropped 

from the analysis. This suggests the changes in p-values resulted from the ~10% reduction in 

sample size, and that the overall results were not inflated by the inclusion of ancestrally 

diverse individuals. Further, a post-hoc power analysis was conducted, indicating that the 

set-based tests of protein-coding regions had power=0.56 and the tests of regulatory regions 

had power=0.47 to detect a significant effect1, which were reduced when restricting the 

UCSF Family Study sample to European ancestry individuals. Together, this highlights an 

important difficulty in conducting whole genome sequencing studies, given the associated 

costs, and emphasizes the need for large-scale collaborative efforts such as those that have 

been developed for GWAS.

In conclusion, it is important to emphasize the unique nature of the present study. To our 

knowledge, this is the first study to use whole genome sequence data to conduct genome-

wide analyses of low frequency variation in relation to cannabis dependence. Thus, the 

comprehensive nature of the data analyzed presents an important advance over previous 

studies conducted using genotyping microarrays. This is particularly relevant to the study of 

Native Americans given that they represent a historically under-studied population. By using 

a whole genome sequencing approach, the present report provides initial data suggesting that 

functional variation in C1orf110 and variation potentially involved in the regulation of 

MEF2B and PCCB expression play an important role in the etiology of cannabis 

dependence. Nonetheless, replication will be an important to step in evaluating the 

robustness of the reported results.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diagram of C1orf110, in green, and it's sequenced transcripts in alternating red and blue and 

labeled by their NCBI Reference Sequence IDs. The location of the analyzed coding variants 

are depicted below in red if they were predicted to impact protein function and blue if they 

were predicted to have no impact by the Provean, SIFT, and Polyphen tools.
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Figure 2. 
Depiction of H3K9me3 (left) and HK36me3 (right) histone marks in the MEF2B region 

across tissue types included in the NIH Epigenomics Roadmap project. The y-axis indicates 

the tissue studied. The x-axis indicates physical position, and the illustrations below are gene 

diagrams based on observed transcripts of the respective genes. Shaded areas indicate 

increased presence of the respective histone mark. Vertical red lines indicate the boundaries 

of the associated regulatory element. PC = primary cells. Image was generated using the 

WashU Epigenome Browser (Zhou et al., 2011).
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Figure 3. 
Depiction of H3K4me1 (left) and HK27ac (right) histone marks in the PCCB region across 

tissue types included in the NIH Epigenomics Roadmap project. The y-axis indicates the 

tissue studied. The x-axis indicates physical position, and the illustrations below are gene 

diagrams based on observed transcripts of the respective genes. Shaded areas indicate 

increased presence of the respective histone mark. Vertical red lines indicate the boundaries 

of the associated regulatory element. PC = primary cells. Image was generated using the 

WashU Epigenome Browser (Zhou et al., 2011).
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