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i. Summary/Abstract

Transcriptional enhancers are DNA regulatory elements that are bound by transcription factors and 

act to positively regulate the expression of nearby or distally-located target genes. Enhancers have 

many features that have been discovered using genomic analyses. Recent studies have shown that 

active enhancers recruit RNA polymerase II (Pol II) and are transcribed, producing enhancer 

RNAs (eRNAs). GRO-seq, a method for identifying the location and orientation of all actively 

transcribing RNA polymerases across the genome, is a powerful approach for monitoring nascent 

enhancer transcription. Furthermore, the unique pattern of enhancer transcription can be used to 

identify enhancers in the absence of any information about the underlying transcription factors. 

Here we describe the computational approaches required to identify and analyze active enhancers 

using GRO-seq data, including data pre-processing, alignment, and transcript calling. In addition, 

we describe protocols and computational pipelines for mining GRO-seq to identify active 

enhancers, as well as known transcription factor binding sites that are transcribed. Furthermore, 

we discuss approaches for integrating GRO-seq-based enhancer data with other genomic data, 

including target gene expression and function. Finally, we describe molecular biology assays that 

can be used to confirm and explore further the function of enhancers that have been identified 

using genomic assays. Together, these approaches should allow the user to identify, and explore 

the features and biological functions of new cell type-specific enhancers.

3Address correspondence to: W. Lee Kraus, Ph.D., Cecil H. and Ida Green Center for Reproductive Biology Sciences, The University 
of Texas Southwestern Medical Center at Dallas, 5323 Harry Hines Boulevard, Dallas, TX 75390-8511, Phone: 214-648-2388, Fax: 
214-648-0383, LEE.KRAUS@utsouthwestern.edu. 
1)The various cutoffs described herein may have to be tuned for the particular biological system or the particular data set being 
analyzed.
2)A typical GRO-seq experiment has two or more replicates for each experimental condition. Hence, it is important to test that the 
replicates are highly correlated (Fig. 7).
3)For the analysis described in section 3.6, which involves the comparison of multiple GRO-seq datasets to identify cell type specific 
enhancers, the library sizes of all the samples should be compared. Appropriate normalization steps should be used to avoid bias due 
to differences in sequencing depth.
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1. Introduction

1.1. Transcriptional Enhancers Function as Genomic Regulatory Elements

Transcriptional enhancers (‘enhancers’) are DNA regulatory elements that are bound by 

transcription factors (TFs) and act to positively regulate the expression of nearby or distally-

located target genes (1, 2). Enhancers are located throughout the genome, including 

promoters, gene bodies, and intergenic regions, and they function independent of their 

orientation and location with respect to their target gene (3–5). They also function in a cell 

type-specific manner; an enhancer that is active in one cell type might not be in another (1, 

6). By controlling unique patterns of gene expression in different cell types, enhancers drive 

the unique biology of those cells types. Thus, identifying the repertoire of enhancers that are 

active in a given cell type, the set of target genes regulated by those enhancers, and the 

molecular mechanisms controlling enhancer function provide important clues for 

understanding biological outcomes.

1.2. Properties and Features of Active Enhancers

TF binding to a specific locus in the genome does not necessarily lead to the formation of an 

‘active’ enhancer (i.e., an enhancer that can drive the transcription of a target gene by RNA 

polymerase II, Pol II). In fact, TF binding events that fail to promote the formation of an 

active enhancer have been observed for a variety of transcription factors (7–9). Active 

enhancers exhibit unique properties and features, many of which have been defined using 

deep sequencing-based genomic assays. These assays include:

(1) chromatin immunoprecipitation-sequencing (ChIP-seq), which determines the 

enrichment of TFs, chromatin- and transcription-related factors, and 

posttranslational modifications of histones across the genome (10).

(2) deoxyribonuclease digestion-sequencing (DNase-seq) and assay for transposase-

accessible chromatin-sequencing (ATAC-seq), which determine the ‘openess’ or 

accessibility of chromatin at specific loci across the genome (11–13).

(3) deep sequencing-based chromosome conformation capture (3C)-related assays 

(e.g., Hi-C), which monitor the formation of chromatin loops across the genome 

(14–16).

(4) global run-on-sequencing (GRO-seq) and related assays, which detect the 

location of active RNA polymerases and the production of nascent transcripts 

across the genome (17, 18). These assays have been used to identify common 

features shared by active enhancers (Fig. 1).
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Properties and features of active enhancers include (1) binding of one or more TFs to DNA 

sequence motifs specific for those TFs, (2) enhanced chromatin accessibility, (3) enrichment 

of specific histone modifications, including histone H3 lysine 4 mono/dimethylation 

(H3K4me1/me2) and H3 lysine 27 acetylation (H3K27ac), (4) binding of transcriptional 

coactivators, histone-modifying enzymes, and chromatin-modulating enzymes (e.g., the 

protein acetyltransferases p300 and CBP; the multipolypeptide Mediator complex), (5) 

recruitment of Pol II and active transcription of nascent enhancer RNAs (eRNAs) (19, 20), 

(6) and looping to target gene promoters (14, 21) (Fig. 1). While some of the features noted 

above are also shared with promoters, such as enrichment of coregulators and Pol II, others 

are more enriched at enhancers than promoters (e.g., H3K4me1/me2) (1, 3, 4, 22). Although 

these enhancer features have been known for some time, how they contribute to the 

regulation and function of enhancers remains to be determined.

1.3. Identifying and Characterizing Enhancer Transcripts

Active transcription at enhancers was first observed over a decade ago in locus-specific 

molecular biology experiments (23–25). These observations were extended by the initial 

observation using ChIP-seq that Pol II is recruited to enhancers across the genome (22). 

Subsequent studies using total RNA-seq in neurons and macrophages demonstrated that the 

Pol II bound at enhancers is indeed engaged in active transcription, producing short, 

bidirectional, non-coding transcripts called enhancer RNAs (eRNAs) (19, 20). These studies 

also showed that the production of eRNAs correlates with the recruitment of transcription 

factors in response to neuron and macrophage activation (19, 20). The genome-wide 

identification of transcription start sites in intergenic regions using TSS-seq and CAGE 

technology added further support for enhancer transcription (20, 26). Taken together, these 

studies provide strong evidence for enhancer transcription as a general biological event.

Additional studies aimed at understanding signal-dependent transcriptional responses have 

used GRO-seq, a method for identifying the location and orientation of actively transcribing 

Pol II (and Pol II and Pol III) across the genome, to characterize signal-dependent 

transcription at enhancers (7, 8, 18, 27–29). GRO-seq has been used to distinguish between 

TF binding sites (e.g., for estrogen receptor alpha, ERα, and NF-κB) that produce 

transcripts and those that do not (7, 8). Only the former (i.e., TF binding sites that are 

transcribed) are enriched for genomic features associated with active enhancers (e.g., 

H3K4me1, DNaseI accessibility, p300/CBP binding) (7, 8). In more recent studies, 

derivatives of GRO-seq (i.e., GRO-cap or 5’ GRO-seq), which enrich for 5’-capped nascent 

transcripts, have been used to study enhancer transcription (27, 28). Collectively, these 

studies have shown that GRO-seq is an effective means to identify, characterize, and 

understand the regulation of enhancer transcription. Furthermore, these studies have shown 

that enhancer transcription is an early event in enhancer activation after TFs binding (which, 

of course, may require the prior binding of pioneer factors and chromatin remodeling). As 

such, enhancer transcription, as detected by GRO-seq, is a highly reliable mark of active 

enhancers, which can be exploited to identify and study these enhancers. In fact, it may be 

the most robust indicator of enhancer activity, even more so than the histone modifications 

typically enriched at enhancers (7, 19).
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1.4. Using GRO-seq and Related Approaches to Identify and Study Active Enhancers

GRO-seq and related approaches, such as PRO-seq (30), GRO-cap (27), and 5’ GRO-seq 

(28), are powerful techniques to identify actively transcribed regions of the genome, whether 

or not those regions have been annotated previously. As we describe below, GRO-seq data 

can be mined to identify active enhancers in an unbiased way in the absence of any prior 

information about the initiating TF. In addition, once enhancers are identified, they can be 

mined using bioinformatic approaches to identify putative underlying TF motifs. In addition, 

the GRO-seq data can be integrated with other types of genomic data relating to enhancer 

function (e.g., ChIP-seq for TFs and histone modifications, DNase-seq, looping data; see for 

example (7, 31).

Recently, software has been developed to analyze GRO-seq (and related) data to search for 

enhancers and other regulatory elements. For example, groHMM, a software package in the 

R programing language that is available in Bioconductor (32), uses a two state Hidden 

Markov Model to define the boundaries of transcription units. Using groHMM, one can 

identify actively transcribed regions of the genome from GRO-seq data. Furthermore, dREG 

(discriminative regulatory-element detection from GRO-seq), a computer program that uses 

read counts to employ support vector regression, can be used to identify active 

transcriptional regulatory elements from GRO-seq or PRO-seq data (33).

2. Materials: Computer, Data, and Software

Herein, we describe the use of computational tools, approaches, and pipelines to identify and 

characterize cell type-specific enhancers using GRO-seq and other genomic data. For 

executing these analyses, you will need a source of GRO-seq data, a suitable computer, and 

a variety of software.

• A high capacity computer suitable for analyzing high content, high complexity 

data sets.

• GRO-seq data from a cell or tissue type of interest.

• Additional genomic data for integration and comparison, as desired.

• R, a programming language and software environment for statistical computing 

and graphics (www.r-project.org/).

• Perl, a high-level, general-purpose, interpreted, dynamic programming language 

(https://www.perl.org).

• Cutadapt, a python module to remove adapter sequences from high-throughput 

sequencing data (http://cutadapt.readthedocs.org/en/stable/index.html) (34), used 

here to trim the polyA tail and adapter sequences from GRO-seq reads.

• Burrows-Wheeler aligner (BWA), a software package for mapping low-divergent 

sequences against a large reference genome (http://bio-bwa.sourceforge.net)(35).

• groHMM, an R package from Bioconductor for analyzing GRO-seq data (http://

www.bioconductor.org/packages/release/bioc/html/groHMM.html) (32).
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• Bedtools, a suite of computational tools for a wide-range of genomic analysis 

tasks (http://bedtools.readthedocs.org/en/latest/) (36).

• Python, a general-purpose, high-level programming language (https://

www.python.org/)

• SAMtools, is a set of utilities that manipulate alignments in the BAM format. 

(http://samtools.sourceforge.net/)(37)

3. Methods

3.1. Preparation of GRO-seq Libraries

Detailed protocols for the preparation of GRO-seq libraries can be found in the published 

literature (17, 18, 29, 30); here we outline the key steps. Intact and transcriptionally 

competent nuclei are isolated from the cells of interest (8, 17, 29, 30, 38). The nuclei are 

subjected to transcriptional run-on in the presence of bromo-UTP (Br-UTP). The labeled 

nascent transcripts are isolated from nuclei and enriched by multiple rounds of bead binding 

using anti-Br-UTP antibody-conjugated agarose beads.

The nascent transcripts are then converted to high-throughput sequencing libraries through a 

series of molecular biology manipulations for annealing/reverse transcription-based addition 

of sequencing adapters (8, 17, 29). The steps include :

(1) polyA tailing of nascent RNA using polyA polymerase, which adds a polyA tail 

to allow annealing of the sequencing adapters (to circumvent an inefficient RNA 

ligation step in the original protocol).

(2) annealing of an DNA oligonucleotide containing an oligo dT sequence followed 

by the 3’ and 5’ sequencing adapters separated by an abasic site, which is used 

for later cleavage of the sequencing adapters.

(3) reverse transcription of the polyadenylated nascent RNA using the annealed 

oligonucleotide primer.

(4) digestion of the excess oligonucleotide primer using exonuclease I and 

degradation of the nascent RNA using base hydrolysis leaving single-standed 

cDNA with the adapter sequences incorporated.

(5) circular ligation of the single-stranded cDNA using CircLigase (a single-

stranded DNA ligase).

(6) cleavage at the abasic site between the 3’ and 5’ sequencing adapters using an 

abasic lysase,.

(7) PCR amplification with primers that add unique sequencing barcodes to each 

sample to allow for sample multiplexing.

After purification, quantification, and quality control of the final libraries, they are subjected 

to deep sequencing (we typically use the Illumina HiSeq platform). The resulting raw data 

are analyzed as described below.
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3.2. Processing and Aligning GRO-seq Data

The following are a standard set of computational approaches that can be used to process 

GRO-seq data. The analytical steps involved include: (1) quality control analysis of the 

GRO-seq data, (2) pre-processing of the GRO-seq data depending on the information from 

the quality control analysis to improve the usability of the dataset, and (3) aligning the 

processed GRO-seq reads to a reference genome (‘mapping’) to associate the signals with 

specific genomic locations. These steps are performed using a variety of open source 

software, some of which have user-friendly graphical user interfaces, while others require 

the use of command lines. Below, we have provided commands that can be cut and pasted 

into the command line versions of the software noted.

1. Quality control and trimming the adapter and polyA sequences from the 
GRO-seq reads—Quality control is an important first step in processing high throughput 

sequencing data, including GRO-seq. The GRO-seq data should be checked for 

contamination from the sequencing adapters or the polyA addition (“pre-processing”). 

Quality control analysis can be performed using tools like FastQC, a quality control tool for 

raw high throughput sequencing data (39) (Fig. 2). In order to improve the alignment of 

reads to the reference genome for the species in which you are working, adapter and polyA 

trimming should be performed (Fig. 2). The adapter and polyA sequences should be 

trimmed from the GRO-seq reads to increase the fraction of reads that can be aligned to the 

reference genome. This can be done using various publicly available trimming tools, such as 

Cutadapt and Trimmomatic (40).

Here we show how adapter and polyA sequences can be trimmed using Cutadapt. Only reads 

which are > 32 bp in length (--minimum-length) after adapter trimming are retained for 

further analysis. A default maximum error rate (−e) of 0.1 is used. In order to comply with 

the input format necessary for futher steps, all negative quality values are changed to zero 

(−z). The statistics regarding the reads that are trimmed in this step are redirected (2>&1) to 

an output statistics file.

The following example can be executed in the command line version of Cutadapt to trim 

adapter and polyA sequence contamination resulting from the GRO-seq protocol. An 

implementation of the commands in Bash scripts are available through the GitHub 

repository (see below). Trimming of the adapter sequence (1, below) should be sequentially 

followed by the execution of trimming polyA tail (2, below).

# (1) Trimming adapter sequence: GRO-seq data in the fastq format is provided as 

input for this step.

$ cutadapt -a <adapter sequence> -z -e 0.10 --minimum-length=32 --

output=filename.noAdapt.fastq.gz inputfile.fastq.gz 2>&1 >>

RunCutadapt.out

# (2) Trimming polyA tail: After trimming the adapter sequence, the output file from 

the above step (reads trimmed for adapter sequence) is now processed in this step to 

trim the polyA contamination.
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$ cutadapt -a AAAAAAAAAAAAAAAAAAAA -z -e 0.10 --minimum-length=32 --

output= filename.noPolyA.noAdapt.fastq.gz filename.noAdapt.fastq.gz

2>&1 >> RunCutadapt.out

2. Aligning the trimmed GRO-seq reads to the reference genome—After 

trimming the sequencing reads, the data should be aligned to the appropriate reference 

genome to provide the map of the sites of active transcription across the genome. The 

alignment can be accomplished using publicly available software, such as BWA (35) and 

SOAP (41) (Fig. 2).

Here we show the trimmed reads can be aligned using the BWA aligner. We find that it 

works better for handling the unequal read lengths that are produced after the pre-processing 

step. A maximum of two mismatches (−n) and a subsequence seed length of 32 bp (−l) are 

used as parameters for alignment in this step. The ‘samse’ command will produce an output 

with a maximum of one alignment per read (−n). After alignment the files containing the 

aligned reads will have to be in a specific format (i.e., bam, -b) to perform subsequent 

transcript calling and tuning using the groHMM package.

The following examples can be executed in the command line version of the BWA aligner, 

followed by conversion to the bam format using ‘samtools’. An implementation of the 

commands in a single Bash script is available from the GitHub repository (see below).

# Aligning to the reference genome index: The output from Cutadapt after adapter 

and polyA trimming (‘filename.noPolyA.noAdapt.fastq.gz’) is provided as input to 

the BWA aligner. The final reads passing these criteria are aligned to the reference 

genome and are written to the ‘alignedFile.sam’ file.

$ bwa aln -n 2 -l 32 -t 8 Genome_INDEX.fa

filename.noPolyA.noAdapt.fastq.gz > alignedFile.sai

$ bwa samse Genome_INDEX.fa -n 1 alignedFile.sai inputfile.fastq.gz

> alignedFile.sam

# Converting aligned files from sam to bam format using Samtools.

$ samtools view -bh -S alignedFile.sam > alignedFile.unsorted.bam

$ samtools sort alignedFile.unsorted.bam alignedFile.sorted.bam

3.3. Analyzing GRO-seq Data Using groHMM and Other Computational Tools

GroHMM is a software package in R that can be used to define the boundaries of 

transcription units from a GRO-seq data using a two-state Hidden Markov Model (HMM) 

(32). It also provides additional tools for visualizing and analyzing GRO-seq data. The 

groHMM package covers basic steps of GRO-seq data analysis, including the generation of 

wiggle files using the ‘writeWiggle’ function and the creation of metagene (data average) 

plots using the ‘runMetaGene’ function, as well as more advanced steps, such as predicting 
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the boundaries of actively transcribed regions (‘transcription units’) across the genome de 

novo (Fig. 2).

The aligned files from the section 3.2-1 serve as the input to groHMM. Since GRO-seq data 

is strand-specific, one can visualize the signals from the plus and minus strands separately. 

The pipelines for calling transcription units (using ‘detectTranscripts’), as well as evaluating 

(using ‘evaluateHMMInAnnotations’) and tuning the transcript calling, are explained in 

detail in the tutorial associated with the groHMM package (32). In a systematic comparison 

of the performance of groHMM versus other transcription unit callers, such as SICER and 

HOMER (42, 43), groHMM performed better with respect to coverage of genic and 

intergenic regions, as well as transcription unit accuracy for both short and long transcripts 

(32).

3.4. Identification of Active Enhancers from GRO-seq Data

Transcription from GRO-seq data can be used as a signature to identify active enhancers 

(here, by ‘active enhancer’, we mean those that are actively transcribed) (7, 33, 38). This can 

be accomplished using two approaches: (1) de novo identification of active enhancers using 

short bidirectional transcript pairs and (2) identification of TF binding sites (from ChIP-seq 

data) that are actively transcribed. For the de novo identification, bioinformatic approaches 

can be used to identify motifs for putative transcription factors that drive the formation of 

those enhancers (7). In the sections below, we describe how active enhancers can be 

identified using groHMM, open source software, and additional scripts in the R and perl 

programming languages.

1. De novo identification of enhancers using GRO-seq data—We have shown 

previously that the production of enhancer transcripts can be used to identify active 

enhancers de novo in the absence of any other genomic information (7). For these analyses, 

we have focused on intergenic enhancers to avoid complications in the analysis associated 

with overlapping gene body transcription. For our purposes, we have searched > 10 kb away 

from the 5’ or 3’ end of an annotated gene (7), although this can be adjusted to recover a 

greater number of enhancers or those closer to promoters (8). We have also defined the 

enhancer transcripts as ‘short’ (i.e., ≤ 9 kb), as well as unidirectional (i.e., transcript 

produced from one strand of DNA, but not the other) or bidirectional (i.e., transcript 

produced both strands of DNA) (7) (Figs. 3 and 4).

The first step in this analysis is to identify intergenic transcripts from the universe of all 

transcripts obtained from groHMM (7, 32). As noted above, we use a cutoff of > 10 kb away 

from either end of annotated genes in order to distinguish enhancer transcription from genic 

transcription. Here we show how a set of intergenic transcripts can be identified from a 

transcript universe using the ‘intersect’ function in BEDtools, a suite of different analysis 

tools that can be used to modify, convert, or compare bed files (36). The following example 

illustrates the use of ‘intersect’ to isolate transcripts that do not intersect (−v) with genic 

regions. An implementation of the command in a single Bash script is available from the 

GitHub repository (see below).
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# Identify intergenic transcripts: The ‘genic_regions_to_avoid.bed’ file contains the 

genomic coordinates extending 10 kb from the 5’ and 3’ ends of annotated genes. The 

input files should be sorted before running the bedtools intersect function using the 

following unix command.

$ sort-k1,1-k2,2n ip.txt ip_sorted.txt

$ bedtools intersect -a transcript_universe_from_groHMM.txt -b

genic_regions_to_avoid.bed -v > intergenic_transcripts.txt

After filtering for transcripts that are intergenic, we use a length cutoff to define and identify 

enhancer transcripts (Fig. 4). In a previous study, we observed that the median length of 

transcripts originating from distal ERα enhancers in MCF-7 breast cancer cells is ∼9 kb (7). 

Hence, we use 9 kb as the length cutoff to define ‘short’ eRNA transcription units and 

hypothesize that longer transcripts originating from the enhancers are more likely to be bona 

fide long non-coding RNAs (lncRNAs) (7, 44). As noted above, enhancer transcription can 

be unidirectional or bidirectional, depending on the nature of the enhancer. Furthermore, the 

magnitude of enhancer transcription may correlate directly with the activity of the enhancer 

(7). A comparison of active enhancers (with robust uni- or bidirectional transcription) with 

‘inactive’ enhancers, as well as their associated genomic features, suggests that it is 

informative to distinguish these different categories of enhancers (7).

The provided Perl script can be used to identify short intergenic transcripts (i.e., putative 

enhancer transcripts) and then divide them into short paired (bidirectional) enhancer 

transcripts. The transcripts remaining in the universe of short intergenic transcripts are 

considered to be “short unpaired transcripts” (7). The Perl code is available for download 

from the GitHub repository (see below; https://github.com/Kraus-Lab/active-enhancers/blob/

master/scripts/Define_enhancer_transcripts.pl). It will produce an output of short paired 

intergenic transcripts together with information about the overlap of the transcript pair.

# Identify short intergenic transcripts: The output from bedtools intersect after 

identifiying intergenic transcripts (‘intergenic_transcripts.txt’) is provided as input. 

The final transcripts passing these criteria are written to the ‘paired_transcripts.txt’ 

file, along with length of overlap ‘paired_transcripts_overlap.txt’ and coordinates of a 

1kb window around the center of the overlap 

‘paired_transcripts_1kb_window_overlap’.

$ ./Define_enhancer_transcripts.pl -i intergenic_transcripts.txt

  -a short_paired_transcripts.txt -b

short_paired_transcripts_overlap.txt -c

short_paired_transcripts_1kb_window_overlap.txt

2. Identification of known TF binding sites that are actively transcribed using 
GRO-seq data—GRO-seq data can be used to identify known TF binding sites (from 

ChIP-seq data) that are actively transcribed. This can be accomplished in two ways: 1) by 

comparing the overlap of transcripts in the universe of transcripts from groHMM with 

Nagari et al. Page 9

Methods Mol Biol. Author manuscript; available in PMC 2017 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/Kraus-Lab/active-enhancers/blob/master/scripts/Define_enhancer_transcripts.pl
https://github.com/Kraus-Lab/active-enhancers/blob/master/scripts/Define_enhancer_transcripts.pl


known TF binding sites of interest or 2) by collecting and quantifying the GRO-seq reads 

that fall within in a specified window around known TF binding sites of interest (Fig. 5). 

With respect to the former, criteria for the location of the TF binding site relative to the 

cognate enhancer transcript(s) (or vice versa) can be specified. For example, if the focus is 

on paired/bidirectional enhancer transcripts, one might specify that the TF binding site must 

be located within the region of overlap of the + strand and – strand transcripts (7).

Pipelines for the global identification of enhancer transcripts associated with known TF 

binding sites using ERα as an example has been described previously (7). The analysis is 

similar to the one described in 3.4-1. However, in this case, the starting point is a set of 

known TF binding sites, rather than a set of known enhancer transcripts. As described above, 

the first step is to define intergenic TF binding sites and then search for those that overlap 

with an enhancer transcript to identify active intergenic enhancers.

3.5. Associating Newly Identified Enhancers with TF Motifs

After completing the pipeline for de novo identification of active enhancers using GRO-seq 

data, as in 3.4-1 above, one can search in the transcribed region for an enrichment of motifs 

that suggest putative TFs that may drive the formation of those enhancers (7). In our 

analyses, we have focused on (1) a region (e.g., 500 bp) surrounding the center of the 

overlap between the enhancer transcript pairs for bidirectional/paired enhancer transcripts or 

(2) a window (e.g., 500 bp) at the 5’ end of unidirectional/unpaired enhancer transcripts 

(Fig. 3 and 4). The sequences of the genomic regions specified above are extracted from the 

UCSC genome browser.

Within the regions specified above, motifs for putative TFs can be identified in two ways: 1) 

a directed approach using software, such as FIMO (45) or MotifScanner (46), which 

searches for enrichment of known, user-provided TF motifs in the region of interest and (2) a 

de novo approach using software, such as MEME (47), which searches for the enrichment of 

specific DNA sequences that can then be matched to known TF motifs using software, such 

as STAMP (36) or TOMTOM (48). Motif searches in genomic regions where enhancer 

transcripts originate, such as those described here, can help in uncovering the TFs that 

mediated the formation and activity of the enhancers of interest.

3.6. Associating Newly Identified Enhancers with Putative Target Genes

How an enhancer targets and promotes the transcription of its target genes is a fundamental 

question in gene regulation biology. Such analyses can be readily performed by using a 

‘nearest-neighboring gene’ approach. In this approach, the actively transcribed gene (e.g., 

mRNA gene or lncRNA gene) nearest to an enhancer is assumed to be a target of the 

enhancer (Fig. 6). While not perfect, this assumption holds well enough to be informative 

with respect to enhancer function and target gene activation (7, 31). Alternatively, if 

genome-wide looping data are available for a particular TF (e.g., from ChIA-PET analyses; 

(15, 49, 50), then direct associations between enhancers and target genes can be discerned. 

In either case, the relationship between enhancer transcription and target gene transcription 

can be determined from GRO-seq data. Furthermore, potential biological functions of a set 

of enhancers identified using GRO-seq data can be explored by gene ontology (GO) or 
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pathways analyses of the target gene set (31). Such analyses can reveal the likely biological 

functions of the target genes and, by extension, the likely biological functions of the 

enhancers as well (Fig. 6).

3.7. Identifying Cell Type-Specific Enhancers Using GRO-Seq Data

The profiles of enhancer transcripts are highly cell type-specific (32), more so than the 

profiles of other genomic enhancer data. This cell-type specificity can be used to discern 

important biological insights. The groHMM-based enhancer identification pipelines 

described above can be used to identifying cell type-specific enhancers by comparing GRO-

seq data derived from different cell types. Using an approach similar to the one described in 

section 3.4 above, one can identify the universe of enhancer transcripts expressed in a 

particular cell type and then compare that universe to the universes of enhancer transcripts 

expressed in other cell types. These comparisons allow for the identification of enhancer 

transcripts that (1) are common across various cell types or (2) are unique to a particular cell 

type. Motif analysis, as described in section 3.5 above, can be performed for the enhancers 

producing common or unique transcripts to identify putative TFs that might drive the 

formation of those enhancers.

3.8. Integration with Other Genomic Data and Other Bioinformatic Analyses

After identifying the set of active enhancers in a particular cell type, the enhancer 

information from the GRO-seq data, which includes the genomic location and the magnitude 

of transcription, can be integrated with data from other genomic approaches. For example, 

the enrichment of enhancer-related histone modifications (e.g., H3K4me1, H3K27ac) and 

TF binding from ChIP-seq data or the chromatin state from DNase-seq can be assessed at 

the GRO-seq-called enhancers (Fig. 1).

As noted above, nearest neighboring gene analyses can be used to identify putative target 

genes of the predicted enhancers with subsequent GO and pathway analyses on the potential 

target genes. The GO and pathway analyses can be performed using tools such as 

WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) (51) and DAVID (52). Such analyses 

can provide insights about the biological functions of GRO-seq-identified enhancers. These 

‘functional’ analyses can be facilitated by using GREAT (Genomic Regions Enrichment of 

Annotations Tool), which assigns biological meaning to a set of non-coding genomic regions 

by analyzing the annotations of the nearby genes (53). Users can provide GRO-seq-defined 

enhancer locations as input in the GREAT web interface and select the “Single nearest gene” 

option in the association rule settings.

Custom multi-dimensional analyses can be used to explore the relationships among multiple 

enhancer-related parameters. For example, we have recently demonstrated how enhancer 

transcription (from GRO-seq), target gene transcription (from GRO-seq), and TF binding at 

the predicted enhancer (from ChIP-seq) increase simultaneously in response to an external 

signal, an observation that can be visualized in a three-dimensional box plot (31). Of course, 

the additional analyses described here represent a few of the many ways in which GRO-seq 

and other genomic data can be mined to explore enhancer functions.
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3.9. Validation of Genomic Results Using Enhancer-Specific Molecular Biology Techniques

All of the specific conclusions regarding enhancer formation and function derived from the 

genomic analyses described here should be validated for individual enhancers using 

molecular biology approaches. Enhancer features can be tested in locus-specific assays that 

assess (1) enhancer transcription (e.g., by reverse transcription-qPCR), (2) binding of TFs 

and enrichment of histone modifications (e.g., by ChIP-qPCR), (3) chromatin accessibility 

(e.g., by DNase-qPCR), and (4) looping (e.g., by 3C–qPCR) (7). The function of the 

enhancers identified by GRO-seq can be tested in reporter gene assays, where the DNA 

sequence from an identified enhancer is inserted into a reporter construct. Upon introduction 

of the enhancer-reporter construct into cells expressing the cognate TF, the presence of the 

enhancer DNA element should increase reporter activity if it is a functional enhancer (54).

In addition, the function of putative TFs driving the formation of enhancers identified using 

GRO-seq can be tested in functional assays. For example, the TF should bind to the 

enhancer (as determined by ChIP-qPCR) and RNA-mediated knockdown of the TF should 

abolish enhancer formation and function (e.g., loss of enhancer transcription and a reduction 

of enhancer-associated histone modifications). Furthermore, the functions of GRO-seq-

identified enhancers can be tested using enhancer deletion assays in cells, in which the 

enhancer DNA is deleted (or mutated) using CRISPR/Cas9 and the impairment of enhancer 

function and target gene transcription is assessed using the qPCR-based locus-specific 

assays described above. Ultimately, the function of each enhancer identified and examined in 

detail should be tested using genetic models in vivo (55).
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Appendix 1. Perl script for the identification of short intergenic transcripts, 

with subsequent separation into short paired (bidirectional) enhancer 

transcripts

The code provided here is for reference only. An executable version is available for 

download at https://github.com/Kraus-Lab/active-enhancers/blob/master/scripts/

Define_enhancer_transcripts.pl. It will produce an output of short paired intergenic 

transcripts together with information about the overlap of the transcript pair. Save the 

following code in a separate file named 'Define_enhancer_transcripts.pl' and execute in the 

command line as described above.

#!/usr/bin/perl

use strict;

use Getopt::Std;

my $infile;

my $outfile1;

my $outfile2;

my $outfile3;

my $help;

my %Options;

my $optset=getopts('i:a:b:c:h:',\%Options);
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my $size = $#ARGV+1;

if($size != 0 || !$optset || $Options{h})

{

print "Usage: Define_enhancer_transcripts.pl -i <Infile> -a

<OutputFile1> -b <OutputFile2> -c <OutputFile3> \n";

print "Options:\n";

print "        -i <InputFile>\n";

print "        -a <OutputFile1>\n";

print "        -b <OutputFile2>\n";

print "        -c <OutputFile3>\n";

die("Get ready with the files… \n");

}

# Declaring the variables

my $infile=$Options{i};

my $outfile1=$Options{a};

my $outfile2=$Options{b};

my $outfile3=$Options{c};

my $length=0;

my @coord=();

# Read the input file with intergenic transcripts

open (FILE1, "<$infile") || die "can't: $!";

# Output file1 with short intergenic transcripts

open(OUTPUT1, ">$outfile1") or die("Unable to open file");

while(<FILE1>)

{

my $line1 = $_;

chomp($line1);

@coord=split(/\t/,"$line1");

# Calculating transcript lengths

$length = $coord[2]-$coord[1];

# Selecting the transcripts shorter than 9 kb

if($length < 9000)

{
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     print OUTPUT1 "$line1\n";

}

}

# Sorting the short intergenic transcripts based on the chromosome, start position

$a=`sort -k1,1 -k2n,2 $outfile1 >sort_$outfile1`;

# Identifying intergenic short paired transcripts

open (FILE, "<sort_$outfile1") || die "can't: $!";

# Output file2 with a list of short paired transcripts, length of the overlap

open(OUTPUT2, ">$outfile2") or die("Unable to open file");

# Output file3 with the coordinates of a 1kb window around the center of the overlap 

of intergenic short paired transcripts

open(OUTPUT3, ">$outfile3") or die("Unable to open file");

# Declaring the variables to be used

my @line=<FILE>;

my @firstline=();

my @secondline=();

my $j;

my $overlap;

my $overlap_center;

my $window_start;

my $window_end;

# Read the lines of the file and store in an array; accessing each line through for loop

for(my $i=1;$i<=$#line;$i++)

{

# Comparing two consecutive lines to check overlap

$j=$i+1;

@firstline=split(/\t/,"$line[$i]");

@secondline=split(/\t/,"$line[$j]");
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# Matching the chromosome number of the two consecutive lines and checking 

if overlap exists to define the universe of paired transcripts

if($firstline[0] eq $secondline[0] && $firstline[1] <=

$secondline[2] && $firstline[2] >= $secondline[1])

{

# Calculating overlap, overlap center

$overlap=$firstline[2]-$secondline[1];

$overlap_center =

int(($firstline[2]+$secondline[1])/2);

# Calculating a 500 bp window on either side of the overlap center

$window_start = $overlap_center-500;

$window_end = $overlap_center+500;

# Writing a list of short paired transcripts, length of the overlap to output1

print OUTPUT2

"$line[$i]$line[$j]\t\t\t\t\t\t\t\t\t\t$overlap\n";

# Writing the coordinates of a 1 kb window around the length of the overlap 

to output2

print OUTPUT3

"$firstline[0]\t$window_start\t$window_end\t$overlap_ce

nter\n";

        }

    }
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Figure 1. Genomic Features of Active Enhancers and Promoters
Genome browser tracks showing (A) GRO-seq and (B) ChIP-seq and DNase-seq data at a 

representative locus of the human genome. Bidirectional transcription at the enhancer is 

evident, as is TF and p300 binding, recruitment of Pol II, and enrichment of histone 

modifications.

Nagari et al. Page 19

Methods Mol Biol. Author manuscript; available in PMC 2017 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Pre-processing, Alignment, and Transcript Calling for GRO-seq Data
Overview of GRO-seq data analysis, as well as software that can be used for the key steps in 

the analysis.
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Figure 3. Schematic Representation of an Actively Transcribed Enhancer
Actively transcribed enhancers that form at TF binding sites may produce paired or unpaired 

enhancer transcripts.
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Figure 4. De novo Identification of Enhancers using GRO-seq Data
Details are provided in the text.
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Figure 5. Identification of Known TF Binding Sites that are Transcribed
Details are provided in the text.
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Figure 6. Analysis of Target Gene Activation and Functions
Active enhancers may promote the transcription of nearby genes through looping 

mechanisms that bring the enhancers and target gene promoters in proximity. Knowledge of 

the functions of the target genes from ontology analyses can provide clues about the 

biological functions of the enhancers.
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Figure 7. Correlation Plot of Two Biological Replicates of GRO-seq Data
A typical GRO-seq experiment has two or more replicates for each experimental condition. 

Hence, it is important to test that the replicates are highly correlated. Shown here is a 

Pearson’s correlation plot.
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