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Abstract

We propose a seizure detection method for electroencephalographic (EEG) epilepsy data based on 

a novel multi-scale topological technique called persistent homology (PH). Among several PH 

descriptors, persistence landscape (PL) possesses many desirable properties for rigorous statistical 

inference. By building PLs on EEG epilepsy signals smoothed by a weighted Fourier series (WFS) 

expansion, we compared the before and during phases of a seizure attack in a patient diagnosed 

with left temporal epilepsy and successfully identified site T3 as the origin of the seizure attack.
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1. INTRODUCTION

Epilepsy is a neurological problem that can negatively affect the brain’s visual, audial and 

motor functions [1]. Researchers are pursuing all possible avenues to gain a better 

understanding of the disease. EEG, an important imaging modality for understanding the 

function and dysfunction of the human brain, is a popular tool for studying epileptic seizures 

because of its non-invasive procedure and high temporal resolution. It indirectly records 

neuronal activity by capturing signals recorded by electrodes on the scalp. Many statistical 

methods have been developed over the past decades to study the patterns of these nonlinear 

electrical signals [2]. This paper aims to push the boundaries by exploring the topological 

detection of epileptic seizure based on multichannel EEG signals.

The PH technique reveals the topological structures of space X through a dynamic ranking 

of multi-scale features in the observed sample [3]. When PH is applied to functional data, 

the basic building blocks are the sub-level sets of functions. By changing the threshold 

values, we create a dynamic sequence of nested sub-level sets called a Morse filtration. As 

the threshold (called the filtration value) increases, the sublevel sets change from multiple 

isolated components into connected clusters. Since the ground truth of X is unknown in 

scientific experiments, we seek a compact PH descriptor that ranks topological features by 

their lifetime in the filtration. A collection of bars known as barcode serves exactly to such 

purpose. As a new PH descriptor, PL builds landscape-like structures on barcode that 

possess desirable statistical properties [4].
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Our main contribution is the first ever application of the topological descriptor PL to the 

seizure detection problem in EEG and building the related signal analysis pipeline.

2. METHOD

Weighted Fourier series

For noisy functional measurements, it is necessary to smooth out high frequency noise in the 

function. We will use the WFS expansion, which is equivalent to the diffusion wavelet 

transform [5], to filter out noise in an EEG signal. Consider isotropic diffusion in an interval 

[−T, T] ∈ ℝ:

(1)

where the observed functional measurement f is treated as the initial condition. By imposing 

the additional periodic boundary conditions

we obtain WFS

(2)

which gives the unique solution of (1) when k = ∞. The Fourier coefficients are given by

The diffusion time or scale σ modulates the smoothness of the estimation.

Morse filtration

We apply PH to a smoothed 1D function g. Define the sub-level set of g thresholded at λ as

By varying λ, we create a dynamic sequence of nested subsets called a Morse filtration:
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As the filtration value λ increases, the sub-level set change from multiple isolated 

components into connected clusters. These topological changes can be tabulated by the 

barcode [3]. A βi-barcode is a set of bars with their endpoints representing birth and death 

times of i-th-dimensional holes in the filtration. A long bar in a barcode indicates a persistent 

feature in X in the face of growth, whereas short intervals in a barcode correspond to 

transient signals, noise or inadequate sampling. Figure 1 shows an example of β0-barcode 

construction on a one-dimensional Morse function with unique local minima a < b < c and 

maxima d < e < f. As the filtration value γ increases from −∞ to ∞, new connected 

components are born consecutively in the sublevel sets Xg(a), Xg(b) and Xg(c), and are 

merged in the sublevel sets Xg(d), Xg(e) and Xg(f) according to the Elder Rule: older 
components live on at a merging junction [3]. The birth and death times of components are 

paired in as bars in a β0 barcode.

Persistence landscape

Statistical inferences are difficult to perform on barcodes. PL is a new PH descriptor that 

possesses many desirable statistical properties such as a Central Limit Theorem, on which it 

is easier to build test statistics [4]. Given an interval (a, b) on the barcode with a ≤ b, we can 

define the piecewise linear bump function h(a,b): ℝ → ℝ by

(3)

The geometric representation of the bump function (3) is a right-angled isosceles triangle 

with height equal to half of the base of the corresponding interval in the barcode. The PL of 

 is the set of functions defined by

(4)

with νk(t) = 0 for k > N. Geometrically, the PL {νk}k=1,2,3 traces the k-th outermost outline 

of these crossover triangles. The landscape assumes zero value elsewhere. Figure 1 

illustrates PL for the underlying Morse function.

For each subsampled EEG signal, we construct PL. Then, for n PLs, { }, we 

compute the average persistence landscape, . Then we compare two 

average PLs ν̄
1 and ν̄

2 by the l2-distance

Wang et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2017 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



which is then discretely approximated by a trapezoidal Riemann sum with the partition 

intervals Δtj = tj+1 − tj, j = 1, …, m−1, being identical across the two sets of landscapes ν̄
1 

and ν2̄.

Subsampling and Permutation test

In a single-trial context, for statistical inference, we subsample a smoothed EEG signal 

independently before and during seizure. Given a smoothed univariate signal, ten 

subsamples are created by pooling functional values at the every sth time points starting at s 
for the sth subsample (s = 1, …, 10). The subsampling scheme is shown in Figure 2. This 

gives two groups of 10 samples each. Then we compute d2 distance between the before and 

during seizure. Since the distribution for d2 is unknown, we utilize a permutation test and 

obtain its empirical distribution for statistical inference.

3. SIMULATIONS

In each simulation, two blocks of signals were generated. In Study 1, two blocks were 

almost identical, whereas in Study 2, the second block showed significant frequency 

variations. In each simulation, we rejected the null hypothesis that the population mean PLs 

for the two phases were identical if the p-value was small.

Study 1

We simulated 100 epochs of two blocks of EEGs in the form Epoch = Baseline + Noise. In 

the first block, the baseline signal was generated by smoothing the AR(1) model y(t) = 

−0.9y(t−1)+ε(t), where t = 1, …, 100, μ1(0) = 0, and the innovation process was Gaussian ε 
~ N(0, 0.12), with a robust LOESS procedure [6]. In the second block, the baseline signal 

was 0.8 times the baseline signal in the first block. In each simulation, independent Gaussian 

noise N(0, 0.52) was added at every time point of first block of the baseline signal, whereas 

the second block was assigned independent noise N(0, 12). Time was scaled down by a 

factor of 10.

Study 2

In each of the 100 simulations, we simulated two consecutive blocks of signals μ1 and μ2 by 

autoregressive models (AR) inducing different frequencies. The first half of the signal μ1 

was generated by the AR(1) model: μ1(t) = 0.9μ1(t−1)+ε(t); the second block of the signal μ2 

was generated by the AR(1) model: μ2(t) = −0.9μ2(t − 1) + ε(t), where t = 1, …, 100, μ1(0) = 

0, and the innovation process was Gaussian ε ~ N(0, 0.12). Time was scaled down by a 

factor of 10. This resulted in high frequency variations in the second block.
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Results

Figure 3 shows one representative simulation result and p-values for 100 simulations in each 

study. In Study 1 (left), there were three cases where the p-value was smaller than the 0.01 

threshold, and so 3% false positives were detected at the threshold. In Study 2 (right), there 

were 97 cases where the p-values were smaller than 0.01, so the proposed method had 97% 

power in detecting frequency variation in the signal.

4. APPLICATION

In the current study, EEG data was retrieved by the Department of Neurology at the 

University of Michigan from a single female subject already diagnosed with epilepsy on the 

left temporal lobe. Figure 4 shows a montage of the eight channels at which the EEG signals 

were sampled at a rate of 100 Hz with a total number of 32,680 time points. For this 

particular episode, the seizure initiates at the left temporal site (T3 channel) approximately 

halfway through the recording. We applied the topological detection method to the EEG data 

to identify the seizure origin.

Denoising, barcode and PL

The effect of denoising by WFS with k = 85 and σ = 0.01 is shown in Figure 4. Since there 

are two free parameters k and σ in the WFS representation, we performed additional 

analyses on the different combinations of parameters to see how sensitive the changing 

parameters are on the final outcome. Due to space limitation, only the combinations of 

degrees k = 75, 85, 95 and bandwidth σ = 0.01 are shown but other combinations produce 

similar results. Barcodes and their corresponding PLs calculated for signals smoothed at k = 

85 and σ = 0.01 are shown in Figures 5(a) (before seizure) and 5(b) (during seizure) for the 

channels C4 and T3. We can see that T3 has more dominant landscape features than C4.

Seizure origin detection

Table 1 shows the p-values for the observed d2 distance between average PLs to be greater 

than the shuffled distance based on 2000 permutations. The method consistently identified 

site T3 as the most significant at a 1% significance level with Bonferroni correction. 

Neurologists can use this topological descriptors to guide them to examining further those 

regions that show the strongest significant changes during the seizure episode.

5. DISCUSSION

Previous analysis on the same epilepsy data only showed the evolution of the spectral power 

and coherence during the seizure episode but was not abel to identify seizure location [2]. 

Here we demonstrated the potential utility of our proposed procedure for seizure 

localization. As part of our future study, we shall consider the option of a parametric test for 

distances between average PLs, and explore the use of PH in comparing network difference 

in phases of a seizure attack.
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Fig. 1. 
Top left: barcode construction on a one-dimensional Morse function g as the filtration value 

increases. Bottom left: barcode and its bump function (3). Right: the PL traces all layers of 

outlines of the bump function.
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Fig. 2. 
Subsampling scheme: for each channel, smoothed functional values at every tenth time 

points starting at t = s make up the sth subsample, s = 1, …, 10.
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Fig. 3. 
Simulated EEG signal in one simulation (innate) and p-values for 100 simulations.
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Fig. 4. 
Left: EEG channels in accordance with the international 10–20 system; T=temporal, 

P=parietal, C=central; odd (even) numbers indicate the left (right) hemisphere. Middle: EEG 

recording with a sampling rate of 100Hz over 163.4s; time 0 indicates the start of the seizure 

attack. Right: WFS denoising with degree k = 85 and bandwidth σ = 0.01. All amplitude 

units are in μV.
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Fig. 5. 
Examples of observed barcodes (side) for one subsample and average persistence landscapes 

(middle) over all subsamples with smoothing parameters k = 85 and σ = 0.01 before and 

during seizure; each subsample produces one barcode, an average persistence landscape is 

the average bump function corresponding to barcodes across all subsamples.
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Table 1

Summary of p-values for combinations of k = 75, 85, 95 and σ = 0.01 at 2000 permutations.

k = 75 k = 85 k = 95

σ = 0.01

C3 0.132 0.136 0.088

C4 0.098 0.108 0.118

Cz 0.346 0.324 0.122

P3 0.140 0.338 0.106

P4 0.108 0.018 0.104

T3 0.001 0.001 0.001

T4 0.118 0.022 0.024

T5 0.102 0.112 0.121
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