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Abstract

Joint effects of genetic and environmental factors have been increasingly recognized in the 

development of many complex human diseases. Despite the popularity of case-control and case-

only designs, longitudinal cohort studies that can capture time-varying outcome and exposure 

information have long been recommended for gene-environment (GxE) interactions. To date, 

literature on sampling designs for longitudinal studies of GxE interaction is quite limited. We 

therefore consider designs that can prioritize a subsample of the existing cohort for retrospective 

genotyping on the basis of currently available outcome, exposure and covariate data. In this work, 

we propose stratified sampling based on summaries of individual exposures and outcome 

trajectories, and develop a full conditional likelihood (FCL) approach for estimation that adjusts 

for the biased sample. We compare the performance of our proposed design and analysis to 

combinations of different sampling designs and estimation approaches via simulation. We observe 

that the FCL provides improved estimates for the GxE interaction and joint exposure effects over 

uncorrected complete-case analysis, and the exposure enriched outcome trajectory dependent 

design outperforms other designs in terms of estimation efficiency and power for detection of the 

GxE interaction. We also illustrate our design and analysis using data from the Normative Aging 

Study, an ongoing longitudinal cohort study initiated by the Veterans Administration in 1963.
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1. Introduction

Joint effects of genetic and environmental factors have been increasingly recognized in the 

development of many complex human diseases [1]. Investigation of gene-environment 

(GxE) interaction may not only provide biological insights into the etiology of these 

diseases, but also assist in the discovery of novel genetic or environmental risk factors [2]. 

However, GxE interaction studies are statistically challenging because of the prohibitive 

sample size requirement in each GxE configuration. The frequency of the risk allele, the 

distribution of the environmental exposure, and the effect size of the GxE interaction all 

contribute to the need for larger samples to detect such an interaction with adequate power 

[3].

Despite the popularity of case-control and case-only designs, longitudinal cohort studies 

have long been recommended for GxE interactions because of better characterization of 

lifetime exposure history [4], the ability to account for within-subject variability of the 

outcome, and the potential to delineate the dynamic temporal pattern of the genetic or GxE 

interaction effect, which is often missed in case-control studies by design. Typically, in such 

studies, extensive information has been collected over the course of the longitudinal follow-

up, including prospectively assessed environmental exposures, repeatedly measured 

outcomes, and a detailed set of potential confounders. We consider a situation where genetic 

data are to be collected retrospectively with exposures and outcomes already measured; 

however, our proposed methods can be easily adapted to the collection of new expensive 

biomarkers of exposure when genetic data is already available. The ability to obtain both 

genetic and environmental data for all subjects in a large cohort under the budget constraint 

is often challenging due to cost. To focus the limited resources on informative subjects, there 

is a need to apply a principled strategy that prioritizes subjects for genotyping or exposure 

assay. This idea is akin to two-phase sampling designs commonly used for case-control 

studies, and we extend them to longitudinal cohorts. Such a sampling design is also relevant 

when constructing an informative subsample using existing electronic health record (EHR) 

data to check a hypothesis on the interplay between genes and environmental exposures/

biomarkers.

As highlighted in a recent commentary by Kraft and Aschard [5], the small number of 

replicated GxE interactions in observational studies could be attributed to the lack of 

exposure variability in standard designs. There have been recommendations for exposure 

enriched sampling in case-control studies with binary exposure. For example, Ahn et al. [6] 

developed a disease-exposure stratified sampling accompanied by a Bayesian analysis 

framework, Chen et al. [7] explored several two-phase designs conditional on the exposure 

and case-control status, and Stenzel et al. [8] evaluated the impacts of exposure enriched 

sampling designs and exposure measurement error on the power for tests of GxE interaction. 

All of them concluded with a consensus that an enriched selection of exposed subjects leads 

to improved power for GxE interactions, as long as exposure measurement error is not 

severe. Similarly, in cross-sectional studies with continuous exposure and outcome, a 

substantial reduction in the required number of subjects is achieved by selecting subjects 

with extreme exposure levels [9]. However, exposure enriched sampling has not been 
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previously studied for longitudinal data, so in this work we aim to characterize the impact of 

such design on the detection and inferential accuracy of GxE interactions.

In addition to exposure variability, it is also important to consider temporal variation in 

outcomes when constructing an informative subsample in a longitudinal study. For instance, 

Schildcrout and Heagerty [10] introduced stratified sampling conditional on a binary 

response series. Schildcrout et al. [11] proposed auxiliary variable dependent sampling when 

an inexpensive auxiliary variable related to the longitudinal binary response is available for 

repeated measures. For longitudinal continuous outcomes, Schildcrout et al. [12] developed 

outcome dependent sampling that stratifies subjects by the summary measures of the 

individual outcome vector. In their work, a genetic main effect and a gene-by-time 

interaction effect were assessed without specific consideration of an environmental 

exposure. Improved efficiency of estimated coefficients were observed when sampling on a 

summary measure that is related to the targeted parameters.

To date, literature on sampling designs for longitudinal studies of GxE interaction is quite 

limited. In this work, we consider designs to select a subsample for genotyping on the basis 

of available data in an existing cohort/database. Specifically, we propose variants of two-

phase designs for longitudinal outcomes, including exposure enriched sampling, outcome 

trajectory dependent sampling that extends the work of Schildcrout et al. [11] by using a 

shrinkage estimate, and exposure enriched plus outcome trajectory dependent sampling. We 

are interested in the GxE interaction, joint exposure effect by genetic subgroups, and 

potentially the time-varying GxE (GxExT) interaction.

Under the two-phase design, standard maximum likelihood analysis ignoring the sampling 

mechanism leads to biased estimates [13]. To correct for the biased design, some approaches 

consider an analysis of Phase II subjects with complete information on exposure, genotype, 

outcome, and other relevant covariates, and make adjustment using a weighted likelihood or 

conditional likelihood [10, 12, 14]. In spite of efficiency gains relative to random sampling, 

subjects with partial information are ignored in these analyses. To recover information on 

unsampled subjects, some approaches treat it as a missing data problem by incorporating 

these subjects through an underlying distribution of the missing covariate, either estimated 

empirically or modeled parametrically [15, 16]; while others use multiple imputation and 

perform a standard analysis on both observed and imputed data [17], which requires careful 

consideration of the missing covariate model. Furthermore, a full Bayesian analysis based on 

the joint likelihood of the entire cohort has been proposed, with a focus on variable 

selection/dimension reduction in the presence of multiple genetic and environmental factors 

[6]. In this work, we develop a conditional likelihood-based approach that exploits available 

data from both phases in conjunction with our proposed designs for longitudinal studies, and 

investigate their statistical properties in comparison to existing approaches.

We illustrate our methods using data from the Normative Aging Study (NAS), an ongoing 

longitudinal study of aging initiated by the Veterans Administration in 1963. In this study, 

subjects who underwent bone lead measurement between 1991 and 2002 were followed up 

for their blood pressure levels every three years. It has been documented in the existing NAS 

cohort that lead exposure was associated with increased pulse pressure [18], a marker of 
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arterial stiffness, and this association becomes stronger in subjects who are carriers of the 

risk alleles of the hemochromatosis (HFE) gene [19]. We use this example to demonstrate 

the benefits of exposure enriched outcome trajectory dependent sampling for a study of GxE 

interaction when a quantitative trait in a longitudinal study is of interest.

The rest of the paper is organized as follows. In Section 2, we introduce three sampling 

designs that can be utilized for longitudinal studies of GxE interaction. Section 3 describes 

the full conditional likelihood for parameter estimation and statistical inference. In Sections 

4 and 5, we perform simulation studies and use the NAS example to evaluate the operating 

characteristics of our proposed designs and estimation approach, and compare their 

performances with Schildcrout’s design and analysis. Section 6 concludes with a summary 

of our findings and discussions.

2. Sampling Designs

Our study objective is to detect and quantify GxE interaction, and the effects of exposure in 

subgroups defined by levels of genotype, on a continuous trait repeatedly measured in a 

longitudinal study. We consider a linear mixed effects model suitable for longitudinal data, 

introduce novel exposure enriched and outcome dependent sampling designs, and develop a 

likelihood approach to correct for the bias induced by the sampling design.

2.1. Notation

Let Yij denote the outcome for subject i measured at the jth follow-up for i = 1, …, N and j = 

1, …, ri. Subject-specific design matrices of covariates for fixed and random effects are 

denoted by Xi and Zi respectively. We characterize the response trajectory Yi = (Yi1, Yi2, …, 

Yiri)′ via a linear mixed effects model (response model),

(1)

where β is a vector of fixed effects, bi are subject-specific random effects, εi are 

measurement errors assumed to be normally distributed with mean zero and covariance 

matrix , and Iri is the ri-dimensional identity matrix.

In this setting, Xi is composed of a collection of confounding factors Vi, a variable 

representing time Ti, a baseline environmental exposure Ei (binary or continuous), a 

retrospectively collected genotype Gi indicating the presence of the minor allele for a single 

nucleotide polymorphism (0 = no copy, 1 = at least one copy), and a GxE interaction term 

GiEi, e.g., Xi = (Vi, Ti,Ei,Gi,GiEi). Additional interactions between time and exposure- or 

genotype-related covariates, such as EiTi, GiTi and GiEiTi, could be included given evidence 

of significance or scientific justification. While environmental exposures may change over 

time, we focus on baseline exposure in this present study. Extension to time-varying 

exposure is mentioned in the discussion.

Under this response model, we allow a random intercept and random slope of time for each 

subject, so Zi = (1, Ti) and bi = (b0i, b1i)′ follows a bivariate normal distribution with mean 
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zero and covariance matrix D that contains variance components , and a correlation 

coefficient ρ = corr(b0i, b1i). Integrating over random effects, the marginal distribution of the 

outcome follows a multivariate normal distribution with mean vector μi = Xiβ and 

covariance matrix , i.e. Yi|Xi ~ (μi,Σi). Statistical inference for fixed 

effects can be made by maximizing the marginal likelihood function:

(2)

where f(Yi|Xi; β, σ) is the multivariate density of Yi given Xi, and covariance matrix Σi with 

parameters σ = (σ0, σ1, ρ, σe).

Suppose , i = 1, …, N, are collected for the entire cohort in an 

initial phase (Phase I), followed by a selection of the cohort (with an expected sample size n, 

n < N) for retrospective genotyping Gi in the second phase (Phase II). Let Si = 1 (Si = 0) 

denote the inclusion (exclusion) of subject i in Phase II. For example, one might assign a 

constant selection probability P(Si = 1) = n/N to all subjects and draw samples via 

independent Bernoulli trials. This sampling scheme renders a missing completely at random 

pattern for Gi, so the standard maximum likelihood estimation should suffice and be 

regarded as a baseline for comparison. To investigate how a two-phase design can improve 

the efficiency of GxE interaction in a longitudinal study, we now describe three sampling 

schemes that take advantage of observed information in Phase I to guide the sample 

selection in Phase II.

2.2. Exposure Enriched Sampling

Subjects observed in Phase I are partitioned by their environmental exposures into K 
mutually exclusive strata Rk, where k = 1, …,K. That is, exposure is the only sampling 

variable, namely, Qi = Ei, regardless of the outcome. Within each stratum, individuals are 

selected with a pre-specified stratum-specific probability π(Rk) = P(Si = 1|Qi ∈ Rk) = nk/Nk, 

where Nk is the number of subjects falling into stratum Rk, and nk is the expected number of 

subjects sampled in Phase II from Rk. For binary exposure (stratum k = E for exposed 

subjects, and k = Ē for unexposed), subjects with rare exposure are enriched to achieve a 

certain proportion λ = nE/n. Note that although a balanced design (λ = 0.5) with a equal 

number of exposed and unexposed subjects in Phase II is desired, maximum enrichment is 

bounded by the overall sampling probability and exposure prevalence in the cohort, λ ≤ P(E 
= 1) · (n/N)−1.

For continuous exposure, subjects are stratified into Rk (k = 1, 2, 3), where 

, and . For instance, to draw a sample of 

n = 250 subjects from the original cohort of N = 1000, one can choose cutpoints  and 

as the 10th and 90th percentiles of the exposure distribution. Subjects from the two tails 

(strata R1 and R3) are sampled with a probability of 1.0, and a random sample from stratum 

R2 is drawn to reach the genotyping capacity. However, sampling from fixed tail quantiles 
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with probability 1.0 may not be feasible for a given Phase II sampling budget when the 

original cohort size is large. In this situation, we suggest first considering the sample size for 

Phase II and then determining the sampling fractions by reverse calculation so that subjects 

with extreme exposure levels are sampled with high probabilities.

2.3. Outcome Trajectory Dependent Sampling Using Best Linear Unbiased Predictors of 
Random Effects

To capture variation in individual outcome trajectory over time, we propose to use the 

classical best linear unbiased predictors (BLUPs) from a linear mixed model with random 

intercept and random slope of time as the sampling variable.

Specifically, we first construct a mixed model (sampling model) using Phase I data:

(3)

where α is the vector of population regression coefficients, ai = (a0i, a1i)′ ~ (0,D*) is the 

vector of subject-specific random effects, and ei is the measurement error assumed to be 

normally distributed with mean zero and covariance matrix . Under this 

sampling model, empirical BLUPs of random effects for subject i can be obtained by 

, where α̂, D̂*, and  are restricted maximum 

likelihood (REML) estimates for fixed effects α, covariance parameter D*, and marginal 

covariance of , respectively. If we treat these REML estimates  as fixed 

and define , then Qi is a linear combination of the individual outcome Yi, 

i.e., . Given the marginal distribution assumption for Yi|Xi in the 

response model in (1), our sampling variable should follow a normal distribution 

, an important property that allows 

closed-form expression of sampling probability P(Si = 1|Xi) and hence simplifies 

computation of conditional likelihood.

If a unvariate sampling variable is considered, say Qi = â0i, all subjects in the original cohort 

are stratified as: R1 = {â0i ∈ (−∞, C1]}, R2 = {â0i ∈ (C1, C2]}, and R3 = {â0i ∈ (C2,+∞)}, 

where strata R1 and R3 represent two tails of the sampling distribution and cutpoints (C1, 
C2) are determined by quantiles of the empirical distribution of Q. When sampling from a 

bivariate Qi = âi, subjects in the central region are stratified into 

, while others into R1 = {(â0i, â1i) ∉ R2}. 

Cutpoints ( ) are determined by grid search of the empirical bivariate 

distribution of Q, ensuring the fraction of subjects falling into the central region R2 matches 

the fraction in stratum R2 given univariate Qi. Higher selection probabilities are allocated to 

strata with extreme values of the BLUPs.

Schildcrout et al. [12] sampled subjects based on ordinary least squares (OLS) estimates 

resulting from subject-specific simple linear regression of individual outcome vectors on 
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time. In contrast, we use BLUPs to account for information at the subject-level while 

borrowing information from all subjects. OLS estimates for subjects with a small number of 

repeated measures may be very unstable or even undefined. BLUPs are expected to better 

characterize the individual outcome trajectory in presence of missing data in that they are 

essentially shrinkage estimates between subject-specific mean and population average. 

However, we fix the value of the REML estimates θ*̂, and so the sampling model for Qi|Xi 

does not account for uncertainty in the estimation of θ̂*. We compared model-based standard 

errors with empirical standard deviation of point estimates through simulations and found no 

appreciable difference, suggesting less pronounced practical impact by fixing θ̂* in the 

analysis.

2.4. Exposure Enriched Plus Outcome Trajectory Dependent Sampling Using BLUPs of 
Random Effects

In order to get a larger exposure-outcome variation in the subsample, we also propose 

designs that combine strategies of exposure enrichment with outcome trajectory dependent 

sampling using BLUPs, that is, Qi = (Ei, â0i)′, Qi = (Ei, â1i)′, or Qi = (Ei, âi)′. For binary 

exposure, stratification of subjects and determination of cutpoints can be conducted in a 

similar fashion as in BLUP-based sampling, conditional on the personal exposure status. For 

instance, we first define sampling strata Rk,E = {â0i ∈ (Ck−1,E, Ck,E]} for exposed subjects 

and Rk, Ē = {â0i ∈ (Ck−1, Ē, Ck, Ē]} for unexposed, k = 1, 2, 3. Considering the sample size 

for Phase II, we set stratum-specific selection probabilities so that exposed subjects or those 

with extreme â0i are preferentially sampled in Phase II. For continuous exposure, subjects 

are partitioned into two strata  and R1 = {(Ei, 
â0i) ∉ R2}. Likewise, cutpoints for stratification and stratum-specific selection probabilities 

are chosen to match their counterparts in BLUP-based sampling.

As an extension to the outcome trajectory dependent sampling, personal exposure Ei is 

observed as a part of Xi, therefore the sampling variable Qi|Xi indeed follows the same 

distribution as shown in Section 2.3. This ensures the conditional likelihood accounting for 

the sampling bias be derived analytically. In addition, we emphasize that although exposure 

is adjusted in the sampling model in (3) as a fixed effect when sampling based on BLUPs, 

one can expect that enriching exposed subjects would further increase the exposure-outcome 

variation in Phase II.

Figure 1 provides a visualization of sample selection under different designs: random 

sampling, exposure enriched sampling, outcome trajectory dependent sampling using 

BLUPs of random intercept and/or random slope, and exposure enriched plus outcome 

trajectory dependent sampling using BLUPs. Here we consider a cohort of 1000 subjects 

from which 250 are selected for retrospective genotyping. The exposure prevalence in the 

cohort is 0.2.

3. Full Conditional Likelihood for Analysis

After data collection via one of the sampling designs described in Section 2, we partition the 

sample of N individuals into two groups: subjects {i : Si = 1} with complete information 
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(Yi,Xi) and subjects {i : Si = 0} with partial information (Yi, ). To correct for sampling 

bias from their outcome dependent designs, Schildcrout et al. developed an ascertainment 

corrected likelihood that considered only subjects with complete information and made 

adjustments to the likelihood by conditioning on inclusion in Phase II [12], which we refer 

to as complete-case conditional likelihood (CCL). However, it is known that ignoring data 

from incomplete-cases (Si = 0) under a two-phase design leads to estimates not fully 

efficient [15, 16]. Thus, we propose a full conditional likelihood (FCL), as an extension to 

the CCL, that accounts for all subjects in hope of improving estimation efficiency. In 

particular, we expect that observed exposure data on subjects in Phase I can enhance the 

efficiency of estimates of βE and βGE.

In particular, we assume a logistic regression model for binary genotype Gi and let

(4)

denote the probability mass function of Gi given  with a nuisance parameter γ. Note that 

this is a hypothetical model for Gi. Instead of estimating γ from only complete-cases (Si = 

1), we marginalize over the distribution of missing Gi using the joint likelihood with both 

sampled and unsampled subjects. Extension to polychotomous Gi can be achieved by 

specifying a multinomial regression model.

The FCL is defined by

(5)

Complete-cases contribute to the likelihood through a joint probability of the outcome and 

genotype conditional on inclusion in Phase II, ; whereas 

incomplete-cases contribute to the likelihood through a marginal probability of the outcome 

conditional on exclusion in Phase II, , which is the marginalization of 

 over the distribution of Gi.

Using Bayes’ theorem, subject-specific contribution in (5) for {i : Si = 1} can further be 

factorized

(6)

where f(Yi|Xi; β, σ) is defined by the regression model,  comes from the 

covariate model in (4), subject-specific selection probability  is known for 
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all subjects through stratum membership, and the correction term  adjusts 

for biased sampling. In our designs, genotype renders a missing at random mechanism, so 

 is independent of parameters (β, σ, γ). Likewise, for 

unsampled subjects {i : Si = 0} with Gi missing, their contribution to the FCL is given by

(7)

where .

We remind readers that sampling variables based on BLUPs in our proposed designs are 

linear functions of Yi. Under the distributional assumption of Yi|Xi in (1), Qi|Xi follows a 

normal distribution with a mean and covariance that depends on parameters β and σ 
respectively, i.e., Qi|Xi ~ (μqi (β),Σqi (σ)). Therefore, one can compute the probability of 

subject i being sampled in Phase II given Xi, as a weighted average of stratum-specific 

selection probabilities across all strata:

(8)

where P(Si = 1|Qi ∈ Rk,Xi) = P(Si = 1|Qi ∈ Rk) = π(Rk) because sample selection within 

each stratum is assumed to be independent of Xi|Qi ∈ Rk. Then, the subject-specific 

correction term can be obtained by integrating over the set of possible genotypes, 

. This ensures the FCL be 

expressed in a closed form, thereby substantially conveniences the likelihood maximization.

We estimate parameters by direct maximization of the FCL using the Newton-Raphson 

algorithm. Score functions of the FCL with respect to parameters (β, σ, γ) can be derived 

analytically due to the normal distribution of Qi|Xi, and the observed information matrix is 

calculated as numerical derivative of the score function. We implement this algorithm by the 

nlm function in R, with initial values of (β, σ, γ) set equal to the standard maximum 

likelihood estimates based on complete-cases in Phase II. Estimated covariance is calculated 

numerically after the final Newton-Raphson iteration.

4. Simulation Study

4.1. Description of Simulation Settings

We compared our proposed designs under different simulation scenarios with two alternative 

sampling schemes, outcome dependent sampling based on OLS estimates from simple linear 

regressions using single subject data [12], and its extension that additionally enriches 

exposed subjects in the sample selection. For OLS-based design, we used same sampling 

variables as described in Schildcrout et al., Qi = η̂
i, where E[Yij] = η0i + η1iTij = Ziηi, i = 1, 
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…,N, and j = 1, …, ri. For exposure enriched plus OLS-based design, we specified the 

sampling variable Qi = (Ei, η̂i)′. Note that subjects with only one observation do not have 

OLS estimates from simple linear regressions. Let I be the set of all indices i such that 

subject i has at least two repeated measures. For subjects i* with only one observation, we 

have now assigned η̂
0i* = yi*1 and fixed η̂

1i* at the mean of the set {η1̂i : i ∈ I}.

Furthermore, we investigated the performance of our FCL in comparison with three existing 

complete-case analyses: unweighted uncorrected likelihood (UUL) that handles subjects in 

Phase II as from a standard prospective cohort, inverse probability weighted likelihood 

(IPWL) that adjusts for selection bias by weighting subjects by the inverse of their sampling 

probabilities [14], as well as the CCL of Schildcrout et al. that accounts for the sampling 

mechanism by conditioning on inclusion in Phase II [12]. Likelihood functions and 

estimation of UUL, IPWL, and CCL are provided in extended methods of supplementary 

materials.

We generated individual level data under a balanced design that responses were repeatedly 

measured at ri = 5 equally spaced observation times Ti = {Ti1, …, Ti5} = {−1,−0.5, …, 1} 

for subject i = 1, …,N. We also examined an unbalanced design with a monotone missing 

pattern such that 10% of remaining subjects were randomly selected to drop out at each 

follow-up time so that ri ranged from 1 to 5, and about 65% of subjects in the original cohort 

were observed at all five follow-up times.

Following the general form of linear mixed model in (1), the marginal mean for subject i is 

given by:

(9)

We considered a binary genotype with a minor allele frequency of P(Gi = 1) = 0.1. We 

examined over a range of combinations for different exposure types (binary/continuous), 

genotype-environment associations (independent/associated), and interaction models (GxE 

interaction/ GxExT interaction). We set a prevalence of P(Ei = 1) = 0.2 for binary exposure 

and a standard normal distribution Ei ~ (0, 1) for continuous exposure. When exposure 

was associated with genotype, we defined the strength of association by a logistic regression 

model logit{P(Gi = 1|Ei; γ)} = γ0 + γEEi, where the association parameter γE = 0.2 

represents an odds ratio of 1.22. To maintain comparability across simulation settings, 

parameters of fixed effects were selected to explain the contribution of time (10–20%), 

exposure (5%), genotype (1%), and GxE interaction (0.5–1%) in the variance of outcome. 

Confounding factors were not considered in our simulation scenarios. We considered a 

random intercept and a random slope of time Zi = (1, Ti) for subject i, and set bi = (b0i, b1i)′ 

~ (0,D), where the variance components  and ρ = 0. The error term 

 with σe = 2.

For simulations with a two-way interaction model, we assumed genotype modifies exposure 

effect (GxE) that is constant over time, so parameters of fixed effects were set (β0, βT, βE, 
βG, βGE) = (10,−2,−1.5,−1,−1.5) and (βET, βGT, βGET) = (0, 0, 0). Suppose that only n = 250 
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subjects from the original cohort of N = 1000 can be sampled in Phase II due to a budgetary 

constraint. Given the rare binary exposure, exposed subjects were enriched to have λ = 0.5 

in Phase II sample. In terms of univariate Qi, for example, â0i (or η̂
0i) in BLUP-based (or 

OLS-based) sampling, we specified stratum size (N1,N2,N3) = (100, 800, 100) and selection 

probability (π(R1), π(R2), π(R3)) = (1.0, 1/16, 1.0). For bivariate Qi, such as (Ei, â0i)′ (or 

(Ei, η̂0i)′), we chose (N1,E,N2,E,N3,E;N1, Ē,N2, Ē,N3, Ē) = (50, 100, 50; 50, 700, 50) and 

(π(R1,E), π(R2,E), π(R3,E); π(R1, Ē ), π(R2, Ē), π(R3, Ē)) = (1.0, 0.25, 1.0; 1.0, 1/28, 1.0) in 

exposure enriched plus outcome dependent sampling.

We acknowledge there is the risk of increasing uncertainty when using quantiles of the 

empirical distribution of â0i (or â1i) in the cohort as cutpoints for subject stratification, 

relative to fixed values from population distribution. However, we want to be realistic in our 

simulation since the population distribution of â0i (or â1i) is unknown in data analysis. We 

also compared estimates/variance estimates when fixing the cutpoints (see supplemental 

Table 1) as opposed to quantiles determined from the cohort (supplemental Table 2) and 

found no qualitative difference, indicating that consequences of ignoring uncertainty in 

estimation of the cutpoints are negligible in our simulation.

In the three-way interaction model, we assumed a time-varying interaction between 

genotype and exposure (GxExT) and specified fixed effects parameters as (β0, βT, βE, βET, 
βG, βGT, βGE, βGET) = (10,−0.7,−1,−1,−0.6,−1,−1,−1.5). Considering the statistical 

challenge of detecting a three-way interaction, n = 500 subjects from the cohort of N = 5000 

were sampled in Phase II for retrospective genotyping. We defined sampling strata using 

personal exposure and/or BLUP of random effects (or OLS estimates from OLS). While the 

same exposure enrichment proportion λ = 0.5 was used, we adjusted the stratum size and 

selection probability in alignment with the genotyping capacity. For example, when Qi = â1i 

or η̂
1i, (N1,N2,N3) = (200, 4600, 200) and (π(R1), π(R2), π(R3)) = (1.0, 1/46, 1.0); and 

when Qi = (Ei, â0i)′ or (Ei, η̂0i)′, (N1,E,N2,E,N3,E;N1, Ē,N2, Ē,N3, Ē) = (100, 800, 100; 100, 
3800, 100) and (π(R1,E), π(R2,E), π(R3,E); π(R1, Ē), π(R2, Ē), π(R3, Ē)) = (1.0, 1/16, 1.0; 

1.0, 1/76, 1.0).

Evaluation metrics—For each examined simulation setting, we generated M = 1000 

replicates and evaluated the performance of our proposed sampling designs and analysis 

approaches by three metrics: bias, relative efficiency, and detection power. Let  and 

se(βĜE)(m) denote the estimate and standard error of GxE interaction effect, for instance, 

from replication m, m = 1, …,M. Bias is calculated as the average difference between the 

estimate and parameter over all replications, . Relative efficiency is 

estimated as the ratio of mean squared error (MSE) from random sampling with UUL to the 

MSE from a two-phase design with one of the analyses (UUL, IPWL, CCML, and FCL), 

say, MSE(βĜE)RS+UUL/MSE(β̂GE)BLUP+FCL, where . 

Power quantifies the proportion of correctly rejecting a non-zero effect using a two-sided 

Wald test at a significance level of 0.05. We also considered additional measures, average 

standard error , and empirical standard error 
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, where , to help assess the validity of our 

designs and analyses.

4.2. Summary of Simulation Results

We are interested in the modification of exposure effect by genetic subgroups, so we focused 

results on the detection and estimation of two particular effects: GxE interaction βGE (or 

GxExT interaction βGET given a three-way interaction), and joint exposure effect βE + βGE 

(or βE + βET + βGE + βGET given a three-way interaction) among carriers of the risk allele 

(Gi = 1).

As a validation to previous findings [12, 17], we find that sampling subjects based on 

estimated intercept (â0i or η̂
0i) improves estimation precision for βGE, whereas sampling 

based on estimated slope (â1i or η1̂i) improves estimation precision for βGET. Therefore, we 

present here simulation results when Qi is related to the targeted interaction.

Bias—Table 1 provides estimated bias for GxE interaction and joint exposure effect when 

the data were generated from a two-way GxE interaction model with a rare exposure and 

unbalanced data. We find that estimates using CCL and FCL are close to the true parameters 

in all considered designs, with the largest bias relative to the parameter no greater than 9%. 

The UUL yields severely biased estimates for βGE (44% – 149%) when the sampling 

variable is related to individual mean of the outcome vector (η0̂i or â0i), while bias for the 

joint exposure effect βE + βGE appears to be smaller. This is because bias for βE and βGE 

using UUL are always in opposite directions, leading to the estimate for the joint effect of 

both less biased. IPWL produces modestly biased estimates provided limited sample size in 

Phase II. For example, under exposure enriched plus BLUP-based sampling, estimated bias 

of βGE and βE + βGE using UUL are 1.29 and 1.15, as compared to 0.17 and 0.17 using 

IPWL, respectively. No significant bias was observed under exposure enriched design with 

the UUL estimates.

We also examine the impact of sampling designs and likelihood approaches on bias for βGET 

and joint exposure effect under a three-way GxExT interaction model (see supplemental 

Table 3). Likewise, FCL and CCL yield nearly unbiased estimates with small differences to 

the true parameters, followed by IPWL. Substantial bias for βET and βGET has been 

observed in the UUL estimates when sampling based on individual slope of time (η1̂i or â1i), 

because subjects with greater temporal variation in the outcome are sampled, bringing bias 

to the estimated time-varying effects. In other settings not reported in this paper, the benefits 

of using FCL and CCL are preserved regardless of the exposure type, G-E association, and 

longitudinal data structure.

Relative efficiency—Figure 2 illustrates the estimation efficiency of βGE and βE + βGE 

under our considered two-phase designs and likelihood approaches, relative to random 

sampling with the UUL, given rare exposure and unbalanced longitudinal data. We observe 

that estimation efficiency for βGE, as well as βE + βGE, can be improved via increasing 

variability of the GxE interaction among sampled subjects by exposure enrichment, or 

increasing variability of the outcome by sampling towards extreme random intercept â0i. For 
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example, in the analysis of FCL, relative efficiency for βGE under exposure enriched and 

BLUP-based sampling are 2.06 and 2.74, respectively. When considering both exposure and 

random intercept in the sample selection, a further efficiency gain can be obtained such that 

the relative efficiency for βGE and βE + βGE exceeds 3.80. In addition, we see more efficient 

estimates if the sampling variable is related to BLUPs instead of OLS estimates, reflected by 

26% (2.74/2.17=1.26) increased efficiency for βGE using BLUP-based sampling, and 19% 

(3.80/3.19=1.19) increased efficiency using exposure enriched plus BLUP-based sampling. 

In simulation settings with balanced outcome, there is little difference in the estimation 

efficiency between BLUP-based and OLS-based sampling designs (see supplemental Figure 

1), indicating BLUPs as shrinkage estimates can better characterize individual outcome 

trajectory given unbalanced longitudinal data and hence lead to efficiency gains. Similar 

results have been observed in scenarios with a GxExT interaction using sampling designs 

based on personal exposure and random slope of time (see supplemental Figure 2).

It has been reported that the G-E independence assumption can improve estimation 

efficiency of odds ratio between genotype and exposure in case-control studies [20]. 

However, in longitudinal studies with continuous outcome, we see no appreciable difference 

in the relative efficiency of GxE interaction when this independence assumption is violated 

by a moderate G-E association (results not shown). Moreover, due to increased resolution 

and biased sampling at two tails, continuous exposure under examined designs shows a 

similar trend but larger efficiency gains compared to binary exposure. For instance, relative 

efficiency for βGE using exposure enrichment with the FCL is 2.06 given a binary exposure, 

but increases to 2.86 given a continuous exposure.

Using data from unsampled subjects, FCL provides most efficient estimate. While the 

efficiency improvement of FCL over UUL is modest under exposure enriched sampling 

(2.06/1.84 = 1.12 for βGE), it becomes substantial when sampling based on exposure and 

BLUPs (3.80/0.58 = 6.55 for βGE). Between two conditional likelihood analyses, FCL 

increases estimation efficiency over CCL by an additional 5% - 15% under outcome 

dependent sampling designs. Due to the sandwich-type variance estimate, IPWL is less 

efficient than CCL, and the naive UUL consistently produces severely biased and 

insufficient estimate. In addition, we note the impact of sampling design outweighs the 

impact of analysis provided that sampling bias is appropriately corrected.

Detection power—Table 2 shows the power of detecting a non-zero GxE interaction and 

joint exposure effect under a two-way GxE interaction model with a rare exposure and 

unbalanced data. When testing βGE, oversampling subjects by exposure or random intercept 

are approximately 50% more powerful than a random selection (~ 0.33/0.22 = 1.50), given 

appropriate analysis. Moreover, sampling based on exposure and random intercept combined 

leads to increased power gain that is 1.9 — 2.2 times the power from random sampling. All 

considered sampling designs with FCL or CCL are adequately powered (> 90%) to detect 

the joint exposure effect, compared to the 70% power from random sampling. No significant 

difference has been observed between BLUP-based and OLS-based sampling designs in 

terms of detection of βGE and βE + βGE using the FCL.
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Comparison among different likelihood approaches suggests that FCL is most powerful at 

detecting both the GxE interaction and joint exposure effect. We find that the power gain for 

βGE from using (exposure enriched plus) BLUP-based sampling over OLS-based sampling 

is larger in the analysis of CCL (7% from Qi = â0i over η̂
0i, and 12% from Qi = (Ei, â0i)′ 

over (Ei, η̂
0i)′) than in the analysis of FCL (1% and 2%), indicating complete-case analysis 

is more sensitive to the specification of sampling variable in terms of detection power. We 

note that IPWL tends to have inflated detection power at the cost of reduced efficiency due 

to the use of sandwich variance estimate. Again, the UUL gives the lowest detection power. 

We also examined various sampling designs and likelihood approaches under other 

simulation settings and found no qualitative differences in the operating characteristics.

5. Data Example: the Normative Aging Study

Since year 1991, participants of the NAS were invited to a bone lead assessment using a K-

x-ray fluorescence instrument, which provides an index of cumulative lead exposure. The 

outcome of interest is the difference between systolic blood pressure and diastolic blood 

pressure (pulse pressure, PP), which was measured at the time of bone lead assessment 

(baseline, 1991–2002) and followed up every three years until 2013, with a median follow-

up of 12.1 years. Indeed, lead exposure has been associated with increased PP [18]. Zhang et 
al. observed a significant GxE interaction between polymorphisms in the HFE gene and 

cumulative lead exposure on PP [19]. In this example, we aim to illustrate the utility of 

exposure enriched outcome trajectory dependent sampling and FCL approach in the analysis 

of HFE by lead interaction.

We focused on 720 subjects from the NAS cohort who were successfully assessed for 

cumulative lead exposure at the patella bone and genotyped for the HFE gene. Subjects with 

compound heterozygotes were excluded because, between two major HFE variant alleles 

(C282Y and H63D) the association between lead exposure and PP was found to be exclusive 

among H63D variant carriers (having one or two H63D variant alleles but no C282Y variant 

allele) [21]. This results in a full cohort of 706 subjects (descriptive characteristics see in 

Table 3), of whom more than 96% had at least two outcome measurements, contributing to a 

total of 3265 observations. The majority (97%) of the subjects were Caucasian, with an 

average age of 66.3 ± 7.2 at the baseline measurement and a risk allele frequency of 21.8%. 

Patella bone lead concentration was measured continuously, but dichotomized to reflect a 

relatively rare binary exposure with a prevalence of 0.1 (High: ≥52 μg/g; Low: <52 μg/g).

For illustration purposes, we assume that personal genotype data were not available by the 

end of longitudinal follow-up, and the budget allows retrospective genotyping for only 200 

subjects. Full cohort analysis aligned with the findings in Zhang et al. [19] that the mean PP 

was estimated to be 7.61 mm Hg (95% CI: [1.89, 13.33]) higher for the high patella lead 

group than the low patella lead group among the H63D variant carriers. For wild types, the 

difference in the mean PP between the high and low exposure groups was estimated to be 

−1.57 mm Hg (95% CI: [−4.24, 1.10]). Supported by the the Akaike information criterion 

(AIC), this analysis used a mixed effects model with random intercept and random slope of 

time, adjusted for baseline age, body mass index, education level, hypertension, and Type II 

diabetes in fixed effects.
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Besides random selection, we examined five sampling designs. We initially included a lead 

by time interaction, a H63D by time interaction, and a H63D by lead by time interaction in 

the mixed model, and found none of these interactions significant in the full cohort analysis, 

therefore we considered designs that based on random intercept (or OLS estimated intercept) 

in addition to the exposure enrichment. In particular, we specified stratum sizes (N1;N2;N3) 

= (71; 564; 71) for outcome trajectory dependent designs (Qi = â0i or η̂
0i), and 

(N1,E,N2,E,N3,E;N1, Ē,N2, Ē,N3, Ē) = (7, 57, 7; 58, 519, 58) for exposure enriched plus 

outcome trajectory dependent designs (Qi = (Ei, â0i)′ or (Ei, η̂
0i)′). Due to the low exposure 

prevalence, the maximum stratum size for exposed subjects is NE = 71 (≈ 706 × 0.1), 

leading to the proportion of high patella lead subjects in Phase II no greater than λ = 71/200. 

We used stratum-specific selection probabilities (π(R1), π(R2), π(R3)) = (1.0, 29/282, 1.0) 

for univariate Qi and (π(R1,E), π(R2,E), π(R3,E); π(R1, Ē), π(R2, Ē), π(R3, Ē)) = (1.0, 1.0, 

1.0; 1.0, 13/519, 1.0) for bivariate Qi. Because of the superior performance shown in the 

simulation, we used FCL for the estimation of regression coefficients.

Figure 3 shows average estimated exposure effects among subjects who are carriers of the 

H63D variant or wild types under different designs based upon 500 replicated Phase II 

samples. Consistent with simulation studies, we found that point estimates of βE and βE + 

βGE using FCL were close to results from the full cohort analysis, and estimated efficiency 

of βE and βE + βGE was considerably improved by our examined designs. For example, we 

observe that outcome trajectory dependent designs had an estimated relative efficiency of 

1.2–1.3 for βE + βGE when compared to random sampling with standard analysis, whereas 

exposure enriched designs were approximately 1.6–2.6 times more efficient than random 

sampling, given the rare exposure in this example. More importantly, we highlight that 

incorporation of the exposure enrichment strategy enables detection of the deleterious 

exposure effect among H63D variant carriers under all three exposure enriched designs. 

Specifically, the expected PP was estimated to be 7.55 mm Hg (95% CI: [1.08, 14.02]) 

higher for the high patella lead group among the H63D variant carriers using Qi = Ei, 

6.77mmHg (95% CI: [0.00, 13.55]) higher using Qi = (Ei, η0̂i)′, and 6.86 mm Hg (95% CI: 

[1.43, 12.29]) higher using Qi = (Ei, â0i)′. However, this exposure effect, also seen in the full 

cohort analysis, was considered to be statistically not significant under random sampling or 

outcome dependent sampling (Qi = â0i or η̂0i). We realize that there could be unmeasured 

confounders in the NAS cohort, yet their potential influence on the GxE interaction was not 

addressed in our data analysis.

6. Discussion

While novel analysis and powerful tests have been proposed to enhance the detection of 

multiplicative GxE interaction with repeated measures data [21, 22], it remains relatively 

less addressed as to how sampling designs affect statistical inference about the GxE 

interaction in a longitudinal cohort study. In this paper, we described three study designs that 

prioritize subjects for retrospective genotyping by leveraging environmental exposure 

information and individual outcome trajectory during the sample selection. We found 

sampling based upon personal exposure and BLUP of random effect combined can improve 

estimation efficiency and detection power of the GxE interaction given unbalanced 

longitudinal data.
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We also derived a FCL using data from both phases and compared it with three complete-

case analyses. Our results indicate that FCL provides nearly unbiased estimation and 

enhanced precision (5% – 665% gain in relative efficiency) over complete-case analyses. As 

an alternative, Schildcrout et al. developed multiple imputation approaches that exploited 

unsampled subjects in the analysis of two-phase design. Compared to our FCL that 

marginalizes over the missing genotype on unsampled subjects by a nuisance covariate 

model, imputation approaches treat missing data as random variables and make random 

draws from the conditional distribution of the missing data. Our simulation results have 

shown the benefit of FCL over CCL by 5% – 15% increased estimation efficiency under 

different simulation setups, which is similar to incremental improvements (2.7% – 20%) 

provided by imputation approach relative to the CCL in the work of Schildcrout et al. [12]. 

In addition, imputation based upon observed genotype from a small exposure enriched 

sample may be hard, and the use of a reference sample (like 1000 Genomes or HapMap) 

with data on other genes that are potentially correlated with the variant under consideration 

may improve this imputation.

To characterize individual outcome trajectory, we examined two classes of regression 

estimates: OLS estimates for intercept and slope of time from simple linear regressions, and 

BLUPs for random intercept and random slope of time from a linear mixed model. Both 

classes applied dimension reduction in constructing summary features of the longitudinal 

outcome, and shared the property that analytical distribution of these features can be derived 

in a closed form. However, we emphasize that BLUPs can be advantageous, with a 19% – 

27% gain in the relative efficiency for the GxE interaction over the OLS estimates when 

accommodating unbalanced data. This is because OLS estimates use subject-specific 

information, while BLUPs as shrinkage estimate between the population average and 

subject-specific mean can borrow strength from other subjects given limited number of 

measurements, and thus making its estimates more robust to the missing data.

We acknowledge this study has several limitations that could be addressed in the future. 

First, we focus on a time-stationary environmental exposure, but many such exposures 

change over time in practice [23]. For cohort studies that collect longitudinal exposure data, 

it would be helpful to utilize the time-varying exposure to guide the sample selection in 

Phase II. Inspired by a recent discovery of gene-by-longitudinal environmental exposure 

interaction in a case-control study [24], one may consider decomposing the time-varying 

exposure trajectory into a few unrelated components via the functional principal component 

analysis and explore sampling designs in terms of these components. Secondly, we consider 

only a linear time trend in the longitudinal outcome with a random intercept and random 

slope in the sampling model. To handle the possible non-linear time effect, one may regress 

the outcome on multiple functions of time such as polynomial terms or more general 

parametric spline basis, and then incorporate these complex smooth features of the outcome 

trajectory into the sampling mechanism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample selection under different designs: random sampling, exposure enriched sampling (E-

enriched), outcome trajectory dependent sampling using BLUPs of random effects (BLUP-

based), and exposure enriched plus outcome trajectory dependent sampling using BLUPs (E

+BLUP). In the examples shown here, 250 subjects (+) are sampled from a cohort of 1000 

(·), with a exposure prevalence of 0.2.
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Figure 2. 
Relative efficiency of parameter estimates for G × E interaction and joint exposure effects 

using different sampling designs and likelihood approaches. Results are based on 1000 

replicates, each including a cohort of 1000 subjects from which 250 are selected for 

retrospective genotyping. Unbalanced longitudinal outcome is considered, with a monotone 

missing pattern of 10% random dropouts at each follow-up visit and up to 5 measurements 

for each subject. Genotype assumed to be independent of personal exposure, with a 

prevalence of 0.2. βE = −1.5 and βGE = −1.5.
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Figure 3. 
NAS results: average estimated exposure effects on the pulse pressure among carriers of the 

H63D variant (G = 1) or subjects with wild types (G = 0), under different study designs 

using the FCL (n = 200, N = 706). Personal cumulative lead exposure was measured at 

patella bone on a continuous scale, and then dichotomized to reflect a rare exposure with a 

prevalence of 0.1 (High: ≥ 52μ g/g). The numbers on the graph show estimated and 

corresponding 95% confidence interval of exposure effects by genetic subgroups in a full 

cohort analysis using linear mixed model with random intercept and random slope of time.
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Table 3

Baseline characteristics of 706 participants in the Normative Aging Study (NAS)

Variable Mean ± SD, N (percent)

Baseline age (years) 66.3 ± 7.2

Body Mass Index (kg/m2) 27.9 ± 3.7

Pulse pressure (mmHg) 55.3 ± 15.1

Cumulative patella lead (μg/g) 26.5 [20.8]*

Race (white) 683 (97%)

Education (>12 years) 396 (56%)

Type II diabetes 72 (10%)

Hypertension 447 (63%)

Number of repeated measures on pulse pressure per subject

 1–2 137 (19%)

 3–4 221 (31%)

 5–6 202 (29%)

 7–8 146 (20%)

*
Median [interquartile range] for lead exposure whose distribution is right skewed.
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