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Abstract

The study of delay discounting, or valuation of future rewards as a function of delay, has 

contributed to understanding the behavioral economics of addiction. Accurate characterization of 

discounting can be furthered by statistical model selection given that many functions have been 

proposed to measure future valuation of rewards. The present study provides a convenient 

Bayesian model selection algorithm that selects the most probable discounting model among a set 

of candidate models chosen by the researcher. The approach assigns the most probable model for 

each individual subject. Importantly, effective delay 50 (ED50) functions as a suitable unifying 

measure that is computable for and comparable between a number of popular functions, including 

both one- and two-parameter models. The combined model selection/ED50 approach is illustrated 

using empirical discounting data collected from a sample of 111 undergraduate students with 

models proposed by Laibson (1997); Mazur (1987); Myerson & Green (1995); Rachlin (2006); 

and Samuelson (1937). Computer simulation suggests that the proposed Bayesian model selection 

approach outperforms the single model approach when data truly arise from multiple models. 

When a single model underlies all participant data, the simulation suggests that the proposed 

approach fares no worse than the single model approach.
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Excessive devaluation of future outcomes has been linked with a variety of pathological 

behaviors, including substance abuse (Bickel & Marsch, 2001; Reynolds, 2006; MacKillop 

et al., 2011); problem gambling (Petry & Casarella, 1999); and overeating (Weller et al., 

2008). The literature on the theoretical underpinnings of and quantification between 

devaluation and delay has a long history that spans many fields including economics, 

psychology, and sociology (Ainslie, 1975). In the study of temporal discounting, many 
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functions have been proposed that quantify the rate an individual devalues future rewards 

(e.g., Mazur, 1987; Myerson & Green, 1995; Laibson, 1997; Samuelson, 1937; Rachlin, 

2006; Yi et al., 2009). Moreover, efforts to change temporal discounting (e.g., Koffarnus et 

al., 2013), in addition to changing the rate of discounting, may alter the function.

Adoption of a single discounting function on a study-wide basis implies that one process or 

model underlies future devaluation in humans, that deviations from this pattern are 

attributable to random chance, and that this process is known ahead of time. This strategy 

ignores the potential for heterogeneity in discounting patterns among subjects. If a single 

model does not describe discounting in all humans, then different models should be used for 

different people.

Intuitively, when many models are under consideration, using the model that is most 

probably correct seems like a worthwhile approach. In this paper, we propose Bayesian 

model selection for this purpose. Bayesian model selection operates by assessing the 

probability of each model under consideration and favoring the model that is most probably 

true among the candidates. We assess model probability using a simple approximation based 

on the readily-available Bayesian information criterion (BIC) (Schwarz, 1978).

Effective delay 50 (ED50) (Yoon & Higgins, 2008) is the delay at which a reward loses 50% 

of its value. Although ED50 has not been used widely in the delay discounting literature, it 

has unique value because it can unify the interpretation of competing models. ED50 is an 

intuitive measure that can be obtained from virtually any discounting function, and its 

interpretation is consistent even when the models under consideration differ in the number 

and role of their respective parameters. ED50 is analogous to effective dose 50 in the field of 

pharmacology, which is the dose of a drug for which half of the maximum drug effect is 

observed (Ross & Kenakin, 2001). While we use ED50 for this study, another ED value 

(such as ED20 or ED70) could be used in principle. Table 1 includes ED50 formulas for the 

models under consideration in this study. Since the interpretation of ED50 is the same 

regardless of model, ED50 values among different models are comparable. Using ED50 as a 

unified discounting measure sidesteps the difficulty of interpreting and equating model 

parameters from different models and seamlessly allows both one- and two-parameter 

models to be incorporated into the same study.

Past work has statistically compared competing discounting models for all subjects within a 

study (e.g. Yi et al., 2009; Zarr et al., 2014), but less attention has been devoted to selecting 

models at the individual subject level within a single study. The multimodel approach is a 

departure from much of what has been considered in the literature. Generally, a single 

process is assumed to underlie discounting in humans, and that different participants 

perform differently within the context of the single model. The proposed work instead 

allows multiple processes to underlie discounting in different subjects, which is a departure 

from what is assumed in much of the existing literature.

In order to explore the utility of this multi-model strategy, we (1) establish a set of candidate 

models, (2) propose Bayesian model probability as a metric to decide among competing 

models for each participant, (3) use ED50 (Yoon & Higgins, 2008) as a unifying measure to 
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render results comparable across models, and (4) devise screening criteria based on the 

model selection approach and other statistical principles. The performance of this method is 

demonstrated in two ways. First, the method is employed on empirical discounting data, and 

resulting model selections, parameter estimates, and screening outcomes are reported (Study 

1). Second, a Monte Carlo computer simulation study assesses the performance of the 

approach (Study 2). In both studies, the model selection approach is compared with single 

model approaches. Due to its prevalence in the literature (MacKillop et al., 2011), the single 

model approach using the one-parameter hyperbolic model (Mazur 1987) is an appropriate 

baseline method with which to compare the performance of our model selection procedure 

in both studies. Study 2 also compares the model selection approach to the Rachlin (2006) 

model alone in order to assess the comparative predictive accuracy using both one- and two-

parameter models.

Study 1: Empirical Discounting Data

In Study 1, empirical discounting data collected for another purpose (Koffarnus & Bickel, 

2014) were reanalyzed to test the performance of this Bayesian model selection approach.

Method

Participants—This study included 111 under-graduate students from Virginia Tech who 

participated in a computerized discounting task. The sample was 64% female with ages 

ranging from 18 to 31 years old (IQR 19–21 years). Students completed the task and other 

measures (see Koffarnus et al., 2014) outside of class time and were offered course credit for 

completion of the approximately 15-min session. This study was approved by the Virginia 

Tech Institutional Review Board.

Procedure—Participants were asked to make a series of choices between smaller 

immediate amounts of hypothetical money, or larger delayed rewards for a variety of delays. 

A computerized titration task (see Du, Green, & Myerson, 2002) was used to obtain 

indifference points for each participant. An indifference point represents the subjective value 

where an immediate reward is equivalent to a larger delayed reward. Hypothetical amounts 

of money constituted both smaller immediate rewards and larger delayed rewards. Delays 

were 1 day, 1 week, 1 month, 6 months, 1 year, 5 years, and 25 years, and the larger delayed 

amount was $1000.

Models—We selected five discounting models including those proposed by Laibson (1997) 

Mazur (1987) Myerson and Green (1995; see also Green, Fry & Myerson 1994 and Rachlin 

1989), Rachlin (2006) and Samuelson (1937). McKerchar et al. (2009) reviewed many of 

these models. These models were chosen because they include common one- and two-

parameter models. Models were included from the behavior analytic tradition, for example, 

Mazur (1987) Myerson and Green (1995) and Rachlin (2006) and also the economic 

tradition, for example, the quasihyperbolic or beta delta model of Laibson (1997). Rachlin 

(2006) popularized the use of a two-parameter function with an exponent on the delay term 

for delay discounting, although this function had been previously proposed in other contexts 

(see Mazur, 1987). The double exponential model proposed by Van Den Bos and McClure 
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(2013) from the neuroscience tradition is another model of interest in this context. This 

three-parameter model was excluded from this study because there is no analytical solution 

for ED50 for this model. Numerical methods can be employed to determine ED50 when 

there is no analytical solution. Additionally, parallel, hyperbolically discounted temporal 

difference, mixed, and serial models are of general interest (see, e.g., Zarr et al., 2014) in the 

study of discounting but are not included in this investigation. The purpose of the present 

work is to illustrate the variable selection procedure in combination with ED50 as a flexible 

method for a set of popular discounting models, rather than to perform a comprehensive 

review of all existing discounting models. In principle, any existing (or future) discounting 

model with a likelihood function can be accommodated with this approach. Hence-forth, 

models will be referred to as labeled in Table 1, and year of publication will be suppressed to 

simplify the prose.

The Mazur and Samuelson models include a single discount rate (k) parameter. As k 
increases, valuation of the reward declines more steeply as a function of delay according to 

the functions presented in Table 1. The two-parameter Myerson and Green and Rachlin 

models extend the Mazur model by allowing a second s parameter, which allows the models 

more flexibility. The Laibson model’s δ parameter controls how steep the decay is as a 

function of delay, while the β parameter allows the model to scale vertically.

The Myerson and Green and Rachlin models are actually generalizations of the Mazur 

model in the sense that if s = 1 then these models reduce to the Mazur model. When a 

statistical model selection routine favors either of these two-parameter models, this indicates 

that the additional complexity for adding a second parameter to vary freely is justified due to 

substantial improvement in model performance. When the Mazur model is most probable, 

this indicates that the data are sufficiently described under the restriction that s = 1 and k 

alone varies freely. In fact, when the Myerson and Green or Rachlin models are fit in 

practice, the probability that the observed s would be 1 (hence inducing the Mazur model) is 

actually zero, because the probability of a continuous variable (the s statistic in this case) 

taking a single individual value is zero.

In addition to the above models, a “random noise” model was included to identify non-

orderly data. The random noise model was represented as a delay-invariant constant, and 

departures from this constant are attributed to random chance. This is identical to an 

‘intercept only’ regression model and is used to identify cases where a subject does not 

systematically discount rewards as a function of delay. Participant data may be nonorderly in 

this fashion when a participant fails to understand the questionnaire, answers dishonestly, or 

genuinely does not discount future rewards over the course of delays presented.

Throughout the study, we assume that indifference points are measured with error, but the 

delays are fixed and known constants. While subjects may exhibit some variability between 

their perception of a certain delay and that exact delay (i.e., a measurement error in delay) 

we assume that the delays are measured without error, mostly out of convenience. This is a 

common assumption in many regression applications.
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Analytic Plan—The models in Table 1 were each fitted to all indifference point data. The 

nls package in R (R Foundation for Statistical Computing, Vienna, Austria) was used to 

estimate parameters by minimizing residual sums of squares via Gauss-Newton optimization 

(Bates & Watts, 1988). Models that failed to optimize for a given participant were removed 

from the candidate model list for that data set, and variable selection for the given 

participant was conducted among the models that converged. The Laibson model parameter 

values β and δ are bounded between zero and one, and this constraint was enforced in the 

optimization. In a section below we discuss nonlinear optimization and associated 

challenges in this study. The Bayesian information criterion (BIC) was computed for each 

model in Table 1, and model probabilities were approximated as described in the next 

section. ED50 was computed on the basis of the most probable model for each participant. 

The frequency and proportion of selections favoring each model were computed, and the 

estimated parameters among all of the selections were summarized. The natural log (ln) of 

ED50 was computed for both the most probable model and also the Mazur model and these 

ln(ED50) distributions were compared. Mazur’s one-parameter hyperbolic function (Mazur, 

1987) is used in this study to exemplify the single model strategy, which is a frequently used 

model in practice (See e.g. MacKillop et al., 2011).

The probability that a subject does not discount the value of a reinforcer as a function of 

delay is assessed formally by including a “random noise” model among the candidate 

functions. Additional screening rules flag instances where ED50 is not reached within the 

range of delays presented (i.e., extrapolation), or subjects who exhibit discounting trends 

that increase as a function of delay. Different approaches to screening are compared in the 

Results section.

Model selection—Statistical model selection requires adoption of a set of candidate 

models and choice of a metric that characterizes model performance (e.g., information 

criteria, model probability, goodness of fit measures). The model that demonstrates the best 

performance in terms of the chosen metric is selected and inference is subsequently 

performed in the context of the chosen model.

Bayesian model selection was accomplished by using Bayes’ rule to obtain model 

probabilities. Exact analytical solutions for model probabilities are not available for models 

such as these, so computational sampling methods or asymptotic approximations are needed 

in order to estimate model probabilities. Kass and Raftery (1995) provide a convenient 

approximation to model probability using BIC (Schwarz, 1978). BIC may be obtained for 

any model that has a computable log-likelihood, and the formula for BIC is

(1)

where log L represents the log of a model’s maximized likelihood function, n is the sample 

size, and p is the number of parameters in the model. Lower values of BIC correspond to 

models that have a favorable balance of predictive ability and model complexity. Because 

BIC measures the likelihood of a given model subject to a penalty for complexity, two-

parameter models such as those proposed by Myerson and Green, Laibson, and Rachlin are 
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appropriately penalized for complexity compared to competing one-parameter models in this 

approach.

For a set of competing models, the BIC values are rescaled to model probabilities as 

described in the Appendix. The model with the lowest BIC is the most probable model 

according to this approximation, which simplifies Bayesian model selection by obviating the 

need for numerical integration routines. For a more complete overview of Bayesian model 

selection, see Kass and Raftery (1995). For a detailed description of statistical inference 

using the Bayesian paradigm, see Gelman, Carlin, Stern, and Rubin (2004). In practice the 

proposed approach is flexible and allows for any set of parametric candidate models.

Effective Delay 50—ED50 was computed based on the most probable model for each 

participant according to the formulas in Table 1. ED50 is computed by setting the discounted 

value of the larger–later reward as 0.5 (half the value of the objective amount of that reward, 

normalized to 1) and solving for delay D (Yoon & Higgins, 2008). In the context of the 

Mazur model, the natural log of k typically satisfies parametric modeling assumptions better 

than the untransformed k; that is, for the Mazur model,  (Yoon & Higgins, 2008), 

and ln(ED50) = −ln(k) (Washio et al., 2011). Because statistical inference is generally 

invariant to linear transformation, inference based on ln(k) is identical to statistical inference 

based on ln(ED50) if the Mazur model is adopted. This equivalency increases the appeal of 

ED50 as a natural measure of discounting across models.

Screening criteria—In any statistical analysis, the researcher should be wary not to allow 

a few individual data points to disproportionately affect inferences drawn about larger 

populations. Discounting patterns can vary widely among participants, and screening criteria 

(e.g., Johnson & Bickel, 2008) can be used to identify participants who discount according 

to unexpected or atypical patterns. Subjects identified in this fashion should potentially be 

analyzed separately to prevent undue influence on the broader analysis. Generally, screening 

criteria should be regarded as “rules of thumb,” and researchers should use their own expert 

opinion to screen, subset, analyze, and transparently describe and justify their methods. 

Several criteria have been proposed to assess the orderliness of individual participant 

indifference point data. The model R2 is not ideal because it is confounded with discount 

rate (Johnson & Bickel, 2008). Other criteria have been proposed to evaluate the logical 

consistency of discounting data (Johnson & Bickel, 2008). These criteria flag participants 

for whom either (1) the earliest indifference point is not greater than the latest indifference 

point by at least 10% of the delayed reward, or (2) any indifference point (starting with the 

second delay) exceeds the preceding indifference point by a magnitude greater than 20% of 

the delayed reward amount. These criteria are suggested as a generally flexible approach to 

consider possibly problematic participant data. For the purpose of subsequent analysis, 

datasets that violate either of these criteria might be subject to further screening for 

orderliness (usually via a graphical plot of the indifference points), analyzed separately from 

nonviolators, or excluded from further analysis. Figure 1 depicts individual participant data 

that violate the second of these criteria.
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The proposed approach screens data that most probably arise from the random noise model, 

fails to achieve ED50 within the delays presented, or exhibits an increasing trend (i.e., both s 
< 0 and Rachlin or Myerson and Green is chosen). The rationale for screening based on each 

of these criteria follows. First, if data truly arise from the random noise model, this indicates 

that reward valuation does not decrease systematically as a function of delay. Second, if 

ED50 is not achieved over the range of the delays presented, the participant is also screened 

in order to avoid excessive extrapolation beyond the assessed delays. Avoiding the 

extrapolation of results from statistical models far from the range of data that was collected 

is generally wise (Utts & Heckard, 2007). ED50 may perform particularly poorly in cases 

where the delay associated with 50% devaluation in the delayed reward is far from the range 

of delays in the task. In practice a researcher could relax this condition by specifying a delay 

threshold slightly outside of the range of delays. Finally, data that exhibits an increasing 

trend as delay increases (possible with Rachlin and Myerson & Green models when s is 

negative) is generally not reflective of the behavior expected for the discounting task (see 

Johnson & Bickel, 2008) and, therefore, these participants’ data are screened out.

Results

Results of model selection—The Bayesian model selection routine selected the Rachlin 

model as most probable in 34.3% of the cases. The Myerson and Green, Mazur, Laibson, 

Samuelson, and Noise models were chosen 27.0%, 18.0%, 10.8%, 8.1%, and 1.8% of the 

time, respectively. The model selection routine identified 11 participants who violated the 

above screening criteria. Eight of these cases exhibited ED50 exceeding the delay range, one 

case had s < 0 with the Rachlin model chosen as most probable (i.e., increasing trend), and 

two cases were most probably attributable to random noise. There were 20 participants who 

violated at least one of the Johnson-Bickel criteria, but for 14 of those participants there was 

only one instance where a single indifference point (starting with the second delay) 

exceeded the preceding indifference point by a magnitude greater than 20% of the delayed 

reward amount. Two individuals provided indifference points which were unvarying across 

all delays. Among the participants who provided varying indifference points, the Laibson 

model failed to optimize three times, and the Myerson and Green model was not considered 

in 29 cases for the same reason (see below for a discussion of parameter estimation and 

modeling difficulties for these models). Figure 1 illustrates the computed model probabilities 

for a single subject whose data violated one of the criteria proposed by Johnson and Bickel 

(2008); but where the Bayesian model selection criteria identified the Rachlin model as the 

most probable fit.

ED50 summary—Among data retained by the model selection approach, ED50 

distributions were positively skewed from both the most probable model (skew = 1.88) and 

for the Mazur model (skew = 2.33). Logarithmic transformation reduced the skew in both 

cases (−0.85 and −0.73 for most probable and Mazur approaches, respectively), suggesting 

that the log transformation strategy for Mazur’s k performs similarly on the ED50 computed 

from the most probable model. These distributions are displayed graphically in Figure A1 of 

the Appendix.
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For these data the median ED50 was 871.6 days for the most probable model, and 720.3 

days when the Mazur model was fitted to all participant data. A shift of about 150 days is 

arguably of some practical significance in this instance, although Figure A1 suggests no 

substantial shift in distribution between ED50 or ln(ED50) between Mazur and most 

probable settings. The ln(ED50) distributions differ by only 0.012 standard deviations, 

further suggesting no practically significant shift between these distributions. A paired t-test 

comparing the ln(ED50) distributions between Mazur and most probable approaches was not 

statistically significant at the α = 0.05 level (t98 = 0.13; p = .899). The ED50 and ln(ED50) 

values from the single model approach and model selection approach were highly correlated 

(Spearman correlation is 0.99 in both cases, see Fig. 2.) Despite these high correlations, 

Figure 2 suggests that the single model and model selection approaches can differ 

substantially in individual cases. For instance, among the 12 cases where the Laibson model 

was found to be the most probable model, the ED50 value arising from this model was larger 

than the ED50 from the Mazur model in 9 out of 12 cases (see Fig. 2). When the Rachlin 

model is called the most probable ED50 is smaller than the Mazur ED50 in 24 out of 38 

cases.

Parameter estimation—Table 2 reports the mean, standard deviation, and interquartile 

range of the parameter estimates among the selected models. The correlation between 

parameter estimates is reported for the two-parameter models. These values were used as 

inputs for the heterogeneous setting in the computer simulation in Study 2. Table 3 

summarizes correlations among parameters and also area under the curve (Myerson et al., 

2001). Table 4 summarizes distributional features for model mean squared error (MSE) and 

ED50 in the Mazur and most probable settings.

Nonlinear optimization and associated challenges—The nls package in R was used 

to fit the nonlinear models in the present analyses. This package implements a Gauss-

Newton optimization algorithm to find the values of k and s that minimize the sum of 

squared residuals between the model fit and observed data. This algorithm iteratively refines 

parameter estimates from a user-provided starting value until the change in the error sum of 

squares between iteration becomes arbitrarily small. If the algorithm exceeds a preset 

number of iterations, or if the change in the estimates between steps becomes very small 

before the change in error sum of squares becomes sufficiently small, then the algorithm 

fails to converge, and the validity of parameter estimates is questionable.

In this study the maximum iteration was set to 50, change in error sum of squares to elicit 

convergence was set to 0.00001, and the minimum step size was set to 1/1024, which are all 

default for the nls package in R. In order to minimize convergence problems associated with 

poor starting values, the starting values were chosen from a grid as those that minimized the 

sum of squared residuals between observed and predicted data. The grid for k spanned 25 

entries from 6.1*10−6 to 6.0*104 (or equivalently, each integer ln(k) from −12 to 12 

inclusive). The grid for s spanned 1,000 equally spaced entries between 0.01 and 10. Under 

these conditions, the Mazur and Samuelson models had 25 eligible starting points, and no 

convergence issues emerged. The Myerson-Green and Rachlin models had 25,000 eligible 

starting points. The Myerson-Green model failed to converge in 29 of 111 cases, and the 
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Rachlin model did not fail to converge in any cases. Attempts to adjust the maximum 

iterations, minimum step size, and convergence criteria did not recover any of these non-

optimizing datasets.

The 29 non-optimizing Myerson-Green datasets were also analyzed using the solver package 

in Microsoft Excel, and an interesting pattern emerged. Figure 3 includes a plot of 

indifference point data from subject 7 and two Myerson-Green model overlays. The solid 

line plots the fit from the estimated k and s estimates from the final iteration of a failed nls 
optimization, and the series of ‘+’ symbols corresponds to a fit that was achieved using 

Microsoft’s Solver in Excel. Despite the fact that nls convergence failed, and the fact that the 

parameter estimates differed substantially, the model fit in both cases appears visually 

identical and also appropriate for the data. The fact that substantially different parameter 

values can produce nearly identical model fits in the Myerson-Green model may be one 

reason that difficulty in parameter estimation was observed for this model in this study.

Study 2: Simulation Study

Scientific data analyses typically proceed by using well-established analytical approaches to 

glean insight about thematic or underlying features in data that are unknown at the outset of 

the study. This approach is ideal when established methods are available and the researcher 

aims to characterize the structure behind previously uncharacterized data. Monte Carlo 

simulation is a powerful approach that inverts this paradigm. In order to determine the 

comparative performance of competing methods, Monte Carlo simulation allows us to 

generate large amounts of virtual data with specified underlying characteristics. Since the 

researcher programs the data generation procedure (informed by Study 1 data), the “true” 

structure of the data is known, and methods are compared according to their ability to 

correctly identify the true state of the underlying data. In Study 2 a Monte Carlo computer 

simulation was performed to assess the accuracy of ED50 estimates and model selections for 

a variety of modeling approaches under a set of corresponding hypotheses.x

Methods

Experimental layout—The study design considers three data generating scenarios. The 

Mazur and Rachlin models were chosen as single model comparators to the multiple model 

hypothesis. The Mazur model was chosen due to its prevalence in the literature. For 

example, a recent meta-analysis comparing discounting in control groups and addictive 

behavior groups revealed that approximately 70% of studies used the Mazur model 

(MacKillop et al., 2011). The Rachlin model was chosen as a suitable two-parameter model 

since it was selected most frequently in Study 1 and also converged for the great majority of 

data sets.

In order to reflect empirical data as closely as possible, the inputs to the simulation were 

based on the data in Study 1. In the “Mazur only” scenario, all participant data were 

generated under the Mazur model (mean ln(k) −6.34, sd ln(k) = 1.72). This means that for 

each participant, a single value of ln(k) was drawn from a normal distribution with mean and 

standard deviation matching the data from Study 1, and then indifference data were 

generated according to that value of ln(k). In the “Rachlin only” scenario, data were 
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similarly generated according to the behavior of Rachlin fits to the data from Study 1 (mean 

ln(k) = −8.34, sd ln(k) = 7.34, mean s< sd = 1.28, s< 0.97, correlation between ln(k) and s 
−0.90). Finally, a “heterogeneous” scenario was explored, where participant data arise from 

models chosen at random in the proportions observed in the Study 1 data, omitting random 

noise selections: Rachlin 34.9%, Myerson & Green 27.5%, Mazur 18.3%, Laibson 11.0%, 

and Samuelson 8.3%. When the true underlying model was the Mazur, Samuelson, Myerson 

and Green, or Rachlin model, the parameter values were generated as Gaussian variates 

according to the means, standard deviations, and correlations shown in Table 2. When the 

true underlying model was the Laibson model, the β and δ parameters were generated 

according to a uniform distribution on the range observed among the Laibson selections in 

the Study 1 data: 0.7147 < β < 0.9802, 0.9972 < δ < 0.9999.

Modeling approaches—The data generated from each of the three above scenarios were 

analyzed using three modeling strategies. The first two strategies apply the Mazur and then 

the Rachlin model to all simulated data. For the first two strategies, the appropriate ED50 

formula was used (see Table 1) to estimate the ED50 value from each simulation run. The 

model selection approach described in Study 1 was then applied as a third strategy. For the 

model selection approach, ED50 was computed as described in Study 1. Each of these 

estimated ED50 values was compared to the true ED50 value, which is known in this context 

because this is a Monte Carlo simulation. We hypothesize that single model approaches will 

outperform the model selection approach in the cases where the corresponding model truly 

underlies the data, while the model selection approach will perform best when multiple 

models underlie data. Each modeling strategy is applied to each of the three data generating 

scenarios, which allows for the comparative assessment of different data analysis approaches 

under different plausible hypotheses about the underlying structure of the data.

Indifference points were then generated according to the sampled parameters with Gaussian 

errors. The model MSE was set to the median from the Study 1 data (σ2 = 0.005) for all 

participants. Indifference points that fell outside of the [0,1] range were reassigned to 0 and 

1 as appropriate. This ensures that simulated data cannot take values that are impossible for 

participants to generate in the titration questionnaire used in the empirical study. The same 

inclusion criteria were used in the simulation as in the empirical data (i.e., random noise 

model not most probable, no increasing trends, no ED50 outside the delay range observed) 

to further ensure that the simulation is as similar as possible to the analysis plan of Study 1.

Monte Carlo simulation proceeds by replicating an experiment many times in order to assess 

the long-run performance of the methods under study. We designed the computer simulation 

to replicate 1000 runs of the data described above for each of the 111 Study 1 participants. 

This sampling process was repeated for all three data-generating scenarios for a total of 

333000 simulation runs.

Assessment of model performance—The performances of the Mazur only, Rachlin 

only, and model selection strategies were compared. The discrepancy between estimated and 

true ED50 values was summarized on a study-by-study basis using the mean square error 

(MSET) which compares the estimated ED50 value to the true ED50 value for each 

participant:
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(2)

where  represents the estimated effective delay 50 for participant i and ED50i 

represents the true ED50 computed from the known model and parameters. The subscript T 

in Equation 2 indicates that the proposed metric is a comparison between estimated and true 

ED50 values in the simulation. This metric summarizes how well a given modeling approach 

performs relative to the true ED50 value in simulation. Importantly, this MSET value should 

not be confused with the mean square error, which summarizes the departure of indifference 

points from model fits for individual participant data. This computation is only possible in 

the computer simulation because the true ED50 values are known in the simulation but 

unknown in practice.

High values of MSET correspond to studies where the predicted ED50 values were far from 

the true values. MSET was computed in this fashion for 1000 simulated studies in all three 

conditions. The accuracy and screening rates of model selections across all participants were 

reported.

Results

Figure 4 depicts the distribution of MSET across 1000 simulated experiments in every 

combination of condition and modeling strategy. The three panels correspond to different 

underlying data-generating scenarios: Mazur (A), Rachlin (B), and heterogeneous (C). The 

three boxplots in each panel indicate the performance of each modeling strategy. Low values 

in this plot correspond to settings in which the chosen modeling approach performs well.

Wilcoxon signed rank tests indicated that the optimal modeling strategy in each case 

matched the model that was used to generate the data (i.e., MSET was lower with the Mazur 

model for Mazur data, Rachlin model for Rachlin data, and model selection approach for 

heterogeneous data; p < 0.00001 for all comparisons). The plot indicates, however, that the 

magnitude by which the optimal strategy outperforms the competing methods varies from 

trivially small (e.g., the Mazur case, panel A, Fig. 4), but is more pronounced in other cases 

(e.g., heterogeneous approach, Rachlin model, panels B and C, Fig. 4). Of special note: The 

model selection approach outperforms both single model approaches in the heterogeneous 

scenario (panel C, Fig. 4). In both of the single model scenarios, the model selection 

approach appears to suffer very little and is likely noninferior in a practical sense (panels A 

and B, Fig. 4). Taken together, these results suggest that if multiple models or processes 

truly underlie discounting in different subjects, then the model selection approach can have a 

distinct advantage over a single model approach. In the event that all subjects truly discount 

according to a single model, then the model selection approach performs similarly to the 

correctly specified model (e.g., panels A and B, Fig. 4). Interestingly, the model selection 

approach outperforms the Mazur-only approach in the Rachlin scenario (panel B, Fig. 4). 

Hence, adopting the model selection approach would seem to be a pragmatic, low-risk, and 

potentially high-reward strategy when estimating ED50 regardless of which underlying data 

structure is actually true.
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Among all 333000 simulation runs (111 “participants” × 3 scenarios × 1000 runs), the 

number of noise selections was 14108 (4.2%). The number of increasing trends (i.e., 

negative estimates for s when Rachlin or Myerson & Green was called) was 2148 (0.6%). 

The number of instances where the estimated ED50 was off the range of the delays 

presented was 38298 (11.5%). The number of participants who exhibited at least one of 

these violations was 52406 (15.7%). Hence, 280594 sessions survived the screening criteria 

described above. The greatest number of screenings arose from the extrapolation rule, and 

among the 38298 participants who violated this rule, 31330 (82%) corresponded to 

participants where the true underlying model was either Rachlin or Myerson and Green. 

Hence, a better understanding of the bivariate relationship between s and k for these models 

might enable a simulation study that had a reduced number of screenings for these models. 

While the screening rate for the simulation was higher than the Study 1 data, we nonetheless 

have generated and analyzed a large amount of participant data which is highly similar to 

observed data from Study 1, allowing valuable insight for the potential upside of the model 

selection approach.

The discussion above indicates that the model selection approach appears at worst to be 

noninferior to the single model approach under the single model hypotheses, and superior 

under the multiple model hypothesis. To further explore the model selection method, 

accuracy of the model selections was assessed. In the Mazur-only scenario, the model 

selection approach correctly called the Mazur model 49.6% of the time in the seven-delay 

schedule. In the Rachlin-only scenario, the model selection approach correctly called the 

Rachlin model 55.8% of the time. In the heterogeneous scenario, the model selection 

approach identified the correct model 43.4% of the time. Hence the model selection routine 

is more accurate than calling models by chance alone (which would work about 16.7% of 

the time). This indicates that the model selection approach estimates ED50 with high 

accuracy relative to single model approaches (Fig. 4) despite the fact that the true model is 

not always identified. All percentages are computed among the participants that did not 

violate the screening criteria described in Section 2.1.7.

General Discussion

This paper is the result of a novel combination of perspectives, including statistics, 

behavioral economics, and pharmacology. In this study, we found that the proposed model 

selection approach had lower average MSE than the Mazur model approach using the Study 

1 data. The log transformation of ED50 elicited a roughly symmetric distribution, allowing 

for parametric analyses. The most probable discounting model in the Study 1 data differed 

among participants, suggesting the possibility that a single model or process may not 

underlie discounting in all people and that these differences may be systematic. The 

screening criteria based on this method flagged a lower number of participants when 

compared with the Johnson and Bickel screening method. The simulation study suggests that 

if multiple models truly underlie discounting data in humans, then ED50 estimates based on 

model selection fall closer to true ED50 values compared to the single model approaches, as 

measured by MSET. If, for example, the Mazur model underlies all discounting data, then 

the model selection approach was outperformed by the single model approach by a trivially 

small margin (Fig. 4). Under the Rachlin-only scenario, the model selection approach fared 
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worse than the Rachlin-only modeling approach, but better than the Mazur-only modeling 

approach.

Figure 1 displays discounting data for a single subject. These data violate the Johnson and 

Bickel criteria, yet the probability that these data are best modeled by random noise (i.e., 

change in valuation is independent of delay) is 0.2% according to the model selection 

approach. Since the task in this experiment adjusted questions based on the participant’s 

responses, data such as these could arise if a subject miscodes a single early question in the 

titration sequence. The Johnson and Bickel criteria are intended as a flexible set of 

guidelines and could be relaxed to allow one such violation without excluding data from 

subsequent analysis. The model selection method will typically retain participant data that 

has a single unusual point such as this.

The proposed method in combination with a seven-delay schedule task cannot directly 

address the one-versus-several model hypotheses, because as the simulation indicates, 

multiple models are chosen whether or not the true underlying process involves multiple 

models or just one. Despite the low accuracy of model selections, the model selection 

procedure estimates ED50 nearly as accurately as the single model approaches when a single 

model governs discounting for all subjects, and the proposed method is superior when 

multiple models underlie participant response. These ED50 values leverage a multitude of 

available models to provide appropriate one-number summaries of discounting, which is 

generally of primary interest. The simulation study suggests that in the heterogeneous 

scenario, the proposed method tends to outperform single model approaches based on the 

Mazur and Rachlin models. Applying the model selection approach is therefore a low-risk 

and potentially high-reward approach since it performs nearly as well as the single model 

approach when all subjects obey a single model, and it performs substantially better when 

subjects truly discount according to multiple models based on this simulation study. 

Additionally, the utility of ED50 as a unifying measure could potentially have important 

applications in meta-analysis since ED50 can be computed and is comparable between 

studies that use different discounting functions.

The proposed method has some weaknesses. First, the method can only accommodate 

likelihood-based models that have a computable BIC. Area under the curve has been 

proposed as a discounting measure that does not rely on parameter estimation using a 

theoretical discounting function (Myerson et al., 2001). Second, the accuracy of model 

selections is imperfect. However, the improvements in MSET shown in Figure 4 indicate the 

accuracy of the model selection approach. If the Rachlin model is estimated as most 

probable when in fact the Myerson and Green pattern is the true underlying model, then this 

is generally of secondary importance given that the approach ultimately tends to improve the 

accuracy of ED50 estimates. The most probable model tends to more adequately estimate 

ED50 even when the chosen models are different from the true models overall. This is likely 

due to the fact that the asymptotic approximation for the model probabilities is based on a 

relatively small number of indifference points.

This report describes a new approach for characterizing discounting data by employing 

approximate Bayesian model selection and allowing for multiple models to be chosen within 
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a single study. Further, ED50 is shown to be a suitable unifying measure which allows for 

sensible between-model comparisons of discounting.
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Appendix

Distribution of ED50 Measures

Figure A1 shows the distribution of ED50 measures for the Mazur model and the model 

selection approach from Study 1. In both cases, the natural log transformation reduces skew 

and yields discounting measures more appropriate for parametric analysis.

Bayesian Model Selection

The probability of data being observed given model candidate d is

(A1)

where X represents observed data, Md represents the dth candidate model, d = 1,…, D, and 

θd is the vector of parameters for model d. The likelihood is P(X|θ d, Md), which is the 

probability density function of the data given the parameters and model, and P(θd|Md) is the 

prior distribution of the parameters given the model.

By Bayes’ rule

(A2)

This implies that for models m and l

(A3)

where the quantity  is known as the Bayes’ factor comparing models m 
and l.

Generally, (A1) is not analytically tractable and must be assessed via numerical integration 

or approximated asymptotically. Kass and Raftery (1995) show that for models m and l, 
BICm−BICl asymptotically approximates −2ln (BF ml) as n →∞. This implies that 

.
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Model probabilities are approximated with the following formula:

(A4)

where

and

(A5)

The largest value of  corresponds to the model with the highest estimated probability.
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Fig. A1. 
Distribution of ED50 and ln(ED50) values for Mazur model and model selection approaches 

on the data from Experiment 1.
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Fig. 1. 
Delays, indifference points, model fits, and probabilities for subject 17. The Rachlin model 

is most probable for this subject (probability = 0.67). Most probable ED50 = 126.15 

(Rachlin). Mazur ED50 = 188.14. This participant violates one Johnson-Bickel criterion but 

is retained under proposed model selection routine.
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Fig. 2. 
Concordance between Mazur and most probable ED50 estimates by selected model. Left 

panel shows ED50 values and right panel shows ln(ED50) values. Spearman correlation 

between these values was 0.99 in both cases. The dashed line is the 45 degree X=Y line. 

Despite high correlation, ED50 estimates vary between Mazur and most probable approach 

for several individual participants.
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Fig. 3. 
Discounting data for subject 7. The left panel plots indifference points by delay and the right 

panel plots indifference points by log delay. The two separate overlays consist of a solid line 

and a series of ‘+’ symbols, which fall very close to each other on the plots. These 

correspond to two different sets of parameter estimates for the Myerson-Green model as 

indicated in the legend.
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Fig. 4. 
MSET values comparing the estimated ln(ED50) to the true value of ln(ED50) used in the 

simulation. Panels A, B, and C correspond to data that arise from the Mazur only, Rachlin 

only, and heterogeneous settings. In the heterogeneous setting, MSET is lowest when model 

selection is used, indicating that if the multiple model hypothesis is correct, then the model 

selection approach more accurately estimates ED50. * indicates that two points are above 

the plotted vertical range.
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Table 1

Discounting equations, parameters, and ED50 values for the functions under consideration.

Model Name Equation parameters ED50 Citation

Mazur E(Y) = 1/(1 + kD) k (Mazur, 1987)

Samuelson E(Y) = e−kD k (Samuelson, 1937)

Myerson & Green E (Y) = 1/(1+kD)s k, s (Myerson & Green, 1995)

Rachlin E (Y) = 1/(1+kDs) k, s (Rachlin, 2006)

Laibson* E (Y) = βδD β,δ (Laibson, 1997)

Random Noise E(Y) = c c – –

Note. E(Y) represents the expected indifference point at delay D. Model residuals are assumed Gaussian with constant variance.

*
The Equation for the Laibson model is assumed to hold for D > 0, and E(Y) = 1 when D = 1.
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