Skip to main content
. Author manuscript; available in PMC: 2017 Jul 24.
Published in final edited form as: J Exp Anal Behav. 2014 Dec 30;103(1):218–233. doi: 10.1002/jeab.128

Table 1.

Discounting equations, parameters, and ED50 values for the functions under consideration.

Model Name Equation parameters ED50 Citation
Mazur E(Y) = 1/(1 + kD) k
1k
(Mazur, 1987)
Samuelson E(Y) = e−kD k
ln(2)k
(Samuelson, 1937)
Myerson & Green E (Y) = 1/(1+kD)s k, s
(21/s1)k
(Myerson & Green, 1995)
Rachlin E (Y) = 1/(1+kDs) k, s
(1k)1/s
(Rachlin, 2006)
Laibson* E (Y) = βδD β,δ
logδ(12β)
(Laibson, 1997)
Random Noise E(Y) = c c

Note. E(Y) represents the expected indifference point at delay D. Model residuals are assumed Gaussian with constant variance.

*

The Equation for the Laibson model is assumed to hold for D > 0, and E(Y) = 1 when D = 1.