
Rediscovering SR-BI: Surprising New Roles for The HDL 
Receptor

Menno Hoekstra, PhD [Senior Scientist] and
Division of Biopharmaceutics, Cluster BioTherapeutics, Leiden Academic Centre for Drug 
Research, Leiden, The Netherlands, Hoekstra@lacdr.leidenuniv.nl, Tel: +31-71-5276582

Mary Sorci-Thomas, PhD FAHA [Professor of Medicine]
Division of Endocrinology, Associate in Pharmacology and Toxicology, Medical College of 
Wisconsin, Senior Adjunct Investigator at the Blood Research Institute, Blood Center of 
Wisconsin, msthomas@mcw.edu, Tel: 414-955-5728

Abstract

PURPOSE OF REVIEW—Scavenger receptor BI (SR-BI) is classically known for its role in 

anti-atherogenic reverse cholesterol transport as it selectively takes up cholesterol esters from 

high-density lipoprotein (HDL). Here we have highlighted recent literature that describes novel 

functions for SR-BI in physiology and disease.

RECENT FINDINGS—A large population based study has revealed that subjects heterozygous 

for the P376L mutant form of SR-BI showed significantly increased levels of plasma HDL-

cholesterol and had increased risk of cardiovascular disease, demonstrating that SR-BI in humans 

is a significant determinant of cardiovascular disease. Furthermore, SR-BI has been shown to 

modulate the susceptibility to LPS-induced tissue injury and the ability of sphingosine 1 phosphate 

to interact with its receptor, linking SR-BI to the regulation of inflammation. In addition, 

important domains within the molecule (Trp-415) as well as novel regulators (PCEP2) of SR-BI’s 

selective uptake function have recently been identified. Moreover, relatively high expression levels 

of the SR-BI protein have been observed in a variety of cancer tissues which is associated with a 

reduced overall survival rate.

SUMMARY—The HDL receptor SR-BI is a potential therapeutic target not only in the 

cardiovascular disease setting, but also in inflammatory conditions as well as in cancer.
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INTRODUCTION

Shortly after the discovery of the SCARBI gene encoding the scavenger receptor type BI or 

SR-BI in 1994 [1], Acton et al. published a study demonstrating the ability of SR-BI to 
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selectively remove cholesterol esters from high-density lipoprotein (HDL) [2], finally 

identifying the cholesterol ester receptor previously characterized in 1983 [3]. Subsequently, 

it was reported, paradoxically, that deletion of SR-BI in mice was associated with increased 

atherosclerosis despite a significant increase in HDL-cholesterol concentrations [4,5]. The 

increased atherosclerosis susceptibility observed in total body SR-BI knockout mice is 

paralleled by marked changes in lymphocyte homeostasis as evidenced by splenomegaly, 

exacerbated lymphocyte proliferation and systemic autoimmunity [6]. The increased 

atherosclerosis susceptibility in the context of high plasma HDL-cholesterol levels in SR-BI 

knockout mice contrasted the epidemiological data in humans showing that an inverse 

correlation between plasma HDL-cholesterol concentration and coronary heart disease was a 

general and reliable prognostic tool [4]. Further illuminating the complex relationship 

between HDL, SR-BI and atherosclerosis, a study comparing two lines of transgenic mice 

expressing high or moderate levels of SR-BI was reported. In this study, high levels of SR-

BI was found to be nearly as detrimental as no SR-BI with barely detectable HDL levels in 

plasma [7]. Although fascinating, these finding were mostly classified as rodent specific 

effects with scant evidence of human relevance. Finally, genetic studies of human SR-BI or 

SCARB1 variants were reported to be associated with plasma HDL-cholesterol levels [8] as 

well as with protein levels in peripheral cells [9], but still no evidence that impaired SR-BI 

function affected human physiology. In 2011, an elegant report [10] showed that human 

carriers of mutated SR-BI had increased HDL-cholesterol levels, reduced cholesterol efflux, 

altered platelet function and decreased adrenal steroidogenesis, but still no significant 

increase in atherosclerosis. Finally, in 2016, a large population based study revealed that 

subjects heterozygous for the P376L mutant form of SR-BI showed significantly increased 

levels of plasma HDL-cholesterol and had increased risk of cardiovascular disease [11**], 

now demonstrating that SR-BI in humans was a significant determinant of cardiovascular 

disease. In further support, the rs10846744 SNP which resides within the enhancer region of 

SCARBI was recently shown to be significantly associated with atherosclerotic disease [12]. 

In light of these new findings, some 23 years since SR-BI’s discovery, it appears now that 

SR-BI has been “re-discovered” as relevant to human disease in a variety of new pathways 

and mechanisms, as will be covered in this review.

SR-BI: Relevance to Inflammatory States

SR-BI’s role in inflammation has been well studied and now also shown to be relevant in 

humans [12,13]. Using RNA-sequencing data, lymphocyte activating 3 (LAG3) RNA was 

identified as a major target driving the effect of SR-BI on inflammation, since its expression 

was significantly lower in homozygous carriers of the SR-BI rs10846744 risk allele [12]. 

LAG3 competes with CD4 in T cells by binding higher affinity MHC class II to negatively 

regulate T cell activation. LAG3 protein is one of the few important immune checkpoint 

inhibitors in humans, including programmed death-1 (PD-1) and cytotoxic T-lymphocyte 

associated protein 4 (CTLA4), highlighting that T cell activation, SR-BI and HDL-

cholesterol concentrations are physiologically linked to each other and cardiovascular 

disease. In mice, SR-BI’s role in regulating lymphocyte activation was demonstrated 

recently at the level of hematopoietic stem/progenitor cell proliferation [14].
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SR-BI interacts with a number of ligands, one of the most important is lipopolysaccharide 

[15]. Under experimental conditions using global SR-BI knockouts, lipopolysaccharide can 

induce acute organ damage. In a recent report [16*], a gain of function mouse model was 

created to avoid changes in glucocorticoid levels associated with this model. In this study 

pLiv-11 expression vector was used to generate high liver levels of SR-BI expression. Both 

human SR-BI or SR-BII were overexpressed and the authors concluded that SR-BII and to a 

lesser extent SR-BI increased lipopolysaccharide-induced inflammation, contributing to 

lipopolysaccharide-induced tissue injury in liver and kidney.

How SR-BI levels are linked to inflammatory conditions was recently investigated by 2 

independent articles. In one, increased levels of T cell heat shock protein 65 was shown to 

upregulate Src family kinase lymphocyte-specific protein tyrosine kinase (Lck) levels, while 

coordinately reducing SR-BI and cholesterol efflux in CD4 T cells in vitro [17]. In another 

study, 3T3 adipocytes incubated with oxidized LDL showed a large increase in SR-BI 

protein expression, in the presence of HDL but not in its absence [18]. These authors 

concluded that upregulation of SR-BI prevented oxidized LDL induced endoplasmic 

reticulum stress and adipocyte inflammation. Insights into how SR-BI might influence 

inflammation was further shown by an in vitro study in which the interaction between SR-BI 

and the sphingosine 1 phosphate (S1P) receptor 1 was demonstrated [19**]. In these studies 

recombinant HDL containing S1P stimulated S1P receptor 1 internalization and intracellular 

calcium flux. Since plasma HDL acts as a prominent carrier of S1P these studies have far 

reaching implications linking SR-BI, cholesterol and the regulation of inflammation. 

Furthermore, it is highly likely given SR-BI’s presence in cholesterol enriched lipid rafts or 

microdomains, that the ability of SR-BI to mediate bi-directional cholesterol transport 

underlies its unique role in regulating cholesterol metabolism in inflammatory states [20**].

SR-BI: Bi-directional Cholesterol Transport in Adipocytes - Role of Binding Partners

Inflammation can be initiated by different mechanism in different tissues, although one 

emerging area is the study of SR-BI in adipose tissue. In the landmark study which first 

described SR-BI, its expression levels in differentiated 3T3 adipocytes was noted to be very 

high and increased with length of differentiation [1]. Since then only a handful of 

investigators have studied the role of SR-BI in adipose, or differentiated 3T3 cells cultured 

in vitro [21–23], acting as a surrogate for adipocytes. Adipose tissue harbors a large depot of 

free cholesterol [24*]. However, little is known as to how adipose cholesterol influx and 

efflux is regulated. Since adipose inflammation is a hallmark of central obesity and type 2 

diabetes, loss of adipocyte efflux may directly contribute to inflammation. One important 

study specifically examined the bi-directional transport of cholesterol in differentiated 3T3 

cells in vitro and concluded that cholesterol was mainly mobilized by ATP-binding cassette 

transport A1 (ABCA1) and SR-BI but not ATP-binding cassette transporter G1 (ABCG1) 

and that overall cholesterol mobilization was impaired during inflammatory states [25]. The 

precise role of SR-BI in adipose will require further investigation, but it is possible that due 

to structural considerations of SR-BI [26**] the receptor requires other molecules for 

support of bi-directional cholesterol transport. Recently, in vivo studies using genetically 

engineered mice by Pollard et al. [27**] have suggested that the extracellular matrix protein 
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procollagen C-endopeptidase enhancer protein 2 (PCPE2) indirectly or directly interacts 

with SR-BI enhancing cholesterol transport function [28].

SR-BI: Biomarker of and therapeutic target in the pathogenesis of cancer

The primary cholesterol metabolite 27-hydroxycholesterol is essential to facilitate the 

growth of estrogen receptor-positive breast cancers in mice [29]. In support of an important 

contribution of 27-hydroxycholesterol to breast cancer pathology, high protein levels of the 

27-hydroxycholesterol generating enzyme sterol 27-hydroxylase (CYP27A1) within tumors 

correlate with an increased severity of the disease in humans [29]. Although an effect on 

tissue 27-hydroxycholesterol levels remains to be investigated in SR-BI knockout mice, it 

appears that the delivery of 27-hydroxycholesterol to tissues does seem to depend highly on 

the presence of SR-BI since these mice accumulate 27-hydroxycholesterol in their plasma 

compartment to an extent that cannot be explained by the general increase in total 

cholesterol levels only [30]. Theoretically, tumors may also acquire the cholesterol substrate 

that is needed to synthesize 27-hydroxycholesterol through SR-BI-mediated cholesterol ester 

uptake, thereby facilitating tumor growth. As such, one can envision that a change in cellular 

SR-BI expression and/or function may affect the susceptibility to the development of cancer. 

Interestingly, in the past year several papers have appeared that show the importance of SR-

BI in cancer pathology. Yuan et al. detected, using immunohistochemistry, an extensive 

protein expression level of SR-BI in >90% of breast cancer tissue samples, whilst normal 

breast tissue is virtually free of SR-BI protein [31**]. In accordance with an overexpression 

of SR-BI in breast cancer tissue, Li et al. measured a relatively high protein expression using 

Western blotting in invasive ductal carcinomas and, to a minor extent, in ductal carcinoma in 

situ specimens [32**]. The relative expression level of SR-BI in cancerous tissue correlates 

significantly with pathological measures. In the study by Yuan et al., high SR-BI expression 

was predominantly present in larger breast tumors that were estrogen receptor negative 

[31**]. Li et al. did also observe an increased SR-BI expression primarily in larger tumors 

[32**]. In contrast, in the study by Li et al., SR-BI overexpression tended to be more 

prominent in estrogen receptor positive tissue [32**]. Although multiple studies have 

suggested that SR-BI expression can be modified by estrogen exposure [33–35], a change in 

estrogen receptor expression thus does not seem the underlying regulatory mechanism 

driving the SR-BI overexpression in aggressive tumors. Importantly, the survival rate of 

female subjects with SR-BIhigh tumors was markedly lower than that of women that 

displayed a SR-BIlow breast cancer phenotype in both studies [31**,32**]. The carcinogenic 

function of SR-BI does not appear to be limited to breast cancer as a similar relations 

between SR-BI expression, disease phenotype, and disease-free survival rates have been 

observed in a clinical prostate cancer cohort [36]. Of note, SR-BI expression levels in 

metastasizing tumors are higher than those in primary prostate cancer tissues [36]. Given 

that metastases are the primary cause of death in cancer patients, this latter finding can 

possibly explain the relative high mortality rate observed in subjects carrying SR-BIhigh 

tumors. Furthermore, reducing SR-BI expression and/or function in tumors can potentially 

serve as novel therapeutic approach to overcome metastasis in breast cancer and prostate 

cancer patients.

Hoekstra and Sorci-Thomas Page 4

Curr Opin Lipidol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



When considering inhibition of SR-BI function as novel treatment option for breast and 

prostate cancer, it is important to acknowledge that the search for inhibitors of SR-BI 

function is already ongoing, since SR-BI inhibitors have long been considered of high 

therapeutic interest in the protection against infection with hepatitis C viruses [37]. In this 

context, the recent high-throughput screening efforts from the research group of Dr. Monty 

Krieger clearly deserve attention. These identified three new SR-BI inhibitors, indolinyl-

thiazole 17-11 (ML278), bisamide tetrazole 5e (ML279) and benzo-fused lactam 2p 

(ML312) [38–40], that (1) effectively block the uptake of cholesterol esters from HDL, (2) 

are not toxic to cells in culture, and (3) show an improved solubility in water as compared to 

the established SR-BI function inhibitors BLT-1 and BLT-3 that were originally also 

discovered by the Krieger group [41]. Application of ML278, ML279 and ML312 in mouse 

models for breast and prostate cancer may aid in showing the actual potential of SR-BI as 

therapeutic target for the treatment of these respective pathologies in humans.

Although SR-BI may thus play a novel role in the pathogenesis of cancer, it is good to 

acknowledge that SR-BI is predominantly of high therapeutic interest to the cancer field due 

to its potential to improve site-specific delivery of anti-cancer drugs. More specifically, SR-

BI located on tumor cells can efficiently take up nanoparticles carrying agents that affect the 

angiogenic potential of tumors. Ouyang et al. [42] showed that reconstituted HDL (rHDL) 

particles loaded with a p53 gene plasmid and the angiotensin II type 1 receptor blocker 

candesartan were able to reduce the expression of vascular endothelial growth factor 

(VEGF) in MBT-2 murine bladder cells in vitro. Importantly, in vivo treatment with these 

HDL-like nanoparticles virtually eliminated the growth potential of MBT-2-based tumors in 

mice [42]. Similarly, rHDL-mediated delivery of small interfering RNAs targeting VEGF 

could diminish the growth of breast tumors in BALB/c nude mice, resulting in a 

significantly increased overall survival [43]. Furthermore, incorporation of the anti-

angiogenic drug gambogic acid in apolipoprotein A1-containing HDL-like nanoparticles 

enhanced the cytotoxic potential of the drug in HepG2 hepatoma cells in vitro and improved 

the ability to suppress tumor growth in vivo [44]. It is noteworthy that the absence of off-

target effects of the gambogic acid-loaded particles on all major organs and the associated 

improved survival observed by Ding et al. [44] seems to be related to the EPR effect, e.g. the 

unique anatomical–pathophysiological nature of tumor blood vessels that facilitates 

transport of macromolecules into tumor tissues [45]. A recent pre-clinical study by Rui et al. 

has further highlighted the application potential of rHDL in the context of metastatic breast 

cancer [46*]. Packaging of the widely used chemotherapeutics paclitaxel and doxorubicin in 

rHDL particles improved their antitumor efficiency whilst overcoming common side effects 

on heart and kidneys of established paclitaxel / doxorubicin combination treatment.

CONCLUSION

The therapeutic potential of cardiovascular disease interventions that impact on HDL 

metabolism has recently been questioned in light of the fact that therapies aimed at 

increasing plasma HDL-cholesterol levels thus far have not proven to be beneficial of 

patients at risk of cardiovascular disease [47–49]. However, it is clear from the recent 

findings reviewed in this paper that a bright future for the HDL receptor SR-BI as 

therapeutic target can be foreseen not only in the cardiovascular disease setting, but certainly 

Hoekstra and Sorci-Thomas Page 5

Curr Opin Lipidol. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



also in inflammatory conditions as well as in cancer (Figure 1). Given the potentially 

opposite directions in the effect of the presence of SR-BI on the overall disease outcome, i.e. 

a supposed negative effect in cancer versus a positive effect in inflammation and 

cardiovascular disease, it is of major importance to evaluate the effect of novel SR-BI 

expression/activity modifying agents in a variety of disease settings. As such, the 

development of a combined cancer / cardiovascular disease mouse model is regarded of high 

interest.
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KEY POINTS

SR-BI deficiency predisposes humans to cardiovascular disease.

Hepatic SR-BI/II contributes to lipopolysaccharide-induced inflammation.

SR-BI has multiple binding partners including S1P receptor and the extracellular matrix 

protein PCPE2.

SR-BI plays an important role in adipose tissue expansion and inflammation.

High SR-BI expression in cancer tissue is associated with reduced survival.
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Figure 1. Classical and novel functions of SR-BI in physiology and disease
Top, shows classical function of liver SR-BI which is responsible for the uptake of HDL-

cholesterol for elimination into bile; macrophage SR-BI can transport cholesterol bi-

directionally but is believed to unload or efflux excess peripheral cholesterol to HDL which 

can then go to the liver for completion of reverse cholesterol transport. Bottom, shows newly 

described novel functions of SR-BI in cancer growth and metastasis, hepatic uptake of 

pathogens and adipocyte differentiation and inflammation. High SR-BI expression in tumors 

potentially increases the ability to metastasize, but also provides an opportunity to 

selectively deliver anti-cancer drugs through packaging in recombinant HDL particles 

(bottom left). Hepatic SR-BI mediates the uptake of bacteria as well as viruses thereby 

contributing to the host response to infection (bottom middle). SR-BI fluxes cholesterol 

from and into adipocytes and thereby modulates the inflammatory state of adipose tissue 

(bottom right).
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