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Abstract

Objectives—Glucocorticoids such as dexamethasone have pleiotropic effects, including desired 

antileukemic, anti-inflammatory or immunosuppressive effects, and undesired metabolic or toxic 

effects. The most serious adverse effects of dexamethasone among patients with acute 

lymphoblastic leukemia (ALL) are osteonecrosis and thrombosis. To identify inherited genomic 

variation involved in these serious adverse effects, we performed genome-wide association studies 

(GWAS) by analyzing 14 pleiotropic glucocorticoid phenotypes in 391 patients with ALL.

Methods—We used the Projection Onto the Most Interesting Statistical Evidence (PROMISE) 

integrative analysis technique to identify genetic variants associated with pleiotropic 

dexamethasone phenotypes, stratifying for age, sex, race, and treatment, and compared results to 

conventional single-phenotype GWAS. The phenotypes were: osteonecrosis, central nervous 

system toxicity, hyperglycemia, hypokalemia, thrombosis, dexamethasone exposure, body mass 

index, decreased growth trajectory, and levels of cortisol, albumin, asparaginase antibodies, and 

change in cholesterol, triglycerides, and low density lipoproteins after dexamethasone.

Results—The integrative analysis identified more pleiotropic SNP variants (p = 1.46 × 10−215), 

and these variants were more likely to be in gene regulatory regions (p = 1.22×10−6), than 

traditional single-phenotype GWAS. The integrative analysis yielded genomic variants (rs2243057 

& rs6453253) in F2RL1, a receptor that functions in hemostasis, thrombosis, and inflammation, 

which were associated with pleiotropic effects, including osteonecrosis and thrombosis, and were 

in regulatory gene regions.

Conclusions—The integrative pleiotropic analysis identified risk variants for osteonecrosis and 

thrombosis not identified by single-phenotype analysis that may have importance for patients with 

underlying sensitivity to multiple dexamethasone adverse effects.
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Introduction

Glucocorticoids have been used for decades in the treatment of many diseases, including 

acute lymphoblastic leukemia (ALL). Dexamethasone has become the preferred 

glucocorticoid over prednisone due to its greater antileukemic efficacy [1–3]. However, at 

current doses, more toxicity is observed in ALL patients treated with dexamethasone than 

prednisone, including infections [3], osteonecrosis [4], myopathy [5, 6], and central nervous 

system (CNS) toxicity [7].

Osteonecrosis is one of the most common and serious toxicities associated with ALL 

therapy, with frequencies ranging from 1 – 25% depending on the clinical trial [4, 8–14]. 

Osteonecrosis is defined as bone death resulting from poor blood supply [15]. Risk of 

osteonecrosis has been associated with the intensity of the glucocorticoid exposure, type of 

glucocorticoid (dexamethasone > prednisone) [4], age, sex [16], race [14], asparaginase 

antibodies [17], and genetic polymorphisms [8, 18–21]. Additionally, our group 

demonstrated that the top single nucleotide polymorphisms (SNPs) associated with 

osteonecrosis were also associated with other dexamethasone-related phenotypes, including 

low serum albumin and high cholesterol levels,[8] and lack of allergy to asparaginase [21]. 

These findings suggest that a comprehensive analysis of genetic predisposition to pleiotropic 

glucocorticoid-induced adverse effects might improve the power to identify genetic variants 

associated with glucocorticoid-induced osteonecrosis and other adverse effects. Moreover, 

association of the same variants with multiple phenotypes, e.g. osteonecrosis in addition to 

other phenotypes, might suggest common pathways that underlie more than one 

glucocorticoid-induced phenotype.

Herein we have implemented a method to use prior pharmacologic knowledge to perform an 

integrated analysis of SNPs associated with pleiotropic glucocorticoid-induced biological 

and clinical endpoints [22–24], with particular emphasis on the clinically important 

phenotypes of osteonecrosis and thrombosis, both of which can necessitate substantial 

clinical interventions [25–29]. We compared the results of the pleiotropic analysis with those 

obtained with a single-phenotype genome-wide association study (GWAS) approach.

Materials & Methods

Patients

Informed consent was obtained from the parents or the patient, and assent from the patient, 

where appropriate, and the study was approved by the Institutional Review Board. Children 

with newly diagnosed ALL (n = 498) were enrolled on a frontline protocol, St. Jude Total 

XV (ClinicalTrials.gov ID NCT00137111) [29] (Supplemental Digital Content Figure 1). 

This cohort has been previously reported in single phenotype association studies [8, 30].
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Phenotypes

Patients were prospectively screened for osteonecrosis by MRI, as described previously [8]. 

Toxicities were prospectively graded using the National Cancer Institute Common 

Terminology Criteria for Adverse Events, Version 3.0 (Supplemental Digital Content Text, 

Supplemental Digital Content Table 1). We evaluated all reported adverse events and 

identified those that were likely at least partly due to glucocorticoids; these included 

osteonecrosis, CNS toxicity (not related to high-dose or intrathecal methotrexate), 

hyperglycemia, hypokalemia, and thrombosis. Because glucocorticoids are known to cause 

weight gain and decreased growth trajectory, [31–34] we used measures of height and 

weight (at least monthly per patient) to estimate body mass index (BMI) and the decrease in 

growth trajectory. In addition, each patient had serial blood samples collected on day 1 of 

week 7 and week 8 (after 7 continuous days of dexamethasone) of the continuation phase, 

for assessment of plasma dexamethasone pharmacokinetics, serum lipids, albumin and 

cortisol levels (See Supplemental Digital Content Text for details) [8, 17, 30]. We have 

previously shown an association of dexamethasone and asparaginase exposure on 

osteonecrosis [8, 17, 30], and thus we also analyzed the AUC of antibodies against Elspar 

(asparaginase) during the first 35 weeks of therapy. There were no other pharmacologic 

measures routinely available for these patients that were related to glucocorticoids or these 

likely glucocorticoid-induced adverse effects.

Body mass index (BMI) was calculated from height and weight at day 15 of the 

consolidation phase of therapy. Height was measured each week, and growth trajectory was 

calculated by using a linear fit of the change in height during the first twelve months of 

therapy for each subject. For each subject, the slope of the linear fit was used as the 

phenotype in the analysis.

Genotyping

Germline DNA was extracted from blood after remission was achieved. Genotypes were 

generated and calls made as described [35], using GeneChip Human Mapping 500K Array 

sets or the Genome-Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA), Infinium 

HumanExome BeadChip (Illumina, Inc, San Diego, CA), and using Illumina Golden Gate 

platform (SNP Center, Johns Hopkins University). SNPs were filtered for call rate >95% and 

minor allele frequency ≥1%.

Statistical analysis

Each SNP was tested for association with each phenotype in single-phenotype analyses by 

Spearman-type correlation, treating genotype as AA>AB>BB. The PROMISE approach 

uses data defining the biological inter-relationships of the phenotypes with one another. The 

PROMISE statistic for each SNP was calculated as a weighted sum of each correlation 

statistic for that SNP (Supplemental Digital Content Figure 2) [22, 23]. The signs and 

magnitudes of the linear combination coefficients were predetermined according to the 

relationships between pairs of phenotypes. The null distributions were approximated by 

4,000 permutations stratified by age (greater or less than median), sex (male vs female), risk 

group treatment arm (low vs standard/high risk) and ancestry group (white, black, other 

defined by SNP data as we have previously described) [21], for a total of 24 strata. For the 
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pleiotropic PROMISE analyses, we used 4 different analyses, described in detail in 

Supplemental Digital Content Text. Our primary analysis is termed PR14; PR14 placed 

greatest emphasis on osteonecrosis and thrombosis, which were weighted twice as heavily as 

the other phenotypes (1/7 vs 1/14) in order to prioritize these clinical phenotypes. In PR14, 

the three measurements of changes in lipid levels were each weighted one third of other 

phenotypes (1/42 vs 1/14), in order to reduce the chances of finding only lipid-related 

associations, and PR14 included dexamethasone AUC as one of the phenotypes of interest. 

The second PROMISE analysis, PR13, was identical but did not include dexamethasone 

AUC as one of the phenotypes of interest, given that dexamethasone can be considered as 

either a “biomarker” phenotype or a determinant of other phenotypes. The third PROMISE 

analysis, EW13, was identical to PR13 but used equal weights for all 13 phenotypes; the 

fourth PROMISE analysis, EW14, included all 14 phenotypes and all were equally 

weighted. A comparison of these four analyses is shown in Supplemental Digital Content 

Figure 3 and the SNPs identified by any of the four PROMISE analyses are included in 

Supplemental Digital Content Table 2. The similarity of SNPs identified by these four 

analyses led us to focus on the PR14 analysis throughout the remainder of the manuscript. 

The p-values for each single-phenotype association statistic and the linear combination of 

those statistics were determined by permutation of the assignment of phenotype data to 

genotype data. In this study, we used the hybrid-permutation algorithm [36] to compute p-

values.

The p value threshold for significance for each single-phenotype GWAS and for each 

pleiotropic PROMISE GWAS was determined by the profile information (Ip) criterion, 

which sets the p-value threshold that best balances false-positive and false-negative errors 

[36]. Supplemental Digital Content Table 3 contains all PR14 Ip-selected pleiotropic SNPs, 

as well as their associations with each individual phenotype. The Ip selection criteria was 

also used to generate lists of SNPs significant for each single-phenotype GWAS (shown for 

osteonecrosis, thrombosis, and CNS toxicity) in Supplemental Digital Content Tables 4 – 6. 

An R package that implements the PROMISE procedure is available from our website 

(http://stjuderesearch.org/site/depts/biostats/promise). A stratified Spearman-type rank-based 

association statistic was used to evaluate the association of each individual phenotype with 

the genotype of each SNP, as previously described [22, 23] (see Supplemental Digital 

Content Text for details). The individual phenotype association statistics were stratified by 

risk (standard and high vs. low), ancestry (black, white, other), gender (male/female), and 

age (<10, >10 years).

Results

We identified 14 clinical phenotypes likely related to glucocorticoid effects (Supplemental 

Digital Content Table 1), then tested the pairwise correlation between all combinations of 

the 14 phenotypes and found the expected associations (Figure 1). The phenotypes consisted 

of osteonecrosis, CNS toxicity, hyperglycemia, hypokalemia, thrombosis, plasma 

dexamethasone exposure, body mass index (BMI), serum cortisol level, albumin level, 

growth trajectory, asparaginase antibody exposure, and change in serum cholesterol, 

triglycerides, and low density lipoproteins during dexamethasone treatment. The strongest 

associations were found between changes in serum LDL and total cholesterol (p=4.9 × 
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10−61), albumin level and change in cholesterol (p=5.9 × 10−28), albumin level and 

dexamethasone AUC (p=6.3 × 10−25), and albumin level and change in LDL (p=2.3 × 10−24, 

Supplemental Digital Content Figure 4). Osteonecrosis was associated with the increase in 

serum cholesterol during dexamethasone treatment (p=0.0027), hyperglycemia (p=0.01) and 

thrombosis (p=0.03, Supplemental Digital Content Figure 4).

There was substantial variability in the distributions and frequencies of these phenotypes 

(Supplemental Digital Content Figure 5). Each SNP was tested for association with each 

phenotype in conventional single-phenotype GWAS, and the Projection onto the Most 

Interesting Statistical Evidence (PROMISE) technique [22, 23] was used to select SNPs 

associated with pleiotropic phenotypes, weighted toward finding SNPs associated with 

osteonecrosis and CNS toxicity (the two most clinically important phenotypes) in our main 

analysis, termed PR14 (see Materials and Methods). A total of 610 SNPs met the PROMISE 

information profile (Ip) p-value threshold of less than 7.3×10−4 in the PR14 analysis (Figure 

2, Supplemental Digital Content Table 3). Five of the top ten SNPs (Table 1) are on 

chromosome 12 near keratin genes, of these five, four were in linkage disequilibrium (LD) 

with SNPs in a glucocorticoid receptor binding site (rs830376, rs389523, rs112746594, 

r2≥0.8, Haploreg v4.1).

As expected, the top-ranked SNPs by PROMISE (PR14) included a greater number of 

pleiotropic SNPs than did the individual phenotype GWASs (Supplemental Digital Content 

Table 7, Supplemental Digital Content Figure 6). PROMISE (PR14) exhibited a greater 

power to identify pleiotropic SNPs according to the pleiotropic enrichment index (PLEI, see 

Supplemental Digital Content Text, Supplemental Digital Content Figure 7), which was 

3309.9, significantly exceeding the PLEI for all of the single-phenotype analyses, which 

ranged from 895.3 to 2506.3 (p = 1.46 × 10−215). For example, among the 5000 top ranked 

SNPs, PR14 identified 2,354 SNPs of pleiotropy degree 2 (SNPs associated with two or 

more phenotypes in single-phenotype GWASs), 621 SNPs of pleiotropy degree 3 (SNPs 

associated with three or more phenotypes in single-phenotype GWASs), 50 SNPs of 

pleiotropy degree 4 (SNPs associated with 4 or more phenotypes), and 7 SNPs of degree 5 

(SNPs associated with 5 or more phenotypes). At the same level of top 5000 SNPs, none of 

the single-phenotype GWASs identified more than 1,744 SNPs, 211 SNPs, 16 SNPs, or 1 

SNP of pleiotropy degrees 2, 3, 4, and 5, respectively (Supplemental Digital Content Table 

7). PROMISE (PR14) showed greater enrichment of SNPs predicted to be eQTLs 

(RegulomeDB [37] score of 1) than did single-phenotype GWAS for ON, thrombosis or 

CNS toxicity (p = 1.22 × 10−6 Figure 3).

We used the RegulomeDB score to prioritize the 610 PR14 SNPs selected by the Ip criterion. 

The top RegulomeDB score (1b) was annotated to a SNP downstream of F2RL1 
(rs6453253), which was nearby another PR14-selected SNP in the intron of F2RL1 with a 

score of 1f (rs2243057, Table 2). Both of these SNPs were in the regulatory regions 

indicated by H3K27 acetylation in osteoblast and HUVEC cell lines (Supplemental Digital 

Content Figure 8), which were the most relevant cell lines available for the osteonecrosis 

phenotype. One of the F2RL1 SNPs, rs6453253, was also in a glucocorticoid receptor 

(NR3C1) binding site (Supplemental Digital Content Figure 8). The A allele of rs2243057 

was associated with an increased risk of ON (p=0.0069, Figure 4A) and thrombosis (p=0.01, 
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Figure 4B), with lower albumin levels (p=0.04), and a greater increase in cholesterol 

(p=0.003) and triglycerides (p=0.0002) from week 7 to week 8 of continuation therapy 

(Figure 4C–F). The G allele of rs6453253 was also associated with increased risk of 

osteonecrosis (p=0.042), greater increase in cholesterol (p=0.01) and higher dexamethasone 

exposure (p=0.006). Both SNPs have high minor allele frequencies (MAF) of 48% in our 

patients and were in positive LD (R2= 0.84). Both F2RL1 SNPs were eQTLs for F2RL1 
expression in liver and whole blood, and for F2R, which encodes the receptor for thrombin 

in skeletal muscle (Supplemental Digital Content Figure 9) [38].

Another SNP highly ranked in the PR14 PROMISE analysis was rs10869729 in the 3′ UTR 

of PCSK5. This non-synonymous variant was associated with ON (p=0.003), lower albumin 

(p=0.003), decreased growth trajectory (p=0.0002), and hyperglycemia (p=0.02). Variants in 

this gene have previously been associated with many traits, including levels of LDL, 

cholesterol, and triglycerides [39], glucose tolerance in diabetics [40] and height [41–43].

An intriguing PR14 PROMISE variant (Supplemental Digital Content Table 3) associated 

with dexamethasone pharmacokinetics but not osteonecrosis was rs709063, near ZNF467 
and SSPO. The T allele was associated with six phenotypes with p<0.05: increased 

dexamethasone AUC (p=3.77×10−4), lower albumin (p=0.008), lower asparaginase antibody 

AUC (p=0.02), thrombosis (p=0.02), CNS toxicity (p=0.03), and hyperglycemia (p=0.03). 

The ZNF467 gene encodes a cofactor that promotes adipocyte differentiation and suppresses 

osteoblast differentiation [44], while the SSPO gene encodes a glycoprotein of the 

thrombospondin family secreted in the cerebrospinal fluid that interacts with LDL during 

brain development [45].

Using a single-phenotype GWAS with osteonecrosis as the primary phenotype, 645 SNPs 

were selected at the Ip threshold of p<6.4×10−4, 49 (7.6%) of which were also selected in 

the PR14 PROMISE analysis (Supplemental Digital Content Table 4). A single-phenotype 

GWAS for thrombosis revealed 794 SNPs that were selected at the Ip threshold of 

p<5.6×10−4, 11 (1.4%) of which were also selected in the PR14 PROMISE analysis 

(Supplemental Digital Content Table 5). There were 22 SNPs that reached the conventional 

GWAS p-value threshold of p<5×10−8. In a single-phenotype GWAS for CNS toxicity, there 

were 1146 SNPs selected with the information profile threshold p<5.5×10−4, none of which 

were selected in the PR14 PROMISE analysis (Supplemental Digital Content Table 6). This 

absence of overlap may be attributable to the fact that the PR14 PROMISE analysis is driven 

by multiple phenotypes that show relatively weak association of CNS toxicity (Figure 1). 

There were 38 SNPs that reached the conventional GWAS p-value threshold of p<5×10−8 for 

CNS toxicity. The top two SNPs were located in an intron of the RERE gene, which encodes 

a nuclear receptor expressed in the brain; deficiency of this gene in a mouse model leads to 

abnormal brain development [46].

Discussion

Pleiotropy, the effect of one variant on multiple traits, is commonly observed in complex 

diseases [47]. Cancer clinical trials, in which multiple related toxicity phenotypes are 

measured prospectively and genome-wide genetic analysis is performed, provide an 
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excellent opportunity to discover pleiotropic SNPs. Among several available methods for 

assessing pleiotropy [22, 23, 43, 48–52], we selected the PROMISE technique, which 

incorporates prior biological knowledge, to identify SNPs associated with pleiotropic 

adverse effects of dexamethasone.

Using PROMISE, we were able to discover a larger number of pleiotropic SNPs for 

glucocorticoid effects that were in regulatory regions than we could using traditional single-

phenotype GWAS. PROMISE leveraged information from multiple phenotypes that may be 

related to many proposed mechanisms of osteonecrosis, including intravascular thrombotic 

occlusion, marrow fat hypertrophy [53–55], osteocyte and/or endothelial cell apoptosis, 

hypercoagulability, arteriolar occlusion via arteriopathy [56], and vasoconstriction of 

specific arteries and arterioles supplying bone [57]. Dexamethasone may contribute to 

osteonecrosis via its effects on lipids, coagulation, fibrinolysis, and direct toxic effects on 

vasculature and bone [58, 59]. It should be noted that correlations between some of these 

putatively related phenotypes have been observed previously [60, 61]. By accounting for 

pleiotropic effects, we have enhanced the probability of selecting for variants that exert their 

effect via common mechanisms, such as via glucocorticoid-responsive transcriptional 

machinery or via systemic pharmacokinetics of dexamethasone, and might be expected to 

impact on multiple downstream clinical phenotypes. In contrast, we acknowledge that not all 

adverse effects of glucocorticoids are expected to occur via common mechanisms, and the 

PROMISE approach may be less able to detect such non-pleiotropic adverse drug effects 

than do single-phenotype GWAS approaches. The fact that single-phenotype GWAS for 

CNS toxicity resulted in many SNPs that had genome-wide significance, with no overlap 

with PR14 PROMISE SNPs, suggest that common mechanisms are less likely to underlie 

CNS toxicity and other dexamethasone-related adverse effects. We weighted the phenotypes 

in the PR14 PROMISE analysis in order to prioritize our biological question of interest (i.e. 

to find genetic variants that underlie the risk of glucocorticoid adverse effects). Our choice 

of weights influenced the SNPs identified, as expected, but there was high concordance 

between the weighted (PR14) and unweighted (EW14) analysis (Supplemental Digital 

Content Figure 3 and Supplemental Digital Content Table 2). Thus, our primary reported 

results (PR14) are relatively robust against modifications (PR13, EW13, and EW14) of the 

PROMISE analysis

Use of the PROMISE technique enabled us to discover variants more likely to have 

biological function than SNPs identified by single phenotype GWASs (Figure 3). It has been 

demonstrated that GWAS hits for biomedical phenotypes are enriched within regulatory 

regions [62, 63]. Lower RegulomeDB scores indicate that a SNP is in a regulatory region, 

such as a DNAse hypersensitivity site, transcription factor binding site, promoter region, or 

is an expression quantitative trait locus (eQTL) [37]. SNPs associated with complex traits 

and pharmacologic phenotypes are more likely to be eQTLs than allele frequency-matched 

SNPs [64].

The variants identified by PROMISE (PR14) in or near F2RL1 may be tissue-specific 

eQTLs for both F2RL1 (PAR2) expression and F2R (PAR1) expression. PAR1 is activated 

by thrombin, and when thrombin binds the receptor on platelets, it stimulates clot formation. 

PAR2 is activated by trypsin and trypsinogen, and when activated, has proliferative and 
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angiogenic effects on endothelial cells, which are key players in the arteriopathy that can 

initiate glucocorticoid-induced osteonecrosis in mice [56]. F2RL1 (PAR2) is expressed in 

bone, and F2rl1−/− mice have reduced repair in response to bone biopsy [65]. In a meta-

analysis for platelet count that included more than 44,000 individuals, a SNP in the region 

between the F2RL1 and F2R genes was among the top-ranked SNPs (rs17568628, 

p=9.61×10−10) [66]; this low-frequency SNP (MAF 2.8%) was not associated with 

osteonecrosis or thrombosis in our cohort, but was associated with lower cortisol (p=0.007) 

and albumin levels (p=0.04).

We acknowledge several limitations of our study. First, there is a lack of a similarly 

characterized clinical trial cohort elsewhere, thus we lack an external replication group. 

Secondly, there may be contributions of other medications that the ALL patients receive 

during treatment to the phenotypes we attribute to dexamethasone. We have attempted to 

minimize this limitation by including the asparaginase exposure and restricting our analysis 

to toxicities that are most likely associated with dexamethasone exposure (i.e., we excluded 

CNS toxicities likely due to methotrexate). Finally, there is currently no method to compute 

the power of the PROMISE procedure, thus we have not included a power calculation for the 

technique.

In summary, we identified SNPs associated with the pleiotropic effects of dexamethasone 

that were enriched for regulatory regions of the genome. These variants may be of 

importance for identifying patients with underlying sensitivity to dexamethasone-induced 

effects prior to treatment.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Circos plot of pleiotropic phenotypes. Connections shown between two phenotypes have a 

Spearman rank correlation p<0.2. The width of the connection corresponds to the −log10(p-

value) for the correlation, which is represented by numbers around the circle. The segment is 

faded if the correlation is inverse (e.g. higher dexamethasone AUC with lower albumin). 

ON, osteonecrosis. CNS, central nervous system. Growth, decreased growth trajectory. BMI, 

body mass index. Asp Ab AUC, asparaginase antibody area under the curve. LDL, low 

density lipoproteins. Dex AUC, dexamethasone area under the curve. Detailed descriptions 

of the phenotypes are included in the Materials and Methods and in Supplemental Digital 

Content Figure 5.
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Figure 2. 
Heat map of 610 PROMISE SNPs (with p<7.3×10−4), selected as significant in the PR14 

analysis (see Materials and Methods for details). Each row is a SNP (n=610) and each 

column is a phenotype. Associations of SNP variants with the indicated phenotype with 

p<0.05 are shown in color, with red indicating an effect size of less than one and blue 

indicating an effect size greater than one. SNPs with similar associations across phenotypes 

are clustered by the dendogram at left. Yellow line indicates separation of negative 

associations (bottom) and positive associations (top). PROMISE (Projection onto the Most 

Interesting Statistical Evidence) statistic. ON, osteonecrosis. CNS, central nervous system 

toxicity. Growth, decreased growth trajectory. BMI, body mass index. Asp Ab AUC, 

asparaginase antibody area under the curve. LDL, concentration of low density lipoproteins 

in serum. Dex AUC, plasma dexamethasone area under the curve (week 7). See 

Supplemental Digital Content Table 1, Supplemental Digital Content Figure 5, and the 

Materials and Methods section for more details on each phenotype.
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Figure 3. 
PROMISE identified more SNPs with a RegulomeDB score of 1 than single phenotype 

analyses (p = 1.22 × 10−6). Results shown for PR14 (see Methods for details). Cumulative 

number of SNPs with a RegulomeDB score of 1 for each analysis (PROMISE, red; ON, 

blue; thrombosis, pink; CNS toxicity, yellow. See Supplemental Digital Content Text for 

statistical details.
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Figure 4. 
The A allele of F2RL1 rs2243057 is associated with pleotropic phenotypic effects 

phenotypes. A, Cumulative incidence of osteonecrosis (ON) plotted by rs2243057 genotype. 

B, Percentage of patients with thrombosis by rs2243057 genotype. Numbers above the 

column indicate cases over total number of patients with the indicated genotype. C, Change 

in serum triglycerides (TG) from week 7 to week 8 by rs2243057 genotype. D, Change in 

serum cholesterol (Chol) from week 7 to week 8 by rs2243057 genotype. E, Week 7 serum 

albumin by rs2243057 genotype in low risk patients. F, Week 7 serum albumin by 

rs2243057 genotype in standard/high risk (Std/high) patients. Mean is indicated by dark 

horizontal line, whiskers indicate 95% confidence interval, squares indicate raw data.
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