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Summary

Introduction—Neuroprotective therapeutics are needed to treat glaucoma, an optic neuropathy 

that results in death of retinal ganglion cells (RGCs).

Areas covered—The BDNF/TrkB pathway is important for RGC survival. Temporal and spatial 

alterations in the BDNF/TrkB pathway occur in development and in response to acute optic nerve 

injury and to glaucoma. In animal models, BDNF supplementation is successful at slowing RGC 

death after acute optic nerve injury and in glaucoma, however, the BDNF/TrkB signaling is not the 

only pathway supporting long term RGC survival.

Expert Commentary—Much remains to be discovered about the interaction between 

retrograde, anterograde, and retinal BDNF/TrkB signaling pathways in both neurons and glia. An 

ideal therapeutic agent for glaucoma likely has several modes of action that target multiple 

mechanisms of neurodegeneration including the BDNF/TrkB pathway.
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1.0 Glaucoma an optic neuropathy

Glaucoma is a progressive optic neuropathy that causes irreversible blindness and affects 

people throughout the world. Glaucoma is currently the second leading cause of blindness 

after cataracts, and the number of people afflicted with this disease is expected to rise to 79.6 

million worldwide by 2020 [1,2]. Clinically, diagnosis of glaucomatous optic neuropathy is 

determined by the presence of both structural damage to the optic nerve and visual 

dysfunction [3,4]. These structural and functional changes are caused by the death of retinal 

ganglion cells (RGCs) and loss of their axons in the optic nerve [4]. RGCs are the final 

output neurons that collect visual input from the retina and transmit this information to the 

brain via action potentials along RGC axons [5]. RGC axons leave the retina and converge at 

the optic nerve head (ONH) where they pass out of the eye leaving a small depression as 

they form the optic nerve (ON). Loss of RGC axons combined with connective tissue 

alterations result in a widening and deepening of this depression that is characteristic of 

glaucoma [3,4].

Glaucoma is classified into two main types determined by the anatomy of the angle where 

the iris meets the cornea. Primary open angle glaucoma (POAG) is the most common 

occurring in 74% of the cases while primary closed angle glaucoma (PCAG) occurs less 

frequently [4]. Risk factors for glaucoma include elevated IOP, advancing age, non-

Caucasian ethnicity, and a family history of glaucoma [6]. Although elevated IOP is the 

most significant risk factor for all types of glaucoma, elevated IOP does not always occur in 

glaucoma nor does lowering IOP always slow the progression of this disease [7–9]. 

Unfortunately, existing treatments for glaucoma are limited to eye drops, laser treatments, 

and surgical approaches designed to lower IOP [10]. Thus, a huge need exists for the 

development of neuroprotective therapeutics that will stop glaucomatous optic nerve 

degeneration, thereby preserving sight for millions of people.

A common characteristic of the molecular pathways implicated in glaucoma is that they lead 

to RGC death [11–14]. Many informative reviews have been published on mechanisms 

contributing to RGC apoptosis in glaucoma including mitochondrial dysfunction [15] and 

oxidative stress [16], endoplasmic reticulum (ER) stress and the unfolded protein response 

[17], neurotrophin deficits [11,18,19], excitotoxicity [20], ischemia [21], inflammation and 

glial activation [22,23]. Each of these pathways is a potential therapeutic target; however, 

our group has a keen interest in the role of brain derived neurotrophic factor (BDNF) and its 

cognate receptor tropomyosin-related kinase B (TrkB) in glaucoma.

In the present work, we review the relationship between the BDNF/TrkB pathway and RGC 

survival in the developing, healthy, and glaucomatous retina. A common theme emerges of 

temporal and spatial alterations in the BDNF/TrkB pathway throughout the visual system in 

response to RGC injury. Great strides have been made in identifying the critical role that the 

BDNF/TrkB signaling pathway plays in RGC survival in development and after optic nerve 

injury. Despite these advances, significant gaps of knowledge exist in our understanding of 

the molecular mechanisms that regulate the BDNF/TrkB pathway in the healthy versus 

glaucomatous retina. Understanding these mechanisms is difficult because the actions of the 
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BDNF/TrkB signaling pathway extend across multiple compartments of the visual system. 

In addition, much remains to be learned about the differential role of the BDNF/TrkB 

pathway in neurons versus glia. Future studies to better understand the function of the 

BDNF/TrkB pathway in the healthy versus diseased visual system will yield new insights 

that are essential for the development of novel therapeutic strategies to treat glaucoma.

2.0 BDNF and its receptors

BDNF is a neurotrophin that functions both within and without the central nervous system 

where it regulates survival, development, function, and plasticity [24]. The neurotrophin 

family of proteins includes four mammalian neurotrophins: nerve growth factor (NGF), 

BDNF, neurotrophin-3 (NT-3), and neurotrophin 4/5 (NT-4/5) [25–29]. The discovery of the 

first neurotrophin, NGF, by Rita Levi-Montalcini in the early 1950’s was followed by 

identification of a second neurotrophin, BDNF, by Barde in 1982 [26,30]. BDNF structure 

and function follow a pattern similar to NGF. BDNF is synthesized as a precursor protein 

(~30–35 kD) that is proteolytically cleaved and processed to form mature BDNF (~14 kD) 

[31–33]. Proneurotrophins can either be cleaved intracellularly in the ER and Golgi by furin 

and proconvertases to form mature neurotrophin, or proneurotrophins can be secreted and 

cleaved extracellularly by plasmin and specific matrixmetaloproteases (MMPs) [34,35]. In 

their native state, both proBDNF and mature BDNF ligands exist as noncovalent 

homodimers [32]. Whether a cell secretes proBDNF, BDNF, or both varies with tissue, cell 

type, and culture conditions [36–38].

Neurotrophins interact with two main types of receptors: the Trk receptor tyrosine kinases 

and the p75 neurotrophin receptor (p75NTR) [25,39–41]. Each neurotrophin binds to specific 

Trk receptors: NGF with TrkA [42], BDNF and NT-4/5 with TrkB [43,44], and NT-3 mainly 

with TrkC [45]. In the CNS, neuronal activity increases the localization of TrkB to the cell 

surface where it can bind with BDNF [46,47]. Upon BDNF binding, TrkB dimerizes and 

autophosphorylates which activates tyrosine kinases that initiate signaling cascades. BDNF/

TrkB signaling provides trophic support and modulation of dendrites and synapse formation 

through three main pathways; mitogen-activated protein kinases (MAPK), 

phosphatidylinositol 3-kinase (PI3K), and phospholipase C-ɣ (PLC-ɣ) [40,48]. The second 

BDNF receptor, p75NTR, has a much different function than TrkB. The p75NTR in 

association with Trk receptors enhances Trk receptor affinity for mature neurotrophin [49–

51]. Alternatively, p75NTR can bind each of the neurotrophins directly, especially 

proneurotrophins [52,53]. The p75NTR does not have an intracellular kinase domain. Instead 

p75NTR, which can form dimers, signals through a combination of proteolytic events and 

association of effector molecules with its cytoplasmic tail [41,54,55]. Although the 

proNGF/p75NTR pathway is well-known for initiating apoptosis, proBDNF activation of 

p75NTR can also cause apoptosis as well as inhibit neurite growth and spine formation 

(Figure 1) [34,36,56].

The modulation of the BDNF/TrkB signaling pathway is complicated by the presence of 

TrkB splice variants expressed throughout the CNS. Three of the most common TrkB splice 

variants that are expressed within the CNS are T1, T2, and T-Shc [57–60]. TrkB splice 

variants have a normal extracellular domain that binds BDNF but lack the intracellular 
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kinase domain [57–59]. Even though truncated TrkB is found abundantly in glia, it can also 

co-localize with full length TrkB in neurons [59,61–63]. Truncated TrkB can modulate full 

length TrkB signaling by inhibiting the movement of full length TrkB to the cell surface thus 

reducing availability of full length receptor to bind with BDNF [64]. Truncated TrkB can 

also act as a dominant negative receptor, forming a heterodimer with full length TrkB to 

prevent autophosphorylation and kinase activation of TrkB [65–68]. In addition, in non-

neuronal cells, truncated TrkB can rapidly bind and internalize BDNF thereby preventing 

BDNF from diffusing away to adjacent cells or tissues [69]. Findings suggest that truncated 

TrkB may also have its own signaling functions independent of full length TrkB [70].

3.0 BDNF/TrkB in developing retina

Understanding the role of the BDNF/TrkB pathway in retinal development provides insights 

as to why the BDNF/TrkB pathway is important in the pathogenesis of glaucoma. RGCs are 

the only retinal neurons that extend their axons through the optic nerve to the brain 

(reviewed by Xiang, et. al., 1996 [5])Although RGC development and synapse formation is 

similar among vertebrates, much of our knowledge comes from studies in rodents, chicks, 

and tadpoles (Xenopus) [71]. One important difference between higher mammals such as 

primates and these experimental species is the distribution of RGC axon projections. In 

higher mammals the majority of RGC projections synapse in the lateral geniculate nucleus 

(LGN) with fewer axons extending to the superior colliculus (SC) [72,73]. In rodents, 

however, the majority of RGCs project to the SC [74], and in frogs and chicks RGCs project 

to the optic tectum, a brain region similar to superior colliculus in mammals [75,76]. During 

retinal development, RGCs are initially overproduced then undergo programmed cell death 

that coincides with successful formation of synapses [77–82].

In development, innervation of RGCs correlates with the spatial and temporal expression of 

BDNF in the visual system [83–85]. For example, in hamster, RGCs start populating the 

retina at embryological day 10 (E10), extend axons through the optic nerve, and arrive at the 

SC by E13, a time when BDNF protein levels are very low in both retina and SC [83,86,87]. 

BDNF levels rise in the SC (E14 to P4) as RGCs form side branches and BDNF remains 

high through P15 when arborization nears completion [83]. In the retina, BDNF levels do 

not rise until P12 to P18 when RGC axon arbors in the SC mature [83]. During the period of 

RGC death and synapse formation, BDNF expression is activity dependent [88]. At this 

time, both BDNF and TrkB mRNA and protein are expressed in retina and SC with strong 

BDNF and TrkB expression in RGC target areas. [83–85,89–94]. Whether BDNF/TrkB 

support of RGC survival during development is a result of retrograde, anterograde, or retinal 

sources of BDNF is a question that continues into adulthood.

Retrograde transport of target-derived BDNF in RGC survival and synapse formation is 

important during development. This paradigm is similar to the peripheral nervous system 

(PNS), where target derived BDNF is essential for the survival of select groups of neurons 

[95–97]. In the rodent visual system, BDNF injected into the SC decreases the rate of RGC 

developmental death in a manner that is consistent with retrograde transport of target-

derived BDNF [98–100]. In contrast, BDNF and TrkB deficits increase the rate of RGC 

developmental death [101,102]. Despite BDNF/TrkB influence on the rate of RGC death, 
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both BDNF null mice and TrkB null mice have normal numbers of RGCs in the mature 

retina [101–103]. BDNF/TrkB signaling also has a critical role in formation of RGC target 

connections. In postnatal rats, overexpression of BDNF in the SC results in more RGC 

projections to the ipsilateral colliculus [104]. In addition, BDNF supplementation to the 

optic tectum increases the complexity of RGC arbors in developing Xenopus and chick 

[105–108]. The ability of BDNF to undergo retrograde transport from SC to RGCs 

continues into adulthood and has significant implications during the pathogenesis of 

glaucoma [109–111].

BDNF also undergoes anterograde transport from RGCs to the brain during visual system 

development. In developing chick and postnatal rats, intraocular injection of BDNF results 

in anterograde transport of BDNF from RGCs in the retina to the optic tectum and superior 

colliculus, respectively [112,113]. In rats, anterograde transport of BDNF increases survival 

of post synaptic neurons in the SC and LGN and depletion of endogenous BDNF decreases 

survival of these post synaptic neurons [113,114]. In addition, depletion of retinal BDNF 

causes RGC axons to retract from the dorsal LGN but only during development [115]. 

Conflicting reports exist as to whether retinal Trk receptors are required to mediate this 

anterograde transport [114–116]. The ability of RGCs to deliver BDNF to the SC by 

anterograde transport also continues into adulthood [116,117].

Endogenous production of BDNF in the retina is also important for RGC survival during 

development [77,100]. In vitro studies show that RGC survival is enhanced by BDNF 

produced by RGCs suggesting a role for both autocrine and paracrine BDNF/TrkB signaling 

in the retina [89]. Supplementation of purified RGC cultures with BDNF increases RGC 

survival most robustly when RGC age corresponds to the developmental time point when 

target innervation occurs [118,119]. BDNF also increases survival of RGCs and neurite 

formation in embryonic and adult retinal explants [120–122]. The important relationship 

between BDNF and neuronal activity with RGC survival is demonstrated in cultures from 

older postnatal rats (P8) in which BDNF only enhances survival when accompanied by 

cAMP activation [123]. The cAMP elevation, which is associated with neuron 

depolarization, increases TrkB levels at the RGC surface [46]. Thus, cAMP induced 

sensitivity of RGCs to BDNF correlates with increased availability of TrkB to bind with 

BDNF at the cell surface [46]. Combining a TrkB agonist with forskolin, which elevates 

cAMP levels, enhances the increased survival of RGCs in culture [124]. The association 

between electrical activity and enhanced responsiveness of RGCs to BDNF has important 

implications for glaucoma, where injured RGCs may be less active hence less responsive to 

BDNF then their healthy counterparts.

Much remains to be discovered about the interplay between retrograde, anterograde, and 

retinal BDNF/TrkB signaling pathways. An elegant series of studies in Xenopus show that 

during RGC development, BDNF differentially modulates RGC architecture in the retina 

and optic tectum depending upon the location and source of BDNF. Intraocular injection of 

exogenous BDNF decreases the complexity of RGC dendritic arbors but has no effect on 

arborization of RGC axonal projections. In contrast, tectal-derived BDNF increases the 

arborization of both RGC axons in the optic tectum and RGC dendrites in the retina. Thus, 
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BDNF can differentially modulate arbor formation of RGCs depending on the location and 

source of BDNF [105–107].

4.0 BDNF/TrkB in acute optic nerve injury

The importance of the BDNF/TrkB pathway in RGC development continues into adulthood, 

especially in response to optic nerve injury. In mature rodent retina, as in development, both 

BDNF and TrkB protein and mRNA are expressed in RGC and glia in the inner retina and in 

regions where RGC axons project in the brain [90,117,125–127]. Early studies of optic 

nerve injury utilized acute models such as axotomy and optic nerve crush After axotomy in 

rats and mice, 50–65% of RGCs die after one week, and 90% of RGCs die by 2 weeks post 

injury [128–130]. Similar to development, cell death after axotomy occurs by apoptosis as 

demonstrated by DNA fragmentation and caspase-3 expression in RGCs after axotomy 

[130,131]. Transient changes in BDNF/TrkB expression occur in response to optic nerve 

injury, however, differences in the severity of the insultmake comparisons between optic 

nerve crush and axatomy difficult. In rodent retinas, several studies show a BDNF gene and 

protein expression increase 2–5 days post injury followed by decline to control levels by 7 

days post injury [132–134]. Although occasional studies do not report a decrease in BDNF 

expression after acute nerve injury, this may be attributable to differences in the severity of 

the insult [135]. In rodent retina, TrkB gene expression decreases starting at 3 days post 

axotomy [135,136]. TrkB deficits and ganglion cell loss are greater after optic nerve crush in 

mice lacking glial TrkB indicating that TrkB in glial cells plays a neuroprotective role after 

acute nerve injury [135]. Interestingly, in rats four weeks after axotomy, a high percentage of 

the few remaining RGCs are strongly TrkB positive [137]. In the SC of mice, transient 

increases in BDNF and TrkB have been reported in mice starting 6 hours after optic nerve 

crush which is earlier than in retina [133]. Overall, a general pattern emerges of an early 

increase in BDNF expression in response to injury followed by rapid RGC death 

accompanied by decreases in BDNF and TrkB expression. The pattern of BDNF and TrkB 

expression after acute optic nerve injury is similar to development in that the BDNF/TrkB 

response has spatio and temporal components closely associated with RGC survival. 

Alterations in the BDNF/TrkB signaling pathway appear to be an endogenous response of 

the retina to injury.

Numerous studies show that supplementation of the BDNF/TrkB pathway improves survival 

after acute optic nerve injury. In rats, BDNF exerts a strong protective effect compared to 

other neurotrophins [138–140]. In both rats and mice, even a single injection of BDNF 

significantly reduces RGC death from acute optic nerve injury [130,141,142]. In mice after 

axotomy, BDNF-mediated reduction in RGC death is accompanied by increased gene 

expression of the RGC markers Thy-1 and light neurofilament protein (NF-L), a major 

component of the RGC axons in the nerve fiber layer [143]. Interestingly, axotomy induced 

increases in GFAP, a marker of glial activation, were not reduced by BDNF treatment[143]. 

In cats and rats, prolonged delivery using multiple BDNF injections or virus mediated 

BDNF overexpression provide even greater neuroprotection, delaying RGC death for up to 6 

weeks [141,144–147]. In cats, combined BDNF supplementation to both eye and visual 

cortex results in more RGC survival than supplementation to the eye alone [148]. In rats, 

BDNF supplementation in acute nerve injury is also accompanied by increased axonal 
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sprouting and branch length, however, BDNF does not stimulate regeneration of RGC axons 

into peripheral nerve grafts or the optic nerve [141,147]. In rats, TrkB gene transfer before 

axotomy also improves RGC survival, an effect that is amplified by a single intravitreal 

injection of BDNF [136]. In rats, intravitreal injections of TrkB agonists also increase RGC 

survival after axotomy [124,149]. The synergistic action of BDNF with TrkB overexpression 

underscores the need for both BDNF and TrkB to support RGC survival. Although 

supplementation of BDNF and TrkB after acute optic nerve injury significantly slows the 

rate of RGC death, BDNF and TrkB supplementation alone does not sustain long term 

survival. The finding that BDNF and TrkB are not the only requirements for prolonged RGC 

survival is not surprising. Optic nerve crush and axotomy are extreme injuries and RGCs 

require a complex set of nutritional requirements when maintained in purified cultures, in 
vitro [46,123].

One interesting observation from studies of acute optic nerve injury is that BDNF 

supplementation interacts with other factors such as the activation of microglial cells. 

Microglia play a central role in the CNS response to injury [150]. Whether microglia can 

secrete BDNF in response to optic nerve injury is unknown, however, activated microglia 

secrete BDNF in vitro and murine microglial BDNF is needed in the brain for TrkB 

phosphorylation, which is a mediator of synaptic plasticity [151,152]. In response to 

axotomy, dual effects of microglia activation in conjunction with BDNF supplementation 

have been reported. On one hand, in rats BDNF supplementation delays microglial 

activation after axotomy [153] and inhibition of microglial cells by treatment with a 

microglia suppressing factor enhances RGC viability and axon regeneration [154]. Whether 

this delay in microglial activation is a cause or effect of delayed RGC death is an area of 

ongoing study [155]. On the other hand, in rats, supplementation with BDNF after axotomy 

increases activity of nitric oxide synthase (NOS) and activates microglial cells [156,157]. 

Combined treatment of BDNF with a free radical scavenger or NOS inhibitor, increases 

BDNF mediated RGC survival after axotomy [156]. Another interesting finding is that in 

rats, lens injury in conjunction with axotomy protects RGCs and enhances outgrowth of 

RGC axons into the distal nerve [141,158–160]. This response is macrophage dependent and 

BDNF independent [159,160]. When BDNF is administered with lens injury and axotomy, 

an additive increase in RGC survival is observed, however, axon regeneration is absent 

[158]. The interplay between BDNF and microglia or macrophages is important in the 

pathogenesis of glaucoma where the final therapeutic goal is not only to prevent RGC death 

but to regenerate axons and restore visual function.

5.0 BDNF/TrkB in glaucoma

Although much is learned from acute models of optic nerve injury, development of more 

realistic glaucoma models has provided better systems with which to investigate the BDNF/

TrkB pathway. A variety of rodent ocular hypertension models are available for modeling 

glaucoma (for reviews see [161,162]). Methods to raise intraocular pressure include 

restricting aqueous outflow by damaging venous drainage from the anterior chamber or by 

blocking the access of aqueous humor to the trabecular meshwork with microbeads. A 

variety of genetic mouse models are also available including the DBA2J mouse which 

develops ocular hypertension and glaucoma with age [163–165]. Compared to acute injury 
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models, glaucoma models have a slower rate of RGC apoptosis that is accompanied by 

damage to the optic nerve head [131]. The optic nerve head in both humans and animal 

models is susceptible to stress caused by ocular hypertension. As nerve fibers exit the eye at 

the ONH, they pass through the mesh-like lamina cribrosa that is stretched or displaced in 

response to changes in intraocular pressure. One cause of axonal damage in glaucoma is 

thought to be due to pinching of nerve fibers and blood vessels as they pass through the 

pores of the lamina cribrosa (reviewed in [166]).

Glaucoma induced changes in BDNF and TrkB function and expression are especially 

evident at the ONH. Immunohistochemical (IHC) analyses show that in healthy primate and 

rat eyes, BDNF and TrkB expression is relatively uniform throughout nerve bundles and 

connective tissue of the ONH [110,167]. In the ONH of glaucomatous primates, however, 

many nerve bundles have degenerated leaving accumulations of BDNF and TrkB in 

remaining bundles as well as in astrocytic fibers [110]. In rats, IHC analysis of BDNF 

expression at the ONH shows a sharp decrease in BDNF signal 7 days post onset of ocular 

hypertension but a week later astrocytic fibers display robust BDNF signal. Whether total 

BDNF/TrkB protein levels are altered or just redistributed in this region is hard to accurately 

access by IHC. Western blot analysis of human post mortem ONH tissue from glaucomatous 

eyes shows a decrease in BDNF and phosphorylated TrkB expression at the ONH that is also 

seen in the ONH of mice, 8 weeks post onset of ocular hypertension in a microbead model 

of glaucoma [168]. These observations are consistent with in vitro studies in which TrkB 

and phophorylated TrkB are reduced in lamina cribrosa and ONH astrocyte cultures after 

oxygen glucose deprivation [169]. Although BDNF expression in these cultures varies 

depending on BDNF isoform and cell type, secretion of BDNF is reduced [169]. These 

results highlight some of the difficulties in teasing apart the complex role of BDNF/TrkB 

signaling in neuronal, glial, and cribrosal elements of the ONH.

One important factor disrupting normal physiology and expression of BDNF and TrkB in the 

visual system is glaucoma-induced axon dysfunction. Acute increases and decreases in IOP 

disrupt anterograde and retrograde transport through axons of the optic nerve [170–172]. 

Ocular hypertension, mechanically compresses axon bundles anterior to the lamina cribrosa 

and causes axons posterior to the lamina cribrosa to dilate and fill with vesicles [110,170–

172]. In acute ocular hypertension, BDNF transport from SC to retina is reduced and both 

BDNF and TrkB accumulate posterior to the ONH [110,111]. More recent studies utilizing 

the DBA/2J mice show that axon dysfunction and degeneration occurs before RGC loss 

[173–175]. How these axonal changes specifically impact RGCs and BDNF/TrkB signaling 

pathways throughout the visual pathway is an area of ongoing study. Another factor 

influencing axonal transport in the region of the lamina cribrosa is low cerebral spinal fluid 

(CSF) pressure. An analysis of patient data shows that low CSF pressure is correlated with 

normal tension glaucoma [176,177]. Low CSF pressure with normal IOP creates a trans 

lamina cribrosa pressure gradient similar to the pressure gradiant caused by ocular 

hypertension. A short term reduction of CSF pressure in rats causes a reduction in both 

anterograde and retrograde transport but whether lowered CSF hinders transport of BDNF 

from the superior colliculus to the retina has not been determined [178].
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In retina, similar to the ONH, the duration and severity of glaucomatous insult influence the 

temporal and spatial expression of BDNF and TrkB. BDNF is expressed in inner layers of 

the healthy retina, especially the ganglion cell layer where it co-localizes with TrkB in RGCs 

[167,179]. TrkB expression in the inner retina extends throughout the NFL, GCL, and IPL 

with robust in signal in RGC axons [60,110,179]. In glaucomatous monkey retinas and 

hypertensive rats, IHC analyses show an overall reduction in BDNF signal with focal 

accumulations of BDNF and TrkB in the IPL. TrkB is also concentrated in the GCL 

[110,167]. The temporal nature of the BDNF/TrkB response to ocular hypertension 

combined with variation in glaucoma models make comparisons between studies difficult. In 

one set of studies, BDNF gene and protein expression is increased in retinas 4 weeks after 

episcleral vein cauterization in Wistar rats [180]. In contrast, Guo and colleagues show a 

general decline in BDNF gene expression that tends to correspond with increasing optic 

nerve damage when assayed at 5 weeks after induction of ocular hypertension in Brown 

Norway rats [181]. Although this trend was not statistically significant, other investigators 

have reported a significant decrease in BDNF gene and protein expression in mouse retina 8 

weeks after induction of ocular hypertension using microbeads and laser photocoagulation 

[168,182]. Interestingly, in Guo’s work, proBDNF protein significantly decreases with the 

grade of optic nerve injury. Less data is available on variation of TrkB expression with 

ocular hypertension. Although TrkB gene expression is reduced in retinas with more severe 

optic nerve injury, TrkB and pTrkB protein levels are unchanged 4–5 weeks after induction 

of ocular hypertension [180,181].

The importance of BDNF and TrkB deficits in the pathology of optic neuropathies is 

demonstrated in mice lacking one or both BDNF or TrkB allels. Although BDNF (−/−) null 

mice have normal numbers of RGCs in the mature retina, their axons are hypomyelinated 

and mice are not viable beyond three weeks of age [102]. Young heterozygous BDNF (+/−) 

mice have normal RGC numbers and axon myelination, yet they are more sensitive to ocular 

hypertension with increased visual dysfunction and loss of cells in the GCLs then wild type 

counterparts. By 1 year of age BDNF (+/−) mice show signs of age-related optic neuropathy. 

Similar to BDNF deficient mice, TrkB (−/−) null mice have normal RGC numbers with 

reduced myelination but are not viable after P16 [103]. TrkB (+/−) mice express 25% of 

normal TrkB and lose 20% of their RGCs by 3 months of age [103]. Thus, although BDNF 

and TrkB signaling does not determine the final number of RGCs populating the retina at the 

end of development, these proteins are essential to prevent RGC degeneration in adult 

animals.

6.0 BDNF/TrkB : Therapeutic implications

The majority of studies testing BDNF therapies in animal models of glaucoma have shown 

that BDNF supplementation is successful at slowing the progression of RGC degeneration. 

In rats, multiple intraocular injections of BDNF at weekly intervals significantly increase 

survival of RGCs by roughly 10% after 33 days of ocular hypertension [183]. In a more 

acute lasar photocoagulation model of ocular hypertension in rats, a single BDNF injection 

improves survival but not axonal transport for the majority of RGCs [184]. Interestingly, 

although BDNF treatment protects the Brn3a positive RGCs, it fails to protect the 

intrinsically photosensitive ganglion cells, which account for a small fraction (2.5%) of the 

Mysona et al. Page 9

Expert Rev Ophthalmol. Author manuscript; available in PMC 2018 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



RGC population [184,185]. In lieu of multiple intraocular injections, which are not well 

tolerated in the small rodent eye, topical administration of BDNF in eye drops or BDNF 

gene therapy are less invasive approaches. Topical application of BDNF in the form of eye 

drops rescued visual function and increased numbers of Brn3a positive ganglion cells in 7 

month old DBA/2J mice [186]. Although several studies have demonstrated that 

neurotrophins such as NGF and BDNF can be delivered to the retina and ON via eye drops, 

the effectiveness of this mode of neurotrophin delivery is still being validated [187]. Another 

strategy of BDNF delivery is to use gene therapy with adeno-associated virus (AAV) 

mediated BDNF overexpression systems to stimulate long term production of BDNF within 

the retina. BDNF overexpression rescues ganglion cells and improves visual function for at 

least 9 weeks after an brief and acute elevation of IOP [188]. Interestingly, BDNF 

synthesized by RGCs appears to have paracrine actions rescuing neighboring neurons that 

do not express BDNF [188]. BDNF induced protection of RGCs extends to rat glaucoma 

models, where BDNF overexpression leads to significant RGC survival after 4 weeks of 

ocular hypertension [189].

A recent study by Feng and colleagues provides hope that long-term protection of RGCs by 

BDNF is possible [182]. This group used a tamoxifen-induced Cre recombinase system to 

upregulate BDNF and to protect mouse retinas from sustained IOP elevation. Conditional 

BDNF overexpressing mice have reduced axon and ganglion cell loss, improved visual 

acuity and function, and preservation of RGC dendritic fields. Beneficial effects are 

maintained for up to 6 months [182]. The conditional BDNF overexpressing mice have a 

neuroprotective advantage over BDNF injections, topical BDNF application, and retinal 

AAV systems because these mice overexpress BDNF throughout their visual system. Thus, 

BDNF supplementation effectively occurs in retina, ONH, SC, and visual cortex 

simultaneously. This paper does not address the effects of BDNF overexpression in the 

vasculature in response to ocular hypertension, however, this factor may have therapeutic 

benefits as well. Although delivery of BDNF to the entire visual system is presently not 

possible in the human patient, the results from Feng’s study highlight the importance of 

understanding the role of BDNF/TrkB signaling pathway in all parts of the visual system.

Work to understand how glaucoma alters the BDNF/TrkB pathway in SC is just beginning. 

Two recent studies highlight the complexity of the BDNF/TrkB pathway in this region. In 

one study, vector-induced BDNF overexpression in the SC did not increase RGC survival or 

alter BDNF levels in the retina during ocular hypertension [133]. Perhaps raising BDNF 

levels in the SC does not guarantee transfer of BDNF to RGCs. In one of the few studies on 

the effect of glaucoma on the SC, Crish and colleagues use the DBA/2J model to show that 

BDNF accumulates in astrocytes of the glaucomatous SC, even though BDNF mRNA levels 

are reduced [190]. The authors propose that in response to declines in RGC axonal function, 

astrocytes of the SC sequester BDNF in an effort to shield target neurons from toxic insults 

[190]. Given the important role of BDNF/TrkB signaling in the formation of RGC arbors 

and synapses with SC neurons during development, a better understanding of how the 

structure and physiology of these connections are altered in glaucoma is critical for 

identifying novel therapeutic approaches. In DBA/2J mice, synapses between RGCs and 

neurons of the SC are maintained for a period of time after anterograde transport deficits 
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occur, suggesting that a therapeutic window exists for restoring RGC axonal function before 

synapses at the SC degenerate [190,191].

7.0 What about proBDNF?

Much remains to be learned about the function of the BDNF/TrkB pathway in both neurons 

and glia of the healthy and injured visual system including the role of the BDNF precursor, 

proBDNF. Although mature BDNF has been studied in relation to RGC survival, much less 

is known about proBDNF/p75NTR signaling pathways. Even though expression of p75NTR in 

RGCs is low, p75NTR expression is robust in Müller cells, the main glial cell in the retina 

[192,193]. As much as 80% of the total BDNF in the retina is estimated to be proBDNF 

[181]. Although the role of proBDNF and p75NTR in the glaucomatous retina is not well 

studied, increased p75NTR gene expression is accompanied by decreases in proBDNF 

protein in rat retinas after 5 weeks of ocular hypertension [181]. Interestingly, cultured 

Müller cells secrete both proBDNF and BDNF in response to treatment with glutamate, the 

main excitatory neurotransmitter in the retina [194]. ProBDNF’s cousin, proNGF, has 

already been implicated in RGC death via proNGF/p75NTR mediated secretion of the 

cytokine TNF-α [193]. In addition, inhibition of p75NTR increases RGC survival after 

axotomy and this survival is enhanced by co-administration of NGF or TrkA agonist [192]. 

Collectively, these findings suggest that the role of proBDNF in the pathogenesis of 

glaucoma is an area deserving future study.

8.0 TrkB regulation and splice variants

The role of TrkB in modulating BDNF trophic support in the glaucomatous retina is not well 

understood and is another area deserving additional study. Although TrkB is expressed by 

glia and neurons of the inner retina, details regarding the cell specific localization of TrkB 

receptor isoforms and their role in regulation of the BDNF/TrkB signaling pathway are still 

emerging [195]. TrkB signaling is further complicated by the influence of modulatory 

proteins that associate with the TrkB cytoplasmic tail. For example, in a mouse model of 

glaucoma, the SH2 domain-containing phosphatase-2 (Shp-2) protein binds to the TrkB 

receptor in RGCs to inhibit TrkB phosphorylation [196]. This finding may explain, in part, 

why BDNF supplementation alone is not sufficient to rescue ganglion cells in glaucoma 

[196]. In glial cells, TrkB signaling plays an important neuroprotective role in response to 

optic nerve injury [135], however, questions regarding the role of full length versus truncated 

TrkB signaling remain. Future studies using glaucoma models in combination with tissue 

specific, conditional BDNF and TrkB knockout mice will aid in dissecting the specific roles 

and mechanisms of neuronal versus glial BDNF/TrkB signaling pathways in the 

glaucomatous retina [135,197].

9.0 Expert commentary

The importance of BDNF in human health and disease is becoming increasingly evident 

especially in light of findings from analyses of the human genome. Studies show that 

reduced levels of BDNF are associated with heart failure, cognitive disorders, and skeletal 

muscle energy metabolism [198–201]. Although no large studies have identified BDNF as a 
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biomarker for glaucoma, two small exploratory studies report BDNF deficits in tears and 

serum of patients with glaucoma [202,203]. The discovery that a mutation in the BDNF pro 

domain is present in approximately 25% of the population has significant health implications 

[204]. This single nucleotide polymorphism (SNP) rs6265 affects intracellular trafficking 

and activity-dependent secretion of BDNF and is associated with impaired memory and 

hippocampal function [204,205]. This same SNP, rs6265, is associated with the progression 

of primary open angle glaucoma in a Polish population [206]. This finding is significant in 

light of the current gene profiling work being done across the globe. Whether additional 

BDNF related genes are implicated in the progression of glaucoma remains to be seen.

Proper function of the BDNF/TrkB pathway is critical to RGC survival and visual system 

function in retinal development, in the adult visual system, and in response to optic nerve 

injury. The importance of the BDNF/TrkB pathway throughout the visual system is evident 

by the spatio and temporal changes in BDNF/TrkB expression during development and after 

optic nerve injury. These BDNF/TrkB responses are cell type and region specific extending 

from the retina, through the ONH, to RGC synapses with neurons of the SC. One emerging 

concept is that BDNF is not just important in neurons. Much remains to be learned about the 

differential role of the BDNF/TrkB pathway in glia. Astrocytes, Müller cells, microglia, and 

lamina cribrosa cells can all secrete BDNF making these cells likely players in the 

maintenance of healthy BDNF/TrkB signaling throughout the visual system.

Whether the BDNF/TrkB pathway is a worthy therapeutic target in glaucoma is an ongoing 

debate. A good therapeutic target for glaucoma should accomplish 2 goals. First, survival of 

RGCs needs to be preserved and second, neuronal signals between RGC axons and their 

targets need to be restored. Although the BDNF/TrkB pathway is not the sole source of RGC 

trophic support in the retina, supplementation of BDNF and TrkB in models of acute nerve 

injury and ocular hypertension helps to preserve RGC survival by delaying RGC death. 

Prevention of RGC death is the first step in neuroprotection. This neuroprotection is 

enhanced by combining BDNF supplementation with additional trophic factors or 

compounds that reduce oxidative stress.

The finding that BDNF and TrkB are not the only requirements for prolonged RGC survival 

should not deter scientists from trying to understand the complexities of BDNF signaling 

pathways that are essential for proper RGC function. Currently, our knowledge about the 

molecular mechanisms regulating the BDNF/TrkB pathway in glaucoma is limited. Not only 

does the outcome of BDNF/TrkB signaling affect interactions between the retina, ONH, and 

SC, but BDNF/TrkB signaling also affects the interactions between glia and neurons within 

each of these regions. Other areas that are highly relevant to glaucoma include modulation of 

full length TrkB signaling by truncated TrkB and the role of proBDNF/p75NTR signaling 

pathways. Future studies in these areas will provide new insights that are required for the 

development of novel neuroprotective treatments for glaucoma.

10.0 Five year view

In the next five years, future studies into the differential roles of the BDNF/TrkB pathway in 

glia versus neurons will provide new insights that will aid in the development of novel 
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therapeutic approaches for glaucoma. An ideal therapeutic agent for glaucoma is likely to be 

one that has several modes of action that target multiple mechanisms of neurodegeneration 

including restoration of healthy BDNF/TrkB function. The ONH has high energy 

requirements, abundant mitochondria, and is considered the initial site of glaucomatous 

injury [207]. These characteristics make the ONH an ideal beneficiary of therapeutics that 

reduce oxidative and ER stress. A therapeutic strategy aimed at preserving function of the 

ONH may have the secondary effect of restoring healthy BDNF/TrkB signaling throughout 

the visual system. Our group is interested in sigma-1 receptor, a potential therapeutic target 

that meets these criteria. Sigma-1 receptor is an inter-organelle signaling modulator known 

to mediate oxidative and ER stress as well as BDNF processing and secretion [208–210]. A 

better understanding of the cellular response to stress and tissue repair will lead to new 

approaches to support the integrity and function of the ONH thereby hopefully preserving 

healthy BDNF/TrkB signaling pathways. Whether the future therapeutic agent is a sigma-1 

receptor agonist or another deserving candidate, development of neuroprotective therapies 

for glaucoma is greatly needed to preserve vision for the many people afflicted by this sight-

threatening disease.
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Key issues

• Neuroprotective therapeutics are needed to treat glaucoma.

• The BDNF/TrkB pathway is critical to retinal ganglion cell survival.

• Temporal and spatial alterations in the BDNF/TrkB pathway are a common 

theme.

• Duration and severity of optic nerve injury alter expression of BDNF and 

TrkB.

• BDNF supplementation slows RGC death after nerve injury and in glaucoma.

• The BDNF/TrkB pathway is not the only requirement for long term RGC 

survival.

• The interaction between retrograde, anterograde, and retinal BDNF/TrkB 

signaling pathways in both neurons and glia is an important area of future 

study.

• An ideal therapeutic agent for glaucoma will need to modulate multiple 

neurodegenerative pathways including the BDNF/TrkB pathway.
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Figure 1. 
BDNF signaling is a balance between proBDNF/p75NTR and BDNF in glial cells or inhibit 

phosphorylation of FL-TrkB thereby preventing stimulation of survival, growth, and 

neuroplasticity.
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Figure 2. 
BDNF is an essential neurotrophin for survival of retinal ganglion cells (G). Retrograde, 

anterograde and endogenous sources of BDNF are all thought to play a role in the visual 

system response to optic nerve injury and glaucoma.
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