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Abstract

The principal goals of experimental psychopathology (EPP) research are to offer insights into the 

pathogenic mechanisms of mental disorders and to provide a stable ground for the development of 

clinical interventions. The main message of the present article is that those goals are better served 

by the adoption of Bayesian statistics than by the continued use of null-hypothesis significance 

testing (NHST). In the first part of the article we list the main disadvantages of NHST and explain 

why those disadvantages limit the conclusions that can be drawn from EPP research. Next, we 

highlight the advantages of Bayesian statistics. To illustrate, we then pit NHST and Bayesian 

analysis against each other using an experimental data set from our lab. Finally, we discuss some 

challenges when adopting Bayesian statistics. We hope that the present article will encourage 

experimental psychopathologists to embrace Bayesian statistics, which could strengthen the 

conclusions drawn from EPP research.
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What’s wrong with NHST?

Well, among many other things, it does not tell us what we want to know…

Cohen (1994), p. 997
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Introduction

Experimental psychopathology (EPP) research stands on the cusp between basic and applied 

research, spanning those fields in both theory and practice (Zvolensky, Lejuez, Stuart, & 

Curtin, 2001). Throughout the years, EPP research has provided rich insights into the 

cognitive mechanisms of, among others, anxiety related disorders, depression, and psychosis 

(see Forsyth & Zvolensky, 2001, and Zvolensky et al., 2001, for discussions of the role of 

EPP research in psychological science). Crucially, those insights have allowed the 

development and refinement of intervention programs for mental disorders (e.g., exposure 

therapy; Foa & McNally, 1996).

As in most branches of psychology, p-value null hypothesis significance testing (NHST) is 

typically used to statistically support experimental hypotheses in EPP research. To illustrate, 

we could find only two empirical papers published in 2015 in the Journal of Abnormal 
Psychology, one of the most prominent journals in the field of psychopathology research, 

that did not report NHST p-values in their results sections.1

Here, we show that despite its popularity, the widespread use of NHST in EPP research 

conveys important disadvantages. As we argue below, NHST is unsuitable for answering 

common statistical questions, such as what is the probability of the observed data originating 

from the null hypothesis (H0) or the alternative hypothesis (HA). As an alternative to NHST, 

we suggest the use of Bayesian analysis, a statistical approach that is quickly gaining 

popularity in social sciences in recent years (see Figure 1).

The present paper is organized as follows: We first present the advantages and limitations of 

NHST. Then, we demonstrate how the limitations of NHST can be overcome by the use of 

Bayesian analysis. In the third section we compare the conclusions afforded by NHST and 

Bayesian analysis for an experimental data set we recently collected in our lab. We conclude 

with a discussion of challenges and solutions when applying Bayesian analysis.

Why NHST is ill-suited for EPP research

There are a number of reasons as to why NHST dominates our research field. First, bachelor 

curricula in psychology cover this type of inference almost exclusively. Second, user-

friendly software programs (e.g., IBM SPSS; SPSS, 2011) have, until recently, been able to 

return statistics of use for NHST only. Lastly, the likelihood of acceptance of a research 

paper for publication correlates with the p-values of the main results falling below common 

standards of statistical significance (see the file-drawer problem, Rosenthal, 1979). Given 

those reasons, it is understandable why NHST is so prevalent in our field. However, as noted 

in a recent statement by the American Statistical Association (ASA), “While the p-value can 

be a useful statistical measure, it is commonly misused and misinterpreted” (Wasserstein & 

Lazar , 2016, p. 131).2

1We did not include editorial, review, commentary, or correction articles.
2Although we focus on EPP research here and will discuss why the disadvantages of NHST are particularly problematic for this area 
of research, the ASA statement serves to underscore that NHST should be used with caution in other fields of research as well.
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For illustration, consider the fictitious researcher Prof. Vonnegut who wants to test whether 

there is a difference in the acquisition of conditioned fear responses via direct experience or 

via instructions (see Rachman, 1977, for the relevant theoretical background). For her study, 

she recruits participants that are randomly divided into two equally sized groups, an 

experimental group and an instructed group. The participants of the first group are presented 

with two initially neutral stimuli (e.g., pictures of a cube and a cylinder), one of them (i.e., 

Conditioned Stimulus, CS+) sometimes followed by a shock (i.e., Unconditioned Stimulus 

or US) and the other stimulus never followed by a shock (CS−). The participants in the 

second group are merely informed about the CS-US contingencies, without actually 

experiencing them (see Olsson & Phelps, 2004, and Raes, De Houwer, De Schryver, Brass, 

& Kalisch, 2014, for examples of similar experimental designs). Participants in both groups 

then receive a number of presentations of both stimuli, without shock, and participants 

provide fear ratings upon every CS presentation (say, 4 presentations per CS). At the end of 

the experiment, she performs a 2 (stimulus: CS+ versus CS−) × 2 (group: experimental group 

versus instructed group) repeated measures Analysis of Variance (ANOVA), with fear 

ratings for the different CSs as the dependent variable, stimulus as the within-subject factor 

and group as the between-subject factor. Her results show that both groups report higher fear 

for the CS+ than for the CS− (main effect of stimulus; p = .001), with that effect not being 

statistically different between the two groups (stimulus × group interaction; p = .8). Based 

on those results, Prof. Vonnegut critically concludes that both groups acquired fear responses 

and that there is no fundamental difference between the learning of fear by experience or by 

instruction. However, NHST does not actually allow such a conclusion.

Specifically, given the research question of Prof. Vonnegut, it follows that the statistical test 

to be used should directly compare two different hypotheses: a) the two groups report 

different levels of fear towards the CSs, with that difference falling within a specific range of 

values (i.e., HA), versus b) the two groups report same levels of fear towards the CSs, in 

other words the difference is 0 (i.e., H0). Such balanced inference would be more 

informative, as it considers both hypotheses (i.e., HA and H0), than having an alternative 

hypothesis that is unspecified (i.e., the HA) while trying to gather evidence against the null 

hypothesis (H0). The latter type of inference, however, is the only type of inference NHST is 

able to make.

The reasoning of NHST (e.g., Fisher, 1935) develops as follows: a) if H0 is true, then some 

data would be highly unlikely to occur, b) one observes such data, c) therefore H0 is 

probably not true (Cohen, 1994; Pollard & Richardson, 1987). P-values are used to indicate 

how extreme the data are if the null hypothesis were true, with small p-values (typically 

below the 0.05 level) indicating that the data are sufficiently extreme to assume that H0 must 

be false. But what happens when a p-value is above .05? In that case it would be mistaken to 

take the absence of a significant result as supporting evidence for H0, as p-values are unable 

to provide such evidence. Specifically, p-values consider only one hypothesis (H0) and 

evidence is accumulated against that hypothesis (with p-values often overstating evidence 

against H0; see Wetzels et al., 2011). Also, the distribution of p-values under H0 is uniform 

from 0 to 1. Consequently even when the sample size increases, no evidence can be gained 

for H0, as the distribution of p-values remains the same irrespective of the sample size (e.g., 

Rouder, Speckman, Sun, Morey, & Iverson, 2009). Therefore, whenever one predicts a non-
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difference, NHST is inherently unsuitable (Dienes, 2014). Of importance, this is a situation 

that is very common in EPP research, where researchers often need to evaluate the support 

for H0, such as in the fictitious example of Prof. Vonnegut above, where the absence of an 

effect (i.e., no difference in fear acquisition between the different learning pathways) is 

plausible (see Rachman, 1977). Other examples include situations where one wants to 

establish that experimental and control groups are similar on important variables like age, 

sex, or potential confounds, or randomized clinical trials where one may want to ascertain 

that competing interventions have comparable effects. In all those cases, NHST is unable to 

provide evidence for H0.

Another problem with NHST is that p-values depend on the sampling plan of the 

investigator; this means that researchers should decide when to stop data collection (i.e., how 

many participants to include) prior to the start of data accumulation. One therefore cannot 

simply continue to test participants until clear evidence against H0 is obtained. As a result, 

data collection may be stopped prematurely (but see Lakens, 2014; Pocock, 1977). 

Returning to our fictitious example, Prof. Vonnegut may have decided on the sample size for 

her experiment on the basis of a power analysis (Cohen, 1992), as is often done in 

experimental practice. Defining a priori when one will stop collecting data (i.e., a stopping 

rule) is a prerequisite for the correct interpretation of p-values for two reasons mainly. First, 

p-values are defined as long term frequencies of an event happening, meaning that any 

change in the sampling procedure after the beginning of data collection (e.g., increasing the 

sample size) will lead to invalid results (Dienes, 2011; Kruschke, 2014). Second, p-values 

can always turn below the 0.05 level given sufficient data, even when H0 is true (Armitage, 

McPherson, & Rowe, 1969; Dienes, 2011). Yet, a stopping rule that specifies the exact 

sample size in advance can often be problematic. Especially in EPP research that involves 

sensitive populations (e.g., individuals diagnosed with depression) or highly aversive stimuli 

(e.g., traumatic film clips; Holmes & Bourne, 2008), experimenters may want to be able to 

stop collecting data as soon as sufficient evidence has been collected to support either of the 

competing hypotheses. Such a data-driven stopping plan is more efficient for researchers and 

more ethical towards the participants.

Related to the previous problems, NHST has a dichotomous reject-no reject logic of H0 

(Cumming, 2014), with values falling above a predefined level (i.e., 0.05) providing no 

evidence for any hypothesis whatsoever. This is particularly problematic when EPP research 

is supposed to serve as a basis for the evaluation of novel interventions. To illustrate, if the 

application of a novel intervention protocol yields an outcome that is significantly better 

than the outcome achieved by a control protocol, with a p-value just below alpha levels (e.g., 

0.04), it would imply that the intervention protocol should be further developed. However, in 

case the p-value is just above significance level (e.g., 0.06), then, according to NHST logic, 

no evidence that the intervention is better that the control protocol has been accumulated. As 

such, further development of the said intervention would be discouraged. Instead of such 

dichotomous logic, what would be more helpful is having a way to quantify the amount of 

evidence accumulated, so as to let the researcher, and the reader of a study, decide what 

constitutes sufficient evidence for or against a given hypothesis.
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Lastly, p-values are particularly unsuitable for EPP research as, compared to many other 

fields of psychology, EPP research is often constrained to the use of small samples sizes, due 

in part to the involvement of sensitive and/or inaccessible populations. The reliance on small 

samples is a cause for concern for at least two reasons. First, a small sample size may fail to 

detect an effect, even when the tested effect is real (Cohen, 1992). On the other hand, if a 

significant effect is obtained in a small sample, it may turn out to be difficult to replicate 

(Button et al., 2013). An analytic strategy that allows meaningful inferences from small 

samples is therefore of great relevance for EPP research.

To summarize, NHST is often not appropriate for EPP research because NHST a) does not 

allow the comparison of competing hypotheses, b) is unable to gauge evidence in favor of 

H0, c) necessitates a predefined sampling plan, d) involves a dichotomous rejection logic and 

e) often does not allow meaningful inference from small sample sizes. These shortcomings 

should make experimental psychopathologists wary about the use of NHST for their data 

analyses. On the other hand, given the strong tradition of using NHST for statistical 

inference, it is tempting to disregard those disadvantages, stick with NHST and be a bit more 

careful when drawing conclusions. We acknowledge that this is a solution, although not 

quite an optimal one. A better solution for overcoming the drawbacks of NHST is to use 

Bayesian analysis. Bayesian analysis allows the quantification and comparison of evidence 

for HA and H0 simultaneously. Further, Bayesian analysis yields conclusions that better 

reflect the size of the effect under study, and allows researchers to accumulate evidence until 

sufficient support for either hypothesis has been obtained. We present this statistical 

approach below.

Bayesian analysis as an alternative to NHST or How I learned to stop 

worrying and love the data

In this part of the paper we provide a primer on Bayesian analysis. In order to explain the 

approach and illustrate the basic concepts of Bayesian analysis (e.g., the role of prior 

distribution; see below), we start by presenting how a single model parameter can be 

estimated through Bayesian parameter estimation. We then turn to Bayesian hypothesis 

testing, which is perhaps most relevant for the type of research conducted in the EPP field.

Bayesian parameter estimation

The main principle of Bayesian analysis is that current knowledge is updated in light of 

incoming information. To explain, let us return to Prof. Vonnegut. In a new study, she wants 

to investigate the prevalence of anxiety disorders among first year psychology students. In 

order to collect the relevant data, she screens 100 first-year students using the Anxiety 

Interview Schedule for DSM-IV (Brown, Barlow, & Di Nardo, 1994). Based on the results 

of this interview schedule, students who are and are not diagnosed with an anxiety disorder 

are scored with 1 and 0 respectively. So, the to-be-estimated parameter is the rate parameter 

of a binomial likelihood.3

3Here, we assume a) that the observations (i.e., students) are independent from each other, b) that there are only two possible 
outcomes (i.e., student coded with 0 or 1), and c) that the probability of someone being coded with 1 is the same for each student. We 
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In Bayesian analysis, the uncertainty of the rate parameter before considering any new 

information (e.g., incoming data) is quantified in the form of a probability distribution (Lee 

& Wagenmakers, 2013). In our example, that would mean that Prof. Vonnegut should first 

make a specific assumption regarding the prevalence of anxiety disorders among students. 

Since she does not have a specific basis for prediction, and since the rate parameter can take 

values between 0 and 1 only, she may for instance simply assume a uniform prior probability 

distribution that assigns equal probability to each possible parameter value. If we visualize 

this prior assumption, we get a picture such as the one presented in the left panel of Figure 2. 

The distribution that we assume before seeing the data is called the prior distribution. It 

represents the relative likelihood of possible values (here any value between 0 and 1) of the 

parameter of interest (here the rate parameter) before any new information is taken into 

account. Prof. Vonnegut, as we have mentioned before, opted for a prior distribution that 

expresses only general knowledge about the tested parameter (e.g., that the values are 

bounded between 0 and 1). However, one might also opt for a prior distribution in which 

substantive knowledge about the tested parameter is included. For instance, based on 

previous literature, one might assume that the prevalence of anxiety disorders in first year 

psychology student is low, in line with the general population. In that case, a prior 

distribution that places more probability mass on low values and less mass on high values of 

the rate parameter could be used (we elaborate more on prior distributions in the Discussion 

section).

After defining a prior distribution, Prof. Vonnegut observes the data and she finds that 10% 

of the students are identified as having an anxiety disorder. In Bayesian analysis, past 

knowledge (in this case contained in the prior distribution) is updated in light of incoming 

observations (in this case the data) using Bayes’ rule. This is done by first multiplying the 

prior with the likelihood. In broad terms, the likelihood is defined as the probability of 

observing the data at hand given a specific hypothesis (Dienes, 2011). In our example, this 

would mean that one has to compute the probability of the observed data (here the 

observation that 10% of the sampled participants are found to have an anxiety disorder) 

given the different parameter values (all values from 0 to 1; see middle panel of Figure 2) 

using the probability mass function of the binomial distribution. The proportional result of 

this product (i.e., prior × likelihood) is the posterior distribution that represents our updated 

knowledge and quantifies the relative probability that each value of the parameter is the true 

population value (see right panel of Figure 2). In the present example, it is obvious that 

although Prof. Vonnegut assumed an equal probability for each parameter value initially, the 

posterior distribution suggests that a range of the parameter space near .1 (i.e., the mode of 

the distribution) is more probable compared to other ranges of comparable length elsewhere. 

Of importance, apart from the modal value of .1, the posterior distribution also shows one’s 

uncertainty in the parameter estimate given the observed data. As we see in the right panel of 

Figure 2, other parameter values than .1 are also probable (e.g., .12). In Bayesian analysis, 

this uncertainty can be expressed by reporting credible intervals. For instance, in our 

example, the 95% credible interval encompasses parameter values between .05 and .17, 

use a simple binomial example here for ease of exposition, but the logic applies to continuous data as well. Our example is based on 
similar examples provided in Kruschke (2011, 2015) and Lee and Wagenmakers (2013).
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indicating that one can be 95% confident that the true value of the parameter lies between .

05 and .17 (see Edwards, Lindman, & Savage, 1963, for more details).

Bayesian hypothesis testing

In the previous example we were concerned with the value of a single parameter. Although 

sometimes useful, in most EPP studies researchers rather want to assess which of two 

competing hypotheses is better supported by the observed data. Bayesian analysis, and 

specifically Bayesian hypothesis testing, allows researchers to do just that.

In Bayesian hypothesis testing, someone is typically interested in evaluating the relative 

likelihood of the data under two competing hypotheses. Returning to the example of fear 

learning through experience or instructions, we could say that Prof. Vonnegut would be 

interested in comparing HA (i.e., that there are between-group differences and that this 

difference follows a specific distribution a priori) with H0 (i.e., that there are no between-

group differences). Bayes factors enable such comparison. Specifically, Bayes Factors (BFs) 

quantify the relative marginal likelihood of the data under HA and H0. To calculate a Bayes 

Factor, one should first specify the distribution of the effect size under the HA, something 

that is quite challenging and, arguably, subjective. Recently, however, efforts have been 

made to define default prior distributions; that means prior distributions that can be used in a 

range of statistical models. By using a Cauchy prior distribution to estimate Bayes Factors, 

the resulting Bayes Factors meet three desirable theoretical characteristics (Rouder & 

Morey, 2012). First, the Bayes Factors that are obtained are not sensitive to the measurement 

scale of the dependent variable (location and scale invariance criterion). For example, the 

Bayes Factor for a time variable would not be different if the dependent variable is measured 

in milliseconds or in seconds. Second, the Bayes Factors that are obtained with Cauchy 

priors are consistent; the more data, the more the Bayes factor will tend to yield support for 

the hypothesis in favor of the true effect (consistency criterion). Lastly, the Bayes factor, for 

any sample size above 2, will reach infinity as the data undoubtedly support one of the two 

hypotheses (consistent in information criterion).

When using a Cauchy distribution, one has to specify a scale parameter, which determines 

the width of each effect size under the HA. For illustration, we plotted three Cauchy 

distributions with three different scale factors (see Figure 3). In this plot we see that when 

larger effects are predicted, a wider Cauchy that assigns higher probability to large effects 

would be more appropriate. Although scale factors of 1 or  are commonly used for the 

calculation of Bayes Factors, other scale factors have also been suggested (e.g., ). Still, 

one could opt for another scale factor, or another prior distribution altogether. Because the 

choice of a particular prior distribution is always debatable, it is desirable to test the 

robustness of one’s conclusions across a range of priors, as different priors will by definition 

result in different outcomes (Wagenmakers et al., in press).

In Bayesian hypothesis testing, the value of the Bayes factor grades the relative likelihood of 

the data given the competing hypotheses. For example, a BFA0 of 8 implies that the data are 

8 times more probable under HA than under H0. In a similar vein, a BFA0 of 1/8 implies that 

the data are 8 times more probable under H0 than under HA. A BF0A has the opposite 
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implication as a BFA0. Note that although Bayes factors are taken as the Bayesian approach 

to hypothesis testing (Kass & Raftery,1995; Lewis & Raftery, 1997), a Bayes factor does not 

provide any information as to whether each hypothesis is correct or not. In other words, BFs 

look at the relative plausibility of competing hypotheses, and even in case of a large BF, it 

may well be the case that the data are not well described by either H0 or HA.

Advantages of Bayesian analysis over NHST

Bayesian data analysis has important advantages that make it much more informative than 

NHST. First, both Bayes factors and Bayesian parameter estimation allow researchers to 

accumulate evidence for H0, which is impossible within the NHST framework. This is an 

important asset for data analysis in EPP research, as quite often researchers are interested in 

supporting H0 (see above).

Second, the results of Bayesian hypothesis testing, or of Bayesian parameter estimation, are 

not affected by the sampling plan. Specifically, as more data are accumulated, the p-value 

will sooner or later take on a value below 0.05 on occasion, even if H0 is true. In contrast, in 

Bayesian analysis, it is perfectly valid to monitor the data after each individual participant 

until sufficient evidence is collected to be able to decide between the tested hypotheses with 

a desired level of certainty (Edwards et al., 1963; Schönbrodt, Wagenmakers, Zehetleitner, & 

Perugini, in press). This feature may be of particular importance for EPP research, as it 

frequently involves clinical populations or demanding procedures.

Third, by evaluating the relative probability of the data under both hypotheses, Bayesian 

hypothesis testing provides a more balanced solution than NHST, where one simply 

accumulates evidence against H0 (Rouder, Morey, Verhagen, Province, & Wagenmakers, in 

press).

Fourth, Bayes factors have a continuous scale, in contrast to the dichotomous logic of 

NHST. As such, it is up to the experimenter to decide when there is conclusive evidence for 

either of the hypotheses being compared. For example, one experimenter might regard a BF 

of 100 as conclusive evidence for the presence of an effect, whereas another researcher 

might regard only Bayes Factors of a 1000 or more as sufficient (Evett, 1991). Although 

categories for interpreting Bayes factors have been suggested (e.g., Jeffrey, 1961; Wetzels, et 

al., 2011), no consensus has been reached as to if they should be used since Bayes factors 

are expressed on a continuous scale (Kass, & Raftery, 1995). Regardless of whether a 

researcher chooses to use Bayes factor categories or not, the ability to quantify evidence, 

rather than the dichotomous way of thinking that prevails in NHST, should be beneficial for 

nuanced statistical inference.

Fifth, an advantage of Bayesian parameter estimation is that one can compute credible 

intervals over estimated parameter values. Credible intervals are fundamentally different 

from more commonly used confidence intervals. Specifically, a 95% credible interval 

indicates with 95% probability that the true parameter value falls within the specified limits. 

Confidence intervals merely indicate that if an experiment were repeated multiple times, 

then 95% of the times the confidence intervals obtained from the experiment would include 
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the true parameter value (McElreath, 2016; see Morey, Hoekstra, Rouder, Lee, & 

Wagenmakers, 2015, for an excellent discussion of interval estimates). Arguably, the former 

type of interval is more informative of the true parameter value than the latter one.

Lastly, Bayesian analysis helps to overcome the problem of small sample size. Specifically, 

research suggests that by selecting prior distributions based on past literature (see Discussion 

section for more details on prior distributions), Bayesian analysis allows to reach meaningful 

conclusions even with small sample sizes, which is often impossible when using frequentist 

analysis techniques (van de Schoot, et al., 2015).

Of importance, and despite the principled differences between Bayesian analysis and NHST, 

it would be a mistake to assume that the two approaches will forcibly result in different 

experimental conclusions. On the contrary, Bayesian estimation will converge with classical 

estimation procedures (e.g., maximum likelihood) if particular priors are selected. To 

illustrate, in our binomial example above, the mode of the posterior distribution will equal 

the maximum likelihood estimator (i.e., number of successes/number of trails) if the selected 

prior distribution is a uniform distribution ranging from 0 to 1.

To further illustrate the differences between NHST and Bayesian hypothesis testing, we next 

present the data of a recent experiment conducted in our lab.

Pitting inferences from NHST and Bayesian hypothesis testing against each 

other: An example from the field of EPP

In our experiment (Blanken, Krypotos, & Beckers, 2014) we tested whether conditioned fear 

responses acquired through mere instruction are equivalent to conditioned fear responses 

established through a combination of instruction and experience (Olsson & Phelps, 2004; 

Rachman, 1977, 1991; Raes et al., 2014). To sample conditioned fear across relevant 

response systems (Beckers, Krypotos, Boddez, Effting, & Kindt, 2013; Mauss & Robinson, 

2009), we measured subjective (fear and US-expectancies ratings), physiological (fear-

potentiated startle responses, FPS, and skin conductance responses, SCR), and behavioural 

(performance in an approach–avoidance reaction time task) indices of fear. We here restrict 

ourselves to a subset of those data, in particular the US-expectancy ratings and the FPS data. 

For the full set of results, see the online materials (doi: osf.io/7x5sd). There we also provide 

detailed information about how to perform the Bayesian analyses we report below, using the 

BayesFactor package (Morey & Rouder, 2015) in R (R Core Team, 2015) as well as the 

JASP statistical software package (Love et al., 2015) that allows to perform Bayesian 

hypothesis testing through a user-friendly, menu-based graphical user interface.

Methods

Participants

Forty healthy adults (26 females) participated in our study (age: M = 22.1, SD = 2.8) for 

partial course credit or a monetary reward (€10). Participants were equally and randomly 

assigned to either an Instructed Acquisition group or a Combined Acquisition group. The 
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study was approved by the University of Amsterdam Human Ethics Committee (EC number: 

2014-CP-3566).

Procedure

Upon entering the lab, participants read an information brochure and provided informed 

consent. They then completed the state portion of the Spielberger State and Trait Anxiety 

Inventory (STAI; Spielberger, Gorsuch, & Lushene, 1970), after which the SCR, FPS, and 

shock electrodes were fitted. US intensity was then individually set to a level that was 

uncomfortable but not painful (see Sevenster, Beckers, & Kindt, 2012). The actual 

experiment then started and consisted of three phases, habituation, acquisition, and test (see 

Table 2).

On each conditioning trial, one of the CSs (three 2D pictures of geometrical objects) was 

presented for 8 s. A startle probe was delivered once on every trial, 7 s after stimulus onset. 

In case of a reinforced trial, the US was presented 7.5 s after CS onset. Inter-trial intervals 

(ITIs) were 15, 20, or 25 s, with an average of 20 s. To assess baseline startle responding, 

startle probes were also presented during the ITIs (noise alone, NA). Order of the CS and 

noise alone (NA) trials was semi-random (no more than two consecutive trials of the same 

CS or NA).

Habituation phase

Each CS (CS1, CS2, CS3) and NA trial was presented twice, to measure baseline responding 

to the CSs. No USs were presented.

Acquisition phase

Before the start of the acquisition block, the stimuli were presented on-screen and the 

experimenter indicated which object (i.e., CS1) would be followed by a shock most of the 

times and which objects (i.e., CS2, CS3) would never be followed by a shock. Participants 

were also asked to try and learn the contingencies between the different CSs and the US.

The three CSs were then presented six times each, in random order, intermixed with 6 NA 

presentations. One of the pictures (CS1) was paired with a shock on five out of six trials, 

whereas the CS2 and CS3 were never paired with shock.

Test phase

After the acquisition phase, the CS were presented on the screen and participants in both 

groups were instructed that in the next phase, both the previously reinforced CS1 and one of 

the previously unreinforced stimuli (CS2) would sometimes be followed by a shock, 

whereas the other previously unreinforced stimulus (CS3) would as before not be followed 

by a shock.

Crucially, participants in the instructed acquisition group were then presented with the 

previously unreinforced pictures (CS2 and CS3), while participants in the combined 

acquisition group were presented with the originally reinforced picture (CS1) and one of the 
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originally unreinforced pictures (CS3). The CSs were each presented twice, intermixed with 

two NA trials, in random order. No shocks were actually administered during the test phase.

Exit Interview and Questionnaires

Upon completion, participants rated the CSs and the US on a number of dimensions and 

filled out the trait portion of the STAI (i.e., STAI-T) and the Anxiety Sensitivity Index (ASI; 

Peterson & Reiss, 1993).

Data Analyses

For the frequentist analyses, we set the alpha-level to .05. The STAI-T, STAI-S, ASI, and the 

US ratings were analyzed with separate independent samples t-tests with group (instructed 

versus combined group) as between-subject factor.

To reduce heteroscedasticity, we standardized the FPS values by computing the square root 

of each value. In case of a negative value, the square root of the absolute value was 

computed after which the negative sign was reapplied (Milad et al., 2006).

To test for baseline differences between stimuli during the habituation phase, we performed 

separate 3 (stimulus: CS1, CS2, CS3) × 2 (group: instructed versus combined) ANOVAs on 

mean US-expectancies and FPSs during habituation, with stimulus as within-subject factor 

and group as between-subject factor.

To ascertain the successful establishment of differential fear responses during acquisition, 

we analyzed mean US-expectancy ratings, FPSs, and SCRs during acquisition with separate 

ANOVAs, with stimulus as within-subject factor and group as between-subject factor.

Finally, to test whether mere instructions led to similar levels of differential responding as a 

combination of instructions and experience in the test phase, we performed separate 2 

(stimulus: Final CS versus CS3) × 2 (group: instructed versus combined) ANOVAs on mean 

US-expectancy ratings, FPSs, and SCRs during the test phase, with stimulus as within-

subject factor and group as between-subject factor. Greenhouse-Geisser corrections were 

applied for all ANOVAs in case the assumption of sphericity was violated.

For the Bayesian independent samples t-tests, we computed separate Bayes factors for each 

of the relevant variables (see above). For the Bayesian repeated measures ANOVAs, we 

computed separate Bayes factors for each main effect and interaction effects model (Rouder 

& Morey, 2012; Wetzels, Grasman, & Wagenmakers, 2012). Specifically, for the US-

expectancy ratings, FPS responses, and SCRs, we tested for the main effects of stimulus and 

group by comparing the non-interaction model with both main effects (model with the 

effect) to a non-interaction model with only one main effect (model without the effect). So, 

for testing the main effect of stimulus, we compared the non-interaction model with both 

main effects (MS+G, with M standing for model, S for stimulus and G for group) to a non-

interaction model with the main effect of group (MG). Similarly, we tested the main effect of 

group by comparing MS+G to MS. To test for the effect of the interaction term we compared 

the full model containing both main effects and the interaction effect (MF, with F standing 

for full) to the same model without the interaction term (MS+G). For all our Bayesian 
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analyses, we used the default Cauchy prior distribution with scale , as implemented in 

the BayesFactor R package and in JASP (see Ly, Verhagen, & Wagenmakers, 2016, and the 

discussion below for more details). The direction of results remains similar when a scale 

factor of 1 is used instead. Please note that because the resulting Bayes factors in the 

BayesFactor package and JASP are not exactly the same after each rerun, we report the size 

of Bayes factors using the “≈” symbol rather than the equal sign.

Results

Questionnaires and Evaluations

No significant between-group differences arose for scores on STAI-T, STAIT-S, or for US 

evaluations. Between-group differences did arise for the ASI, t(38) = -2.15, p = 0.038, with 

participants in the combined acquisition group (M = 15.2, SD = 6.90) scoring higher than 

participants in the instructed acquisition group (M = 11, SD = 5.34). The direction of the 

ASI difference would work, if anything, against our hypothesis of equivalent acquisition 

through mere instruction.

The BF0A for US pleasantness, BF0A ≈ 2.43, and for US intensity, BF0A ≈ 2.30, suggested 

that the data were more probable under H0 (i.e., no between-group differences) than HA (i.e., 

between group differences). Given the size of the Bayes factors, this is not strong support for 

H0, but it still indicates that this hypothesis is more plausible than the HA. Also, the BFs for 

STAI-T, BF0A ≈ 3.09, and STAI-S, BF0A ≈ 3.10, indicated that the data, across measures, 

were more probable under H0 than HA. However, the Bayes factor for the ASI, hardly 

provided any support for the data coming from H0 or HA, BF0A ≈ 0.534.

US-expectancy Ratings

One participant indicated during the exit interview that he interpreted the US-expectancy 

scale the other way around. Therefore his responses were reversed.4

The plots for US-expectancy ratings, across all conditioning phases, are in Figure 4.

The results for the acquisition phase indicate that both groups learned to expect the US after 

the CS1 but not after CS2 and CS3, stimulus main effect, F(1.02, 38.66) = 30.61, p < .001, 

η2
p = 0.45. The stimulus × group interaction failed to reach significance, F < 1. Bayesian 

analyses showed that it was 29.99 × 108 more probable that the data came from the CS 

differences hypothesis than the null hypothesis, BFMS+G/MG ≈ 29.99 × 108. Also, the data 

were much more in line with the hypothesis that there was no stimulus × group interaction 

than with the hypothesis that there was an interaction, BFMS+G/MF ≈ 6.25.

In the test phase, US-expectancy was higher for CS1/2 than CS3, F(1, 38) = 21.31, p < 

0.001, η2
p = 0.36. Again no significant stimulus × group interaction was obtained, F < 1. 

The Bayesian analysis suggests that it was decisively more probable, BFMS+G/MG ≈ 3299, 

that the data came from the CS differences hypothesis, than the reversed. Also, it was only 

2.6 (BFMS+G/ MF ≈ 2.6) more likely that the data came from the hypothesis that postulates no 

4Re-analysing the data without the data of this participant did not change the direction of the results.
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stimulus × group interaction than the reversed. This level of support is not strong. 

Collectively, the results suggest that there is no added effect of direct experience on fear 

acquisition beyond the effect of instruction.

FPS results

We provide the plots for the FPS results, for all conditioning phases, in Figure 5.

Due to a technical error the habituation data of two participants were not saved. The missing 

values were replaced with the mean EMG response per stimulus in the habituation phase.

For the habituation phase, no significant main effect of stimulus, F(2, 76) = 1.56, p = 0.218, 

η2
p = 0.04, nor a stimulus × group interaction, F < 1, were obtained. The Bayesian analyses 

provided more evidence for the data coming from the no CS differences hypothesis than for 

the data coming from the alternative hypothesis, BFMG/MS+G≈ 3.45, and more evidence for 

the absence of a stimulus × group interaction than for its presence, BFMS+G/MF ≈ 2.70.

In the acquisition phase, there was a significant difference in responding to the CSs, F(1.45, 

55.16) = 22.69, p < .001, η2
p = .40. The stimulus × group interaction just exceeded 

significance, F(1.45, 55.16) = 3.45, p = 0.053, η2
p = 0.08. The Bayesian analyses suggest 

that it was decisively more probable that the data came from the hypothesis that the CSs 

differ from each other than from the alternative hypothesis, BFMS+G/MG≈ 15.49 ×105. It was 

only 1.55 times, BFMF/MS+G ≈ 1.55, more probable that there was a stimulus × group 

interaction, than that there was none.

The results of the test phase showed that there was a significant stimulus effect, F (1, 38) = 

22.46, p < .001, η2
p = 0.37, whereas no significant results were found for the stimulus × 

group interaction, F < 1. The Bayesian hypothesis testing results of the test phase showed 

that it was decisively more probable that the CSs differed from each other than that they did 

not, BFMS+G/MG≈ 872.43. Lastly, it was 3.33 times more probable, BFMS+G/MF ≈ 3.33, that 

there were no between group differences than that there were.

Experimental Conclusions

From the NHST analysis, we can only conclude that participants in both groups acquired 

differential subjective (i.e., US-expectancies) and physiological (i.e., FPS) fear responses 

towards the different CSs. Since the test phase produced non-significant stimulus × group 

interactions, we are unable to conclude anything concerning the presence or absence of 

between-group differences. Such conclusions can be drawn from the Bayesian analyses 

results, however. Of importance, for US-expectancy, the resulting BF (i.e., BFMS+G/MF ≈ 2.6) 

suggested that there was only slightly more evidence for similarity between the groups than 

for a difference. As such, it could be argued that more data should have been collected, in 

order to allow for more robust conclusions.

Discussion

NHST dominates, among many others, the field of EPP. In the present article we have 

argued that despite its popularity, the use of NHST in EPP research has important 
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disadvantages because it cannot provide evidence for the absence of an effect, does not 

consider the plausibility of the data under HA, requires a specific sampling plan before the 

beginning of data accumulation, has a dichotomous nature, and often does not allow 

meaningful conclusions from small sample sizes. We have proposed Bayesian analysis as an 

alternative to NHST. We have illustrated the advantages of Bayesian analysis by means of a 

data set from our lab. As we argue in the conclusion section above, Bayesian analysis 

provided for clearer interpretation of the data, particularly there where NHST could merely 

indicate failure to reject H0.

Given that the goal of our article was to provide a practical primer to Bayesian analysis for 

EPP research, we intentionally left out any philosophical discussions about the role of 

Bayesian statistical inference in science (see Gelman & Shalizi, 2013, and Borsboom & 

Haig, 2013, for relevant discussions). We end our article by highlighting and discussing a 

few important challenges when applying Bayesian analysis.

One of the most common arguments against the use of Bayesian analysis is that because it is 

up to the researcher’s judgment to decide what prior distributions will be entertained, the 

analyses can be influenced by experimenter biases. We acknowledge that the incorporation 

of prior beliefs, in the form of specific prior distributions, should be done with care. 

Although parameter estimation may be less sensitive to the prior distributions, given 

sufficiently informative data, Bayesian hypothesis testing is always sensitive to the priors 

(Liu & Aitkin, 2008). For the experiment we described above, we performed all Bayesian 

analyses using default prior distributions (Rouder & Morey, 2012; Rouder et al., 2009). Even 

then, however, there can be arguments as to what the scale factor for the Cauchy prior should 

be and researchers should not choose their priors blindly. This is because even with default 

priors, the results can change quite dramatically depending on the choice of the scale factor 

of the Cauchy. However, we believe that at least for routine analyses (e.g., repeated measures 

ANOVAs or t-tests; see Rouder & Morey, 2012; Rouder et al., 2009; Wetzels, Raaijmakers, 

Jakab, & Wagenmakers, 2009; Wetzels et al., 2012; Wetzels & Wagenmakers, 2012), such 

default prior distributions are indispensable tools for Bayesian analysis in EPP research. Of 

course one can argue for other priors, in which additional information is taken into account 

and incorporated in the priors (see Dienes, 2011; for example applications of this idea into 

computational modeling see Vanpaemel, 2010; Vanpaemel & Lee, 2012), or just select 

vague priors that only include general knowledge regarding the model parameters. No matter 

what the choice of prior may be, it should always be guided by a good rationale. Also, under 

any scenario, we would argue that researchers may want to follow up their initial analyses 

with robustness analyses, where the results are compared across a range of alternative priors 

(see Liu & Aitkin, 2008 for an example). Additionally, researchers should be encouraged to 

share their data and analysis scripts with the rest of the scientific community so that other 

researchers are in the possibility to reanalyze the data with different priors (for our data set, 

see doi: osf.io/7x5sd). Despite different priors resulting in different numerical values of the 

BF, what is important to gauge in robustness analyses is whether the substantive conclusions 

hold across different priors.

Another common argument against Bayesian analysis is the practical difficulties involved. 

Bayesian models are inherently more complex than NHST models, with every model 
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parameter requiring a prior distribution and the particular choice of prior distribution being 

debatable (see above). As such, Bayesian hypothesis testing is more complex, and requires 

more thought, than the corresponding NHST. Still, when balancing the amount of effort 

against the quality of the conclusions that are drawn, we believe that the scale tilts towards 

the use of Bayesian analyses.

A final argument against embracing Bayesian statistics is that Bayesian analyses will not be 

understood by reviewers. Given that Bayesian analysis is not common in EPP research, it is 

indeed likely that reviewers lack the appropriate background. As such, it may be useful to 

report NHST results and Bayesian results side by side (see Dienes, 2014, for a similar 

suggestion).5 Of importance, even though the direction of the results will often be the same 

and p-values will often seem to provide stronger evidence against H0, Bayesian analyses 

allow one to draw conclusions in support of H0, which is impossible with NHST (Wetzels et 

al., 2011).

Despite the challenges listed above, we strongly believe that Bayesian analysis is superior to 

NHST for many if not all instances of EPP research. Given that current software (see 

BayesFactor and JASP) makes it increasingly easy to perform routine statistical analyses 

within a Bayesian framework, we believe that there remains little reason for experimental 

psychopathologists not to include Bayesian results in their papers. By relying on a statistical 

approach that is actually able to “tell us what we want” our conclusions can be founded on a 

much more stable basis than that of NHST.

Acknowledgments

Preparation of this paper was supported by Innovation Scheme (Vidi) Grant 452-09-001 of the Netherlands 
Organization for Scientific Research (NWO) awarded to TB. The data reported here were collected while AMK and 
IA were affiliated to the Department of Clinical Psychology at the University of Amsterdam and the Amsterdam 
Brain and Cognition Center. DM is supported by Innovation Scheme (Veni) Grant 451-15-010 from the Netherlands 
Organization of Scientific Research (NWO). TB is supported by ERC Consolidator Grant 648176. We are indebted 
to Andy Field and Alexander Etz for their thoughtful comments on a previous version of this paper.

References

1. Armitage P, McPherson C, Rowe B. Repeated significance tests on accumulating data. Journal of the 
Royal Statistical Society. Series A (General). 1969; 132:235–244. DOI: 10.2307/2343787

2. Beckers T, Krypotos A-M, Boddez Y, Effting M, Kindt M. What’s wrong with fear conditioning? 
Biological Psychology. 2013; 92:90–96. DOI: 10.1016/j.biopsycho.2011.12.015 [PubMed: 
22223096] 

3. Blanken T, Krypotos A-M, Beckers T. A comparison of fear acquisition via instructions with- or 
without direct experience. 2014 Unpublished manuscript. 

4. Borsboom D, Haig BD. How to practise Bayesian statistics outside the Bayesian church: What 
philosophy for Bayesian statistical modelling? British Journal of Mathematical and Statistical 
Psychology. 2013; 66:39–44. DOI: 10.1111/j.2044-8317.2012.02062.x [PubMed: 23050943] 

5. Brown, TA., Barlow, DH., Di Nardo, PA. Anxiety Disorders Interview Schedule for DSM-IV 
(ADIS-IV): Client Interview Schedule. Graywind Publications Incorporated; 1994. 

5This suggestion does not apply to cases where an optional stopping design is used, as such a data collection strategy invalidates p-
values.

Krypotos et al. Page 15

J Exp Psychopathol. Author manuscript; available in PMC 2017 July 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



6. Button KS, Ioannidis JP, Mokrysz C, Nosek BA, Flint J, Robinson ES, Munafò MR. Power failure: 
Why small sample size undermines the reliability of neuroscience. Nature Reviews Neuroscience. 
2013; 14:365–376. [PubMed: 23571845] 

7. Cohen J. A power primer. Psychological Bulletin. 1992; 112:155–159. DOI: 
10.1037/0033-2909.112.1.155 [PubMed: 19565683] 

8. Cohen J. The earth is round (p < .05). American Psychologist. 1994; 49:997–1003. DOI: 
10.1037/0003-066X.49.12.997

9. Cumming G. The new statistics: Why and how. Psychological Science. 2014; 25:7–29. DOI: 
10.1177/0956797613504966 [PubMed: 24220629] 

10. Dienes Z. Bayesian versus orthodox statistics: Which side are you on? Perspectives on 
Psychological Science. 2011; 6:274–290. DOI: 10.1177/1745691611406920 [PubMed: 26168518] 

11. Dienes Z. Using Bayes to get the most out of non-significant results. Frontiers in Psychology. 
2014; 5doi: 10.3389/fpsyg.2014.00781

12. Edwards W, Lindman H, Savage LJ. Bayesian statistical inference for psychological research. 
Psychological Review. 1963; 70:193–242. DOI: 10.1037/h0044139

13. Evett I. Implementing Bayesian methods in forensic science. In Fourth Valencia International 
Meeting on Bayesian Statistics. 1991

14. Fisher RA. The logic of inductive inference. Journal of the Royal Statistical Society. 1935; 98:39–
82. DOI: 10.2307/2342435

15. Foa, E., McNally, R. Mechanisms of change in exposure therapy. Current controversies in the 
anxiety disorders. Rapee, RM., editor. New York: Guilford Press; 1996. 

16. Forsyth JP, Zvolensky MJ. Experimental psychopathology, clinical science, and practice: An 
irrelevant or indispensable alliance? Applied and Preventive Psychology. 2001; 10:243–264. DOI: 
10.1016/S0962-1849(01)80002-0

17. Gelman A, Shalizi CR. Philosophy and the practice of Bayesian statistics. British Journal of 
Mathematical and Statistical Psychology. 2013; 66:8–38. DOI: 10.1111/j.2044-8317.2011.02037.x 
[PubMed: 22364575] 

18. Hofmann SG. Cognitive processes during fear acquisition and extinction in animals and humans: 
Implications for exposure therapy of anxiety disorders. Clinical Psychology Review. 2008; 
28:199–210. [PubMed: 17532105] 

19. Holmes EA, Bourne C. Inducing and modulating intrusive emotional memories: A review of the 
trauma film paradigm. Acta Psychologica. 2008; 127:553–566. DOI: 10.1016/j.actpsy.2007.11.002 
[PubMed: 18234153] 

20. Jeffreys, H. Theory of probability. 3rd ed. Oxford, UK: Oxford University Press; 1961. 

21. Kass RE, Raftery AE. Bayes factors. Journal of the American Statistical Association. 1995; 
90:773–795. DOI: 10.1080/01621459.1995.10476572

22. Kruschk, JK. Doing Bayesian data analysis: A tutorial with R and BUGS. 2nd Edition. New York, 
NY: Academic Press; 2015. 

23. Kruschke JK. Bayesian assessment of null values via parameter estimation and model comparison. 
Perspectives on Psychological Science. 2011; 6:299–312. DOI: 10.1177/1745691611406925 
[PubMed: 26168520] 

24. Lakens D. Performing high-powered studies efficiently with sequential analyses. European Journal 
of Social Psychology. 2014; 44:701–710. DOI: 10.1002/ejsp.2023

25. Lee, MD., Wagenmakers, E-J. Bayesian modeling for cognitive science: A practical course. 
Cambridge University Press; 2013. 

26. Lewis SM, Raftery AE. Estimating Bayes factors via posterior simulation with the Laplace-
Metropolis estimator. Journal of the American Statistical Association. 1997; 92:648–655. DOI: 
10.1080/01621459.1997.10474016

27. Liu CC, Aitkin M. Bayes factors: Prior sensitivity and model generalizability. Journal of 
Mathematical Psychology. 2008; 52:362–375. DOI: 10.1016/j.jmp.2008.03.002

28. Love J, Selker R, Marsman M, Jamil T, Dropmann D, Verhagen AJ, Wagenmakers E-J. JASP 
(Version 0.7.1)[Computer software]. 2015 https://jasp-stats.org/. 

Krypotos et al. Page 16

J Exp Psychopathol. Author manuscript; available in PMC 2017 July 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

https://jasp-stats.org/


29. Ly A, Verhagen J, Wagenmakers E-J. Harold Jeffrey’s default Bayes factor hypothesis tests: 
Explanation, extension, and application in psychology. Journal of Mathematical Psychology. 2016; 
72:19–32. DOI: 10.1016/j.jmp.2015.06.004

30. Mauss IB, Robinson MD. Measures of emotion: A review. Cognition & Emotion. 2009; 23:209–
237. DOI: 10.1080/02699930802204677 [PubMed: 19809584] 

31. McElreath, R. Statistical Rethinking: A Bayesian course with examples in R and Stan. Boca Raton, 
FL: Chapman & Hall/CRC Press; 2016. 

32. Milad MR, Goldstein JM, Orr SP, Wedig MM, Klibanski A, Pitman RK, Rauch SL. Fear 
conditioning and extinction: Influence of sex and menstrual cycle in healthy humans. Behavioral 
Neuroscience. 2006; 120:1196–1203. DOI: 10.1037/0735-7044.120.5.1196 [PubMed: 17201462] 

33. Morey RD, Hoekstra R, Rouder JN, Lee MD, Wagenmakers E-J. The fallacy of placing confidence 
in confidence intervals. Psychonomic Bulletin & Review. 2015; 23:103–123. DOI: 10.3758/
s13423-015-0947-8

34. Morey RD, Rouder JN. BayesFactor: Computation of Bayes factors for common designs 
[Computer software manual]. 2015 Retrieved from http://CRAN.R-project.org/
package=BayesFactor (R package version 0.9.11-1). 

35. Olsson A, Phelps EA. Learned fear of “unseen” faces after Pavlovian, observational, and instructed 
fear. Psychological Science. 2004; 15:822–828. DOI: 10.1111/j.0956-7976.2004.00762.x 
[PubMed: 15563327] 

36. Peterson, RA., Reiss, S. Anxiety sensitivity index revised test manual. Worthington, OH: IDS 
Publishing; 1993. 

37. Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 
1977; 64:191–199. DOI: 10.1093/biomet/64.2.191

38. Pollard P, Richardson J. On the probability of making Type I errors. Psychological Bulletin. 1987; 
102:159–163. DOI: 10.1037/0033-2909.102.1.159

39. R Core Team. R: A language and environment for statistical computing [Computer software 
manual]. Vienna, Austria: 2015. Retrieved from https://www.R-project.org/

40. Rachman S. The conditioning theory of fear acquisition: A critical examination. Behaviour 
Research and Therapy. 1977; 15:375–387. DOI: 10.1016/0005-7967(77)90041-9 [PubMed: 
612338] 

41. Rachman S. Neo-conditioning and the classical theory of fear acquisition. Clinical Psychology 
Review. 1991; 11:155–173. DOI: 10.1016/0272-7358(91)90093-A

42. Raes AK, De Houwer J, De Schryver M, Brass M, Kalisch R. Do CS-US pairings actually matter? 
A within-subject comparison of instructed fear conditioning with and without actual CS-US 
pairings. PloS ONE. 2014; 9:e84888.doi: 10.1371/journal.pone.0084888 [PubMed: 24465447] 

43. Rosenthal R. The file drawer problem and tolerance for null results. Psychological Bulletin. 1979; 
86:638.doi: 10.1037/0033-2909.86.3.638

44. Rouder JN, Morey RD. Default Bayes factors for model selection in regression. Multivariate 
Behavioral Research. 2012; 47:877–903. DOI: 10.1080/00273171.2012.734737 [PubMed: 
26735007] 

45. Rouder JN, Morey RD, Verhagen J, Province JM, Wagenmakers E-J. Is there a free lunch in 
inference? Topics in Cognitive Science. in press. 

46. Rouder JN, Speckman PL, Sun D, Morey RD, Iverson G. Bayesian t tests for accepting and 
rejecting the null hypothesis. Psychonomic Bulletin & Review. 2009; 16:225–237. DOI: 10.3758/
PBR.16.2.225 [PubMed: 19293088] 

47. Savage, L. The foundations of statistical inference: A discussion. London: Methuen: 1962. 

48. Schönbrodt FD, Wagenmakers E-J, Zehetleitner M, Perugini M. Sequential hypothesis testing with 
Bayes factors: Efficiently testing mean differences. Psychological Methods. in press. 

49. Sevenster D, Beckers T, Kindt M. Instructed extinction differentially affects the emotional and 
cognitive expression of associative fear memory. Psychophysiology. 2012; 49:1426–1435. DOI: 
10.1111/j.1469-8986.2012.01450.x [PubMed: 22958209] 

50. Spielberger, CD., Gorsuch, RL., Lushene, RE. Manual for the State-Trait Anxiety Inventory. Palo 
Alto, CA: Consulting Psychologists Press; 1970. 

Krypotos et al. Page 17

J Exp Psychopathol. Author manuscript; available in PMC 2017 July 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts

http://CRAN.R-project.org/package=BayesFactor
http://CRAN.R-project.org/package=BayesFactor
https://www.R-project.org/


51. SPSS. IBM SPSS statistics for Windows, version 20.0. New York: IBM Corp; 2011. 

52. van de Schoot R, Broere JJ, Perryck KH, Zondervan-Zwijnenburg M, van Loey NE. Analyzing 
small data sets using Bayesian estimation: the case of posttraumatic stress symptoms following 
mechanical ventilation in burn survivors. European Journal of Psychotraumatology. 2015; 
6:25216.doi: 10.3402/ejpt.v6.25216 [PubMed: 25765534] 

53. Vanpaemel W. Prior sensitivity in theory testing: An apologia for the Bayes factor. Journal of 
Mathematical Psychology. 2010; 54:491–498. DOI: 10.1016/j.jmp.2010.07.003

54. Vanpaemel W, Lee MD. Using priors to formalize theory: Optimal attention and the generalized 
context model. Psychonomic Bulletin & Review. 2012; 19:1047–1056. DOI: 10.3758/
s13423-012-0300-4 [PubMed: 22869335] 

55. Wasserstein RL, Lazar NA. The ASA's Statement on p-Values: Context, Process, and Purpose. The 
American Statistician. 2016; 70:129–133. DOI: 10.1080/00031305.2016.1154108

56. Wagenmakers, E-J., Verhagen, AJ., Ly, A., Matzke, D., Steingroever, H., Rouder, JN., Morey, RD. 
The need for Bayesian hypothesis testing in psychological science. Psychological science under 
scrutiny: Recent challenges and proposed solutions. Lilienfeld, SO., Waldman, I., editors. John 
Wiley and Sons; in press

57. Wetzels R, Grasman RP, Wagenmakers E-J. A default Bayesian hypothesis test for ANOVA 
designs. The American Statistician. 2012; 66:104–111. DOI: 10.1080/00031305.2012.695956

58. Wetzels R, Matzke D, Lee MD, Rouder JN, Iverson GJ, Wagenmakers E-J. Statistical evidence in 
experimental psychology an empirical comparison using 855 t tests. Perspectives on Psychological 
Science. 2011; 6:291–298. DOI: 10.1177/1745691611406923 [PubMed: 26168519] 

59. Wetzels R, Raaijmakers JG, Jakab E, Wagenmakers E-J. How to quantify support for and against 
the null hypothesis: A flexible WinBUGS implementation of a default Bayesian t–test. 
Psychonomic Bulletin & Review. 2009; 16:752–760. DOI: 10.3758/PBR.16.4.752 [PubMed: 
19648463] 

60. Wetzels, R., van Ravenzwaaij, D., Wagenmakers, E-J. Bayesian analysis. The Encyclopedia of 
Clinical Psychology. Cautin, R., Lilienfeld, S., editors. Wiley-Blackwell; in press

61. Wetzels R, Wagenmakers E-J. A default Bayesian hypothesis test for correlations and partial 
correlations. Psychonomic Bulletin & Review. 2012; 19:1057–1064. DOI: 10.3758/
s13423-012-0295-x [PubMed: 22798023] 

62. Zvolensky MJ, Lejuez C, Stuart GL, Curtin JJ. Experimental psychopathology in psychological 
science. Review of General Psychology. 2001; 5:371–381. DOI: 10.1037/1089-2680.5.4.371

Krypotos et al. Page 18

J Exp Psychopathol. Author manuscript; available in PMC 2017 July 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Figure 1. 
Number of publications indexed in Thomson Reuters’ Web of Science, research area social 

sciences, that have the word “Bayes” in their topic fields (i.e., title, abstract, or keywords), 

by year, 2000-2014 (as of November 04, 2015). See Wetzels, van Ravenzwaaij, and 

Wagenmakers (in press) for a similar analysis.
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Figure 2. 
Plots of the prior distribution (left panel), likelihood distribution (middle panel), and 

posterior distribution (right panel).
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Figure 3. 
Three Cauchy distributions for three different scale parameters (see legend). Each 

distribution depicts the prior distribution of Cohen’s d effect size under the HA. This plot is 

based on a similar plot by Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, (in press).
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Figure 4. 
Mean US-expectancy ratings during acquisition and test, by CS, for the instructed 

acquisition group (top) and the combined acquisition group (bottom).
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Figure 5. 
Mean FPS responses during acquisition and test, by CS, for the instructed acquisition group 

(top) and the combined acquisition group (bottom).
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Table 1

Schematic representation of the experimental design (see text for details).

Group Habituation Acquisition Test

Instructed 2 CS1 6 CS1 2 CS2

2 CS2 6 CS2 2 CS3

2 CS3 6 CS3 2 NA

2 NA 6 NA

Combined 2 CS1 6 CS1 2 CS1

2 CS2 6 CS2 2 CS3

2 CS3 6 CS3 2 NA

2 NA 6 NA
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