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Abstract

Many viruses deliver their genomes into the nucleoplasm for viral transcription and replication. 

Here, we describe a novel cell-free system to elucidate specific interactions between viruses and 

nuclear pore complexes (NPCs). Nuclei reconstituted in vitro from egg extracts of Xenopus laevis, 

an established biochemical system to decipher nuclear functions, were incubated with GFP-tagged 

capsids of herpes simplex virus, an alphaherpesvirus replicating in the nucleus. Capsid binding to 

NPCs was analyzed using fluorescence and field emission scanning electron microscopy. 

Tegument-free capsids or viral capsids exposing inner tegument proteins on their surface bound to 

nuclei, while capsids inactivated by a high-salt treatment or covered by inner and outer tegument 

showed less binding. There was little binding of the four different capsid types to nuclei lacking 

functional NPCs. This novel approach provides a powerful system to elucidate the molecular 

mechanisms that enable viral structures to engage with NPCs. Furthermore, this assay could be 

expanded to identify molecular cues triggering viral genome uncoating and nuclear import of viral 

genomes.
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Introduction

More than 30 proteins termed nucleoporins (Nups) assemble into NPCs that serve as 

specialized gateways in the nuclear envelope to allow active and passive bidirectional 

molecular traffic between the cytosol and the nucleoplasm (1–3). The structural organization 

of NPCs is similar in humans and amphibians; both possess a central channel with an inner 

diameter of about 50 nm at their center surrounded by an elaborate scaffold structure with 8-

fold rotational symmetry (4, 5). Their nucleoplasmic face is capped by the nuclear basket, 

while filaments of up to 50 nm in length protrude freely from the cytosolic face. NPCs allow 

the passage of molecules up to about 5 nm in diameter by diffusion, while shuttling nuclear 

transport receptors, called importins and exportins, are required for active translocation of 

cargoes (6–8). A RanGTP/RanGDP gradient across the nuclear envelope and members of 

the importin β superfamily control the directionality of transport, but the translocation 

process itself does not require GTP hydrolysis (8–12).

Herpesviruses comprise a large group of DNA viruses that have been identified from 

humans to mollusks (13). Herpes simplex virus type 1 (HSV1) is a human alphaherpesvirus 

with a genome of 152 kb that is packaged into an icosahedral capsid of 125 nm in diameter 

(14). The major capsid protein VP5 forms 150 hexons on the capsid faces and edges and 11 

pentons at vertices, while the 12th vertex is occupied by a dodecamer of pUL6 that operates 

as a portal (15). The capsids are enclosed by an eccentric tegument of about 25 distinct 

proteins that have been classified into a more ordered inner and a less structured outer layer 

(16–22). The outer tegument binds to cytosolic domains of viral glycoproteins embedded 

into the viral envelope, overall forming a virion of about 225 nm in diameter (16, 22). Three 

types of capsids can be readily purified from the nuclei of infected cells (c.f. Fig. 1, top left): 

C capsids, which are the heaviest on sedimentation gradients, contain a viral genome; B 

capsids contain the scaffold proteins but no DNA; and A capsids, which are empty, lack both 

scaffold proteins and DNA. The packaging of progeny genomes into nuclear, rather 

spherical pro-capsids results in the formation of C capsids that are then predominantly 

exported across the nuclear envelope, while the nuclear A and B capsids are considered 

dead-end products (14, 23). The cytosolic capsids recruit inner tegument proteins such as 

pUL36 and pUL37 and are transported to cytoplasmic membranes to acquire the outer 

tegument and their envelopes (22–26). The virions are transported within secretory vesicles 

to the plasma membrane for release by exocytosis (22–24).

After HSV1 cell entry by fusion with host membranes, inner tegument proteins such as 

pUL36 and pUL37 remain capsid-associated, while most or all outer tegument proteins 

detach (25–31). The capsids recruit the motor protein dynein and its cofactor dynactin for 

transport along microtubules towards the nucleus (32, 33). Electron microscopy images 

show parental capsids interacting with the cytosolic filaments emanating from NPCs, with 

one vertex facing the central channel (33–39). While most of these capsids appear empty, 

fortuitous cross sections seem to visualize the viral DNA genome as it is ejected from one 

vertex through the NPC (33, 39). Similarly, after a short adsorption to a solid surface, the 

DNA is also ejected in vitro as a single double helix from one vertex, most likely the portal 

(40). These observations are consistent with the notion that HSV1 utilizes energy from ATP 

hydrolysis to package genomes into capsids, while a pressure-driven mechanism pushes the 
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genomes out of the capsids and through the permeability barrier of NPCs (41–43). The 

capsids are able to withstand this internal pressure by further stabilization of the capsid shell 

that seems to be initiated by DNA packaging after protein scaffold expulsion (44).

A biochemical cell-free system based on Xenopus laevis extracts has greatly aided studies of 

NPC assembly and nuclear transport (c.f. Fig. 1, right). Adding chromatin to fractionated 

egg extracts triggers a complex series of events including membrane vesicle recruitment, 

vesicle fusion, and assembly of NPCs into the newly forming nuclear envelopes (45–48). 

NPC assembly can be blocked by the addition of Imp β45-462, a truncated form of importin 

β, or by the Ca2+-chelator BAPTA [1,2-bis(o-aminophenoxy)-ethane-N,N,N',N'-tetraacetic 

acid], resulting in the formation of apparently pore-free nuclei in which the chromatin is 

fully enclosed by membranes lacking any signs of NPCs (49). These and other biochemical 

interventions make this in vitro system a powerful tool for the analysis of various nuclear 

functions (50).

Much remains to be learned about capsid docking at NPCs, viral genome uncoating, and 

viral genome translocation into the nucleoplasm. Since NPCs are essential for cell survival, 

it is a challenge to elucidate their function in intact cells. Our first in vitro study has shown 

that isolated HSV1 capsids derived from extracellular virions by TX-100 lysis in the 

presence of 0.5 M NaCl can bind to nuclei isolated from rat liver, and that importin β, the 

RanGTP/GDP cycle, and capsid-NPC interactions are required to trigger the release of the 

viral genomes (37). Similarly, capsids isolated from virions by TX-100 lysis in the presence 

of 0.5 M KCl interact in vitro with dynein, its cofactor dynactin, kinesin-1 and kinesin-2 

from both, pig brain cytosolic extracts or from Xenopus egg extracts, and assemble 

functional capsid-motor complexes that can translocate along microtubules in vitro 
(summarized in Table 1; (19, 20, 51)).

These studies show that key virus-host interactions are conserved from amphibians to 

mammals, and that capsids derived from extracellular virions by detergent lysis at 0.5 M 

NaCl or 0.5 M KCl maintain their affinity for specific host factors. In contrast, capsids 

isolated from the nuclei of infected cells, or capsids prepared by detergent lysis of 

extracellular virions in the presence of 0.1 M KCl do not bind to microtubule motors, while 

viral capsids isolated in the presence of 1 M KCl maintain their ability to interact with 

dynein, but no longer bind to kinesins (summarized in Table 1; c.f. Fig. 1 left; (19, 20)). Our 

subsequent immunoblot analysis, quantitative mass spectrometry and quantitative 

immunoelectron microscopy studies have shown that viral capsids treated with 0.5 M KCl 

expose the inner tegument proteins pUL36, pUL37 and pUS3 and only low amounts of outer 

tegument proteins such as VP13/14, VP16, VP22, while capsids treated with 0.1 M KCl 

harbor in addition to inner tegument high amounts of outer tegument (summarized in Table 

1; (19, 20)).

In this report, we describe a novel cell-free assay that measures the binding of HSV1 capsids 

to reconstituted Xenopus nuclei (c.f. Fig. 1, bottom). Our results show that nuclear capsids 

that display only outer capsid proteins on their surfaces and 0.5 M KCl viral capsids 

exposing outer capsid proteins in addition to inner tegument proteins, but not the other viral 

capsid types bind specifically to nuclei harboring functional NPCs. This new biochemical 
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assay has broad potential for the study of interactions between viral structures with distinct 

components of the NPC as well as the nuclear import of viral proteins and genomes for 

transcription and replication.

Results

HSV1 capsids with defined surface features

To identify the role of HSV1 structures in binding to NPCs, we prepared capsids 

characterized by different surface features. To isolate nuclear capsids (c.f. Fig. 1, left), we 

treated infected cells prior to lysis with two different buffers: with TNE containing 0.5 M 

NaCl as reported by Newcomb and Brown (52, 53), or with MKT containing a physiological 

concentration of 0.1 M KCl before cell lysis as described in our previous studies (19, 20, 

51). Viral capsids were prepared from extracellular virions using TX-100 in the presence of 

1 M, 0.5 M or 0.1 M KCl as described in our previous studies (19, 20); c.f. Fig. 1, middle). 

Immunoblot analysis did not reveal any differences in the protein composition of the 

different nuclear capsid preparations irrespective of the buffer used prior to cell lysis (Fig. 

2). Nuclear capsids contained the capsid proteins VP5, VP19c and VP23 in similar amounts 

to viral capsids, although there were some minor variations between different preparations. 

B capsids also contained the scaffold proteins VP21 and VP22a. The amount of pUL25 was 

similar on A, B and C capsids, but appeared higher on viral capsids than on nuclear capsids. 

When compared to such nuclear capsids, the three types of viral capsids also contained 

similar amounts of the inner tegument proteins pUL36 and pUL37. By contrast, the outer 

tegument protein VP13/14 was most prominent on viral 0.1 M KCl capsids, but not present 

on nuclear capsids, consistent with our previous analysis (summarized in Table 1; (19, 20, 

51)).

We next analyzed the capsid surfaces using electron cryo tomography and sub-volume 

averaging, and compared the degree of tegumentation of viral capsids to that of nuclear C 

capsids (Fig. 3). Since viral capsids had a tendency to aggregate, we selected single capsids 

present in holes of the carbon support film for analysis. In total, we averaged 183, 246 or 

198 capsids isolated in the presence of 1 M, 0.5 M or 0.1 M KCl, respectively. The capsid 

averages were filtered to a resolution of 5.6 nm, and the differences in densities were 

calculated by subtracting the gray values of nuclear capsids from those of KCl-treated 

capsids. We detected little differences between viral capsids treated with 1 M KCl and 

nuclear capsids (yellow in Fig. 3Av, 3Avi). By contrast, there was a clear extra density on 

viral capsids prepared with 0.5 M KCl (orange in Fig. 3Bv, 3Bvi) and even more 

pronounced on 0.1 M KCl capsids (red in Fig. 3Cv, 3Cvi). These densities were located at 

the vertices protruding from the top of the pentons and from one side of the neighboring 

hexons, but not on the other hexons. Thus, viral and nuclear HSV1 capsids vary substantially 

in their protein composition and in their surface structure, and may therefore differ in their 

interactions with shuttling nuclear transport receptors and NPCs.

Nuclei harboring NPCs reconstituted from Xenopus laevis egg extracts

To develop a novel method to study capsid interactions with NPCs, we assembled nuclei in 
vitro from Xenopus laevis egg extracts. De-membranated sperm chromatin was incubated 
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with membrane vesicles as a source for nuclear membranes and a cytosolic fraction as a 

source for Nups (Fig. 1, top left; (46, 54)). Nuclear assembly was validated for each 

experiment by labeling with the monoclonal antibody mAb414 recognizing FG-repeat Nups 

in mature NPCs (55). A rim-like signal around the chromatin indicated the formation of 

nuclei surrounded by nuclear envelopes harboring NPCs (Fig. 4Aii). No NPC staining was 

observed when either Imp β45-462 (Fig. 4Bii) or BAPTA (Fig. 4Cii) had been added to the 

reconstitution mixture. Furthermore, TRITC-NLS-BSA, a reporter cargo of the classical 

importin α/β pathway, was imported into functional control nuclei (Fig. 4Aiv), but not into 

pore-free nuclei (Figs. 4Biv and 4Civ).

An in vitro assay to decipher the interactions of viral capsids with NPCs

To detect capsids, we used an HSV1-GFPVP26 strain in which the outer capsid protein 

VP26 has been replaced by a GFPVP26 fusion protein that is incorporated into virions 

during capsid assembly (56). Although a fraction of GFPVP26 seems to dissociate during 

cytosolic passage in epithelial cells, sufficient amounts remain associated with and are 

detected on HSV1 capsids docked at the nuclei (57). Furthermore, HSV1-GFPVP26 capsids 

utilize microtubule transport and, like wild-type capsids, recruit dynein from cytosolic 

extracts of Xenopus laevis eggs (20, 57). Thus, the GFP tag on VP26 does not interfere with 

crucial cytosolic capsid-host interactions. Of the capsids tested here, viral capsids treated 

with 0.5 M KCl are most similar in terms of protein composition to the ones that bind to 

NPCs of rat liver nuclei or to microtubule motors (19, 20, 37). To investigate whether such 

capsids can also bind to Xenopus NPCs, we incubated 0.5 M KCl viral capsids of HSV1-

GFPVP26 with reconstituted nuclei. To delineate the nuclear envelopes, fluorescent Imp 

β45-462 was added during the last 10 min of the respective binding reaction. Initial time 

course experiments revealed that the number of bound capsids varied between the different 

capsid types and preparations, but remained rather constant during a time window of 30 to 

90 min (data not shown). While surface views in top and bottom confocal laser microscopy 

sections showed punctate labelling typical of NPCs (Fig. 4Di, red in Fig. 4Diii) and HSV1 

capsids scattered over the nuclear surface (Fig. 4Dii, green in Fig. 4Diii), mid sections 

revealed capsids (Fig 4Eii, green in Fig. 4Eiii, white arrowheads) closely juxtaposed to the 

rim labelling of the nuclear envelopes (Fig. 4Ei, red in Fig. 4Eiii).

To obtain further information on the association of capsids with Xenopus nuclei, we used 

high resolution field emission scanning electron microscopy (FESEM) to image the nuclear 

surface. Samples were labeled with a polyclonal antiserum raised against viral capsids, 

followed by anti-rabbit-antibodies conjugated to 12 nm colloidal gold particles. The three-

dimensional surface topography of reconstituted nuclei, including the cytoplasmic surface of 

NPCs is seen in the in-lens images (Fig. 4F), while the corresponding backscatter electron 

detector images reveal the position of gold-conjugated antibodies (Fig. 4G). Thus, HSV1 

capsids could be unequivocally identified by multiple gold particles, which often lined up 

along the capsid edges and vertices (Fig. 4G; white arrowheads). Each capsid blocked a 

considerable area of the nuclear envelope from view, but depending on the imaging angle, it 

was possible to obtain partial views of NPCs underneath the capsids (Fig. 4Fi, 4Fii; white 

arrows). Controls in which either the capsids or the primary antibodies had been omitted 
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revealed little background labeling (not shown). These experiments demonstrated that HSV1 

capsids are capable of docking onto NPCs of in vitro reconstituted Xenopus nuclei.

Specific capsid features and functional NPCs are required for HSV1 capsid binding to 
Xenopus nuclei

To determine which HSV1 capsid types were targeted to NPCs, we tested nuclear C capsids, 

as well as viral capsids extracted at 1 M, 0.5 M or 0.1 M KCl, for binding to functional 

nuclei harboring NPCs or to pore-free nuclei assembled in the presence of Imp β45-462 or 

BAPTA. Several images of HSV1-GFPVP26 capsids were acquired by epi-fluorescence 

microscopy at different focal planes, merged and superimposed with a middle focal plane 

image of the DNA-stained nucleus. Only immobile capsids colocalizing with the DNA were 

scored as bound to nuclei, and their number was determined for 5 to 20 nuclei in each 

condition. This setup allowed a comparison of several conditions on the same day. However, 

no binding of HSV1 capsids to Xenopus nuclei was observed if either component had been 

stored for several hours at room temperature, on ice or frozen. Instead, it was mandatory to 

isolate HSV1 capsids for each experiment and to reconstitute Xenopus nuclei just prior to 

their co-incubation, and only a few parameters could be compared within one given 

experiment. Therefore, we integrated all experiments into one analysis, although some 

conditions had been evaluated more often than others (Table 2).

To summarize the data of many experiments in a comparative manner, we set the mean 

number of the 0.5 M KCl viral capsids (14.8 capsids) bound per functional nucleus to 100% 

(Table 2, Fig. 5). All types of viral and nuclear C capsids were targeted to Xenopus nuclei to 

some extent, with the viral 0.5 M KCl capsids and the nuclear capsids showing the highest 

degree of binding. While the number of viral 0.5 M KCl capsids was comparable to that of 

nuclear capsids, 0.1 M and 1 M capsids bound significantly less efficiently (p = 0.001). 

Furthermore, the binding of all capsid types was substantially reduced for nuclei that had 

been reconstituted in the presence of Imp β45-462 or BAPTA. Since the binding of 1 M viral 

capsids to BAPTA-treated nuclei was the lowest of all conditions tested, it may be 

considered as nonspecific background. These results show that HSV1 capsids docked 

specifically onto NPCs of in vitro reconstituted Xenopus nuclei, and that this interaction was 

mediated by outer capsid and/or inner tegument proteins exposed in a functional 

conformation on the surface of 0.5 M KCl and nuclear C capsids.

Discussion

A cell-free assay to analyze viral interactions with NPCs

Very few biochemical studies have been able to address an association of viral structures 

with NPCs (37, 58–61). To study the nuclear targeting of mammalian viruses, we have 

harnessed Xenopus nuclei reconstituted in vitro that have been used extensively to study 

nuclear assembly and nuclear transport (48, 54, 62, 63). HSV1 viral capsids, isolated from 

virions with TX-100 in the presence of 0.5 M KCl, as well as nuclear C capsids interacted 

specifically with nuclei harboring functional NPCs. High resolution FESEM imaging 

demonstrated that capsids bound specifically to the cytoplasmic surface of NPCs. In cells, 

incoming HSV1 capsids require microtubule motors for their transport towards NPCs, and 
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indeed viral 0.5 M KCl capsids, but not nuclear C capsids recruit microtubule motors from 

Xenopus egg and pig brain cytosol (19, 20). Notably, both 0.5 M KCl and nuclear C capsids 

were shown here to bind specifically to NPCs.

Xenopus reconstitution reactions can be fine-tuned to block nuclear assembly at specific 

stages (64, 65). The addition of Imp β45-462 or BAPTA results in the formation of 

membrane-sealed assembly intermediates that lack any architectural signs of NPCs and are 

thus considered to be pore-free (49). We observed a residual affinity of HSV1 capsids to 

such nuclei, which most likely indicates the level of background binding to nuclear 

envelopes. The preferential binding of 0.5 M KCl and nuclear C capsids cannot be solely 

attributed to the fact that nuclei assembled in the presence of Imp β45-462 or BAPTA do not 

expand as much as in the controls (Fig. 4; (49, 54)). While they present a reduced surface 

area, there was little specificity among the four capsid types in binding to Imp β45-462 or 

BAPTA nuclei. In contrast, 0.5 M KCl and nuclear capsids had a significantly higher affinity 

for nuclei harboring functional NPCs.

Surface features on HSV1 capsids

Using electron cryo tomography, we have identified substantial differences on the surface of 

the different capsid types. There were pronounced extra densities on 0.5 M KCl capsids and 

even more prominent densities on 0.1 M capsids when compared to nuclear C capsids. The 

shape of these densities is similar to those on cytosolic capsids imaged in vivo in the axons 

of neurons (66), and on viral capsids extracted with detergent and 0.5 M NaCl (67). Previous 

protein analyses have also revealed differences: whereas nuclear capsids lack tegument 

proteins, viral 0.5 M KCl capsids contain mainly inner tegument proteins, and viral 0.1 M 

KCl capsids maintain both inner and outer tegument proteins (summarized in Table 1; (19, 

20)). Similar to viral 0.5 M KCl capsids, viral 0.5 M NaCl capsids also contain pUL36 and 

pUL37 and only low amounts of outer tegument proteins (68).

These data are consistent with the notion that viral capsids extracted with TX-100 and 0.5 M 

salt maintain additional proteins around their pentons, which most likely include inner 

tegument proteins. By contrast, we detected only minor structural differences between 1 M 

KCl viral and nuclear capsids, although the former contain more tegument proteins than the 

latter (c.f. Fig. 2; (19, 20)). Apparently these proteins do not form an ordered density on the 

capsid surface and were therefore not revealed in the icosahedrally symmetrized averages.

HSV1 proteins interacting with Nups

The outer capsid protein pUL25, and the inner tegument protein pUL36, are likely 

candidates to target incoming capsids to NPCs.

pUL17 and pUL25 form complexes that connect the pentons and possibly also the portal 

with the surrounding hexons (69, 70). Furthermore, capsid-associated pUL25 is required for 

proper genome uncoating at the NPC, and biochemical assays have shown that pUL25 can 

interact with Nup214 and hCG1, two Nups facing the cytosol (39, 71–73). pUL25 epitopes 

are accessible on the surface of the four capsid types tested here, as shown by 

immunoelectron microscopy of isolated capsids (c.f. Table 1; (19)).
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pUL36 and pUL37 form complexes that are presumably located at the pentons, and that 

remain capsid-associated during transport to the nucleus (25, 26, 28, 67, 68, 71). Antibodies 

directed against pUL36 reduce nuclear targeting, incoming capsids lacking pUL36 or 

lacking the N-terminal nuclear localization sequence in pUL36 are not targeted to NPCs, 

capsids with a point-mutation in pUL36 fail to release their genomes, and proteolysis of 

pUL36 seems to be a prerequisite for the nuclear import of viral DNA (34, 74–77). 

Polyclonal antibodies have access to more pUL36 epitopes on the surface of 0.5 M KCl 

capsids than on 1 M or 0.1 M capsids, whereas pUL36 cannot be detected on nuclear capsids 

by these antibodies or by mass spectrometry (c.f. Table 1; (19)).

Thus, surface exposed pUL25 could mediate the interaction of both viral 0.5 M KCl and 

nuclear capsids with NPCs, while surface exposed pUL36 could only be involved in the 

association of viral 0.5 M KCl capsids with NPCs. However, additional pUL36 on the 0.5 M 

KCl capsids when compared to nuclear capsids did not stimulate NPC association. 

Furthermore, the treatment with 0.1 M or 1 M KCl apparently impaired HSV1 factors 

contributing to NPC binding. The treatment with 1 M salt might perturb the conformation of 

pUL36, pUL25 or another viral cofactor, while the treatment with 0.1 M KCl might prevent 

the removal of a putative inhibitor involved in NPC binding. Thus, we were able to 

demonstrate that the surface of the four HSV1 capsid types harbor structural differences that 

modulate their capability to interact with Xenopus NPCs as well as their affinity to 

antibodies directed against structural HSV1 proteins. However, so far the molecular and 

structural details of these changes remain elusive, and could not yet be used to unequivocally 

pinpoint to specific proteins mediating the interaction of HSV1 capsids with NPCs.

Clearly, more studies are required to characterize the interactions of viral capsids with 

NPCs. With this new approach, protein domains and peptide motifs suggested by protein-

protein interaction assays using isolated proteins could be tested in the context of the 

complex capsid and NPC structures. Furthermore, this cell-free system may be used to 

determine the requirements for genome release from the capsids and their import into the 

nucleoplasm. It provides many advantages: nuclei harboring NPCs but lacking a particular 

Nup can be generated (62, 63), and even for mutants that do not form virions, cell entry can 

be bypassed if sufficient amounts of viral particles can be generated in heterologous 

systems. Further insight into capsid-docking and viral genome uncoating may be obtained 

by modulating other host factors such as kinases and using nuclei lacking specific Nups or 

capsids harboring subtle mutations. Such studies can identify molecular interactions 

essential for nuclear targeting, which should be maintained in viral vectors but could be 

targeted in antiviral therapy.

Materials and Methods

HSV1 virion preparation

Extracellular virions of HSV1 strain F (ATCC VR-733) or HSV1-GFPVP26 strain KOS 

(K26GFP; (56)) were prepared as before (19, 33, 57). BHK cells (ATCC CCL-10) grown to 

a density of 1 to 2 x 107 cells/175 cm2 flask in MEM (Cytogen, Sinn, Germany) containing 

10% fetal calf serum (PAA, Pasching, Austria) were infected with an MOI of 0.01 to 0.02 

pfu/cell for 2 to 3 days. The media containing extracellular virions and infected cells were 
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centrifuged at 3,000 g for 10 min at 4°C. The cell pellet was suspended in an equal volume 

of TNE (0.5 M NaCl, 20 mM Tris-HCl, pH 7.5, 1 mM EDTA) to prepare TNE-nuclear 

capsids, or of MKT (0.1 M KCl, 30 mM MES, 20 mM Tris, pH 7.4) to prepare MKT-nuclear 

capsids. The cells were aliquoted, frozen in liquid N2, and stored at -80°C. Extracellular 

viral particles were sedimented from the supernatant at 12,000 rpm for 90 min (Type19 

rotor, Beckman Coulter, Fullerton, USA), and the pellet was suspended in MKT buffer, 

aliquoted, frozen in liquid N2, and stored at -80°C.

HSV1 capsid preparation

Nuclear capsids were isolated from infected cells that were homogenized in H2O with 10 

mM DTT and protease inhibitors (PI; 10 μg/ml antipain, 2 μg/ml bestatin, 2 μg/ml pepstatin, 

2 μg/ml aprotinin, 10 μg/ml E-64, 2 μg/ml leupeptin, 160 μg/ml PMSF; Sigma-Aldrich), and 

the nuclei were sedimented at 230 g and 4°C for 7 min and lysed in 1% Triton X-100 in 

TNE supplemented with 10 mM DTT and PIs. These lysates were layered onto linear 

sucrose gradients (20% to 50% sucrose in TNE), and the capsids were banded at 67,000 g 

for 80 min at 4°C (cf. Fig. 1, top left; (19, 20, 51, 53)). The fractions containing the A, B or 

C capsids were diluted 1 to 4 with TNE buffer with DTT and PIs, and sedimented at 50,000 

rpm (TLA 100.2 rotor, Beckman) for 20 min and at 4°C.

Viral capsids were prepared as described before (19, 20, 37, 51). To isolated viral capsids, 

we mixed the sediment of the medium of infected cells with an equal volume of a two-fold 

capsid lysis buffer (2% [w/v] Triton X-100 in 0.2 M, 1 M or 2 M KCl respectively, 20 mM 

MES, 30 mM Tris, pH 7.4, 20 mM DTT, PIs), incubated for 30 min on ice, and layered onto 

sucrose cushions (20% [w/v] sucrose in 0.1 M, 0.5 M or 1 M KCl respectively, 20 mM 

MES, 30 mM Tris pH 7.4, 10 mM DTT, PIs). The capsids were separated from solubilized 

envelope and tegument proteins by ultracentrifugation at 110,000 g for 15 min at 4°C (TLA 

100.2 rotor), suspended in BRB80 (80 mM PIPES, pH 6.8, 12 mM MgCl2, 1 mM EGTA, 10 

mM DTT, PIs), and treated with 0.1 to 0.2 U/μl DNase I (Promega, Madison, USA or 

Roche, Basel, Switzerland) and 100 μg/ml RNase (Roth GmbH, Karlsruhe, Germany) for 30 

min at 37°C to facilitate suspension. After an overnight incubation at 4°C, the capsids were 

sedimented at 110,000 g for 15 min at 4°C (TLA 100.2 rotor) and suspended in ELB-S 

buffer (250 mM sucrose, 50 mM KCl, 10 mM HEPES, pH 7.6, 10 mM DTT, 2.5 mM 

MgCl2, 1 mg/ml BSA, PIs) using a tip sonifier (Sonic B-12; Branson, Danbury, USA) at 40 

W for initially 3 and up to 10 pulses of 1 to 2 seconds. If the capsids still appeared clumped 

by fluorescence microscopy (BX61TRF, 20x objective, Olympus, Melville, USA), further 

pulses were applied. The extent of sonication required for dispersion increased from C-

capsids to viral capsids isolated at 1 M, 0.5 M or 0.1 M KCl.

Antibodies

VP5 was detected by mouse monoclonal antibodies (mAb) H1.4 (Biodesign International - 

Meridian Life Science, Memphis, USA), VP19c by rabbit polyclonal antibodies (pAb) NC2 

(78, 79), VP21/22a by pAb NC3/4 (78), VP23 by pAb NC5 (78), pUL25 by mAb #166 (80), 

pUL36 by pAb #147 (25), pUL37 by pAb pUL37 (26, 81), and VP13/14 by pAb R220 (82). 

NPCs were visualized with fluorescently labeled mAb 414 (A488-120L; Covance, 

Princeton, NJ, USA; (55)), and DNA with Hoechst 33258 (2 μg/ml; Sigma-Aldrich, St. 
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Louis, MO). HSV1 structural proteins were detected by pAb Remus that has been raised 

against tegumented capsids (37).

Immunoblot analysis

Nuclear or viral capsids suspended in sample buffer [1% (w/v) SDS, 50 mM Tris-HCl, pH 

6.8, 5% (v/v) glycerol, 1% (v/v) β-mercaptoethanol, 0.001% (w/v) bromphenol blue] were 

loaded onto 6 to 16% linear gradient SDS-PAGE gels, and the proteins were transferred to 

nitrocellulose membranes (Pall Corporation, NY). After blocking with 5% (w/v) fat-free 

milk in PBS-T (0.1% [v/v] Tween-20, 2.7 mM KCl, 137.9 mM NaCl, 1.5 mM KH2PO4, 8.1 

mM Na2HPO4, pH 7.4), the membranes were probed with primary antibodies and IRDye 

anti-rabbit or anti-mouse antibodies (LI-COR Biosciences, Bad Homburg, Germany), and 

imaged using an Odyssey® Infrared Scanner (LI-COR Biosciences).

Electron cryo tomography

Viral capsids were sonicated for 3 times 10 seconds (BB6 cup horn, Sonoplus HD3200, 60% 

maximal output, Bandelin, Berlin, Germany) directly before adding them onto the grids, and 

processed for electron cryo tomography as described before (66). 5 μl of a capsid 

preparation were added together with 2 μl of a homemade colloidal gold suspension (10 nm 

gold coated with BSA in PBS) onto the holey carbon support film of electron microscopy 

grids (R2-1, Cu 200 mesh, Quantifoil, Jena, Germany), and excess liquid was removed by 

blotting with filter paper. Specimens were vitrified by plunge-freezing into liquid ethane and 

stored in liquid N2.

Data were collected using transmission electron microscopy; some of the 1 M KCl viral 

capsid tilt series were collected with a CM300 (43 of the 183 subvolumes; FEI-Philips, 

Eindhoven, The Netherlands), while the rest including the tilt series from other capsid types 

were collected with a Tecnai Polara (FEI, Eindhoven, The Netherlands). The microscopes 

were operated at 300 kV; the pixel size was 0.68 nm (CM300) or 0.81 nm (Polara) at the 

specimen level, and tilt series were collected with an angular increment of 2° or 3° from -60° 

to 60°. Defocus was measured along the tilt axis after each tilt and automatically maintained 

at -8 μm +/- 0.5μm to gain phase contrast. The total electron dose received at the specimen 

level was kept between 60 and 90 electrons/Å2. The applied electron dose was kept 

proportional to 1/cosα of the tilt angle (α). Images were acquired on a 2Kx2K Multiscan 

CCD camera (GIF 2002 post-column energy filter, Gatan, Pleasanton, CA).

Image processing and averaging of tomographic sub-volumes

Alignment of tilted projection image series was performed using 10 nm gold beads as 

fiducial markers. Three-dimensional reconstructions were calculated using the software 

IMOD (83), and subsequent processing using Bsoft as described before (66, 84). Capsids 

were located in unbinned tomograms, and sub-volumes with a size of 180x180x180 pixels 

were extracted. The 3D orientation of all sub-volumes was determined using a 22 Å 

resolution structure of the HSV1 capsid (85) as a template. The oriented sub-volumes were 

averaged and icosahedral symmetry was applied. Symmetrized averages were used as 

templates for the next iteration of orientation refinement. Three iterations were performed.
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The resolution of the averages was determined by Fourier shell correlation using the 0.5 

criterion, after splitting the data in two halves, calculating two separate averages and 

imposing icosahedral symmetry. To calculate the difference map of the two averages gray 

values were scaled to the same radial density maximum within the capsid and minimum just 

outside of the capsid. The difference of densities was then calculated by subtracting the 

capsids without tegument from the capsids with tegument. All capsid reconstructions were 

first scaled against the nuclear C capsid reconstruction. Magnification differences up to 3.5% 

were detected and these were compensated for by creating up-scaled or down-scaled maps.

Reconstitution of nuclei

Xenopus laevis egg extracts, cytosolic and membrane fractions, demembranated sperm 

chromatin, and an ATP regeneration system were prepared, and nuclei reconstituted within 

50 to 60 min at RT (47, 64). To assemble pore-free nuclei, 8 μM of recombinant Imp β45-462 

or 5 mM BAPTA (Calbiochem, La Jolla, CA, USA) were added to the mixture and 

incubated for 60 min (48). In each experiment the functionality of the reconstituted nuclei 

was tested by removing a fraction of the nuclei for staining with mAb 414 and Hoechst 

33258, and nuclear import analysis with bovine serum albumin coupled to a nuclear 

localization sequence and to tetramethyl-rhodaminyl-isothiocyanate (TRITC-NLS-BSA; 

(48, 50)).

Binding of HSV1 capsids to Xenopus nuclei

The reconstitution reactions were diluted threefold with 1x ELB-S-buffer (pH 7.6, 

supplemented with 2.5 mM MgCl2), 10 μl of nuclear or viral HSV1 capsids were added to 

10 μl of the nuclei, and the reactions were agitated at 7 rpm for 20 to 90 min at room 

temperature (Fig. 1, bottom). Small aliquots were stained with Hoechst 33258 in 12% [w/v] 

para-formaldehyde, 250 mM sucrose, 10 mM HEPES, pH 7.5, 0.4% [w/v] N-propylgalate 

for 5 min. Capsid binding to nuclei was analyzed by epifluorescence microscopy 

(UPlanSApo 100x NA 1.4 oil immersion, Olympus BX61TRF equipped with a DP70 digital 

camera), or by laser scanning confocal fluorescence microscopy (63x NA 1.4 oil immersion, 

ZEISS LSM 510 META, Oberkochen, Germany). 10 to 25 nuclei of each experimental 

condition were randomly chosen, and the number of capsids bound to each nucleus was 

quantified over all focal planes.

Field Emission Scanning Electron Microscopy (FESEM)

In vitro reconstituted intact Xenopus nuclei incubated with HSV1 capsids for 60 min were 

labeled with Remus serum. Its dilution was optimized by fluorescence microscopy and 

adjusted for immunogold labeling. Colloidal gold of 12 nm diameter and coated with goat-

anti-rabbit antibodies (Jackson Immuno-Research, West Grove, USA) was titrated to obtain 

a minimal background signal in the absence of primary antibodies (64, 65). To facilitate the 

capture of nuclei, they were sedimented at 1,000 g for 10 min onto silicon chips (Ted Pella, 

Irvine, USA) that had been coated with 0.2 mg/ml poly-lysine for 15 min. The chips were 

transferred to 24-well plates, washed in 1x ELB-K (100 mM KCl, 10 mM HEPES, pH 7.6, 

2.5 mM MgCl2, 1 mM DTT, 5 μg/ml cycloheximide, 5 μg/ml cytochalasin B, 10 μg/ml 

aprotinin, 10 μg/ml leupeptin), and fixed in 3.7% para-formaldehyde with 0.2% 

glutaraldehyde (Electron Microscopy Sciences; Hatfield, PA, USA) in 150 mM sucrose, 80 

Anderson et al. Page 11

Traffic. Author manuscript; available in PMC 2017 July 24.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



mM PIPES, pH 6.8, 1 mM MgCl2 for 30 min at RT. All subsequent steps were as described 

in (86), with post-fixation in aqueous 0.5% osmium tetroxide, critical-point drying on a 

CPD030 apparatus (Bal-Tec AG, Liechtenstein), and sputter coating with 2 nm of chromium 

(K575X coater, Emitech, London, England). The samples were imaged using a FESEM 

(Ultra plus, ZEISS, Oberkochen, Germany) with an in-lens detector for secondary electrons 

to reveal surface structures, and an energy selective backscatter electron detector to localize 

gold particles.
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pULX viral protein encoded by the gene ULX
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Synopsis

A novel assay based on nuclei reconstituted in vitro from Xenopus egg extracts was used 

for studying the interactions between viruses and nuclear pore complexes (NPCs). The 

targeting of GFP-tagged herpes simplex virus capsids to NPCs was followed by 

fluorescence and scanning electron microscopy. Surface features of different capsid types 

were analyzed by electron cryo tomography and compared to their targeting efficiency in 

the in vitro assay. Capsids exposing outer capsid and inner tegument proteins are targeted 

preferentially to NPCs.
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Figure 1. An in vitro assay to analyze the binding of viral capsids to NPCs.
Nuclear capsids (dark green) were isolated from the nuclei of HSV1 infected cells by 

gradient sedimentation (top left). Viral capsids were generated from mature extracellular 

particles released from HSV1 infected cells by lysis with 1% TX-100 in the presence of 1 

M, 0.5 M or 0.1 M KCl (light and dark green), and purified through sucrose cushions (top 

middle). The four different capsid types were re-suspended in BRB80 buffer before tip 

sonication and DNase/RNase treatment. Nuclei harboring functional NPCs were generated 

in vitro from Xenopus egg extracts around a chromatin template. The formation of NPCs 
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was inhibited in some reactions by the addition of Imp β45-462 or BAPTA to the assembly 

reaction to create nuclei enclosed by continuous membranes lacking functional NPCs (top 

right). After nuclear assembly and re-sedimentation the nuclear or viral 1 M, 0.5 M or 0.1 M 

capsids were incubated with different nuclei for 20 to 90 min at room temperature. Nuclear 

assembly and capsid binding were analyzed by fluorescence light microscopy or field 

emission scanning electron microscopy (FESEM). Modified from Figure 1 of (19).
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Figure 2. Protein composition of different HSV1 capsids types.
Nuclear capsids were isolated from BHK cells infected with HSV1-GFPVP26 using TNE- 

or MKT-buffer for cell suspension, and their protein composition was compared to that of 

viral capsids treated with TX-100 and 1.0 M, 0.5 or 0.1 M KCl by immunoblotting with 

antibodies raised against the capsid proteins VP5 (mAb H1.4), pUL25 (mAb #166), VP19c 

(pAb NC-2), VP21/VP22a (pAb NC3/4), or VP23 (pAb5) or the tegument proteins pUL36 

(pAb #147), pUL37 (pAb anti-pUL37), or VP13/14 (pAb R220).
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Figure 3. Electron cryo tomography reveals surface features of different HSV1 capsids types.
Results from sub-volume averaging are presented for capsids isolated from intact virions 

(HSV1 strain F) and extracted with TX-100 and 1 M (A), 0.5 M (B) or 0.1 M (C) KCl. Row 

(i): cross sections of the averages from 183 (1 M), 246 (0.5 M) or 217 (0.1 M) capsid sub-

volumes. Row (ii): close-up view of the top vertex in row (i). Row (iii): iso-surface 

representation of the averages. Row (iv): close-up view of a salt treated capsid vertex (left), 

compared to nuclear C-capsids (66). Row (v): difference map between the respective salt 

treated capsid group and the nuclear C-capsids average, superimposed onto the nuclear C-
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capsids average. Row (vi): close-up view of a vertex from row (v). The capsids have a 

diameter of 125 nm.
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Figure 4. Targeting of HSV1 capsids to NPCs on Xenopus nuclei in vitro.
A to C. Functional (A), Imp β45-462 (B) or BAPTA (C) nuclei were reconstituted in vitro. 
Completion of nuclear assembly was monitored by epi-fluorescence microscopy by DNA 

staining with Hoechst 33258 (i and iii), NPC staining with fluorescently labeled mAb414 (ii) 

and the transport capacity of the assembled NPCs was confirmed by the nuclear import of 

TRITC-NLS-BSA (iv). Scale bar: 10 µm. D, E. Binding of viral 0.5 M KCl capsids 

extracted from extracellular particles of HSV1-GFPVP26 (ii and iii, green, white 

arrowheads) to Xenopus nuclei was analyzed using confocal fluorescence laser scanning 
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microscopy and a serial z-slicing of 0.37 μm optical sections. A surface view (D) and one 

midsection (E) of a representative nucleus are shown. NPCs were labeled with Imp β45-462-

TRITC (i and iii, red). Scale bar: 10 µm. F, G. HSV1-GFPVP26 viral 0.5 M capsids were 

incubated with Xenopus nuclei harboring functional NPCs for 45 min, labeled with a 

polyclonal rabbit antiserum raised against intact HSV1 capsids (Remus, bleed V) and 

colloidal gold with a diameter of 12 nm coated with anti-rabbit antibodies. The specimens 

were analyzed by field emission scanning electron microscopy. (F) 3D surface topography of 

reconstituted nuclei from different views in the in-lens images (Fig. 4Fi-iii). The same areas 

were imaged through a backscatter electron detector revealing the positions of gold-

conjugated antibodies (Fig. 4Gi-iii; inverted color mode). HSV1 capsids (white arrowheads) 

are bound to the cytoplasmic face of the NPCs (white arrows). Scale bar: 100 nm.
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Figure 5. HSV1 capsid binding to nuclei requires specific capsid surface features and NPCs.
Viral capsids isolated from viral particles with TX-100 and 0.1, 0.5 or 1.0 M KCl or nuclear 

C capsids were incubated with Xenopus nuclei reconstituted in vitro. The number of HSV1 

capsids bound to nuclei harboring functional NPCs (control), or to nuclei assembled in the 

presence of Imp β45-462 or BAPTA was determined by epi-fluorescence microscopy. Images 

were acquired at different focal planes, merged, bound capsids were counted, and the data 

normalized to 100% for 0.5 M viral capsids binding to functional nuclei. The error bars 

indicate the standard error of the mean. Asterisks indicate p<0.0015 and “ns” p>0.05 as 

determined in two-tailed student’s t-test.
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Table 1
Protein Characterization of isolated HSV1 Capsids.

HSV1 capsids were isolated from extracellular virions using TX-100 in the presence of 0.1 M, 0.5 M or 1 M 

KCl or from infected nuclei (nuclear) and the association of microtubule-associated factors was analyzed by 

immunoblot and quantitative electron microscopy (19). Furthermore, the composition of structural HSV1 

proteins was analyzed by immunoblot, quantitative mass spectrometry and quantitative immunoelectron 

microscopy (summarized in (51). The signal intensities of the immunoblots for each protein were evaluated 

qualitatively (+++ for the strongest band, ++, +, and – if there was no or only a negligible band) (19). For mass 

spectrometry data, the amount of the respective protein in gradient-purified extracellular virions was set to 

100%, and the amount of the proteins present on the respective viral capsids were normalized accordingly 

(19). For the immunoelectron microscopy, the labelling intensity of the capsid type with the highest amount of 

surface labelling was set to 100%, and the labelling intensities on the other capsids were normalized 

accordingly. The information on the estimated copy number per virion (copies / virion) was compiled from 

several reports (17, 21, 68, 87–89).

Association of Host Factors Detection Method viral
0.5 M KCl

nuclear
IB on B and C

IEM on B and C

viral
1 M KCl

viral
0.1 M KCl

Dynein IB
IEM [%]

+++
100

-
0

+++
98

-
33

Dynactin IB
IEM [%]

+++
100

-
0

++
66

-
3

Kinesin-1 IB
IEM [%]

+++
100

-
0

-
19

-
4

Kinesin-2 IB
IEM [%]

+++
100

-
35

++
43

+
0

HSV1 proteins
(copies/virion)

Detection Method viral
0.5 M KCl

nuclear
IB on B and C

MS on B
IEM on C

viral
1M KCl

viral
0.1 M KCl

Capsid Proteins +++ +++ +++ +++

VP5 (955) MS [%] 100 100 100 100

VP19c (320) MS [%] 100 100 100 100

VP23 (640) MS [%] 100 100 100 100

VP24 (150) MS [%] 100 100 100 100

VP26 (600) MS [%] 100 100 100 100

pUL17 (60) IB
MS [%]

+++
100

+++
100

+++
100

+++
100

pUL25 (60) IB
MS [%]
IEM [%]

+++
+++
++

+++
+++
++

+++
+++
+++

+++
+++
++

Inner Tegument Proteins +++ - +++/- +++

pUS3 (?) IB
IEM [%]

+++
90

+
19

+++
75

+++
100

pUL36 (150) IB middle ++ -/+ ++ +++

MS [%] 28 - 18 20

MS – Nterm [%] 189 - 183 161
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Association of Host Factors Detection Method viral
0.5 M KCl

nuclear
IB on B and C

IEM on B and C

viral
1 M KCl

viral
0.1 M KCl

IEM - middle Ab [%] 100 1 81 76

IEM - Cterm Ab [%] 100 36 2 58

pUL37 (150) MS [%]
IEM (GFP) [%]

49
94

-
1

21
32

48
100

ICP0 (?) IB +++ - ++ +++

pUL14 (?) IB +++ + +++ +++

pUL16 (?) MS [%] 45 - 21 42

pUL21 (?) MS [%] 55 - 19 50

Outer Tegument Proteins ++ - + +++

pUL41 - vhs (?) IB ++ - + +++

pUL11 (?) IB + - + +++

ICP4 (?) IB ++ - + +++

ICP34.5 (?) IB ++ - ++ +++

VP13/14 (1300-1800) MS [%]
IEM [%]

65
71

-
-/+

12
56

124
100

VP16 (700-2000) MS [%]
IEM [%]

41
89

-
-/+

19
65

72
100

VP22 (700-1500) MS [%]
IEM [%]

55
72

-
-/+

23
24

143
100
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Table 2
Binding of HSV1 capsids to NPCs of Xenopus nuclei reconstituted in vitro.

HSV1 capsids were isolated from extracellular virions using TX-100 in the presence of 0.1 M, 0.5 M or 1 M 

KCl (viral capsids) or from infected nuclei (nuclear capsids) and incubated with functional Xenopus nuclei or 

with nuclei assembled in the presence of Imp β45-462 or BAPTA. The samples were fixed, and bound capsids 

were counted. The number of experiments and the number of capsids bound per nucleus with the standard 

error of the mean have been tabulated for the different conditions.

HSV1 capsid Functional Imp β45-462 BAPTA

# of experiments # of capsids per 
nucleus

# of experiments # of capsids per 
nucleus

# of experiments # of capsids per 
nucleus

0.1 M 22 7.2 ± 1.3 4 4.6 ± 0.6 2 5.5 ± 1.5

0.5 M 24 14.8 ± 1.6 4 4.2 ± 0.4 2 6.5 ± 0.5

1 M 22 7.5 ± 1.3 3 6.3 ± 3.0 10 3.7 ± 0.6

nuclear 25 13.1 ± 1.7 3 6.7 ± 3.2 11 6.7 ± 2.1
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