Predicting Discharge Dates From the
NICU Using Progress Note Data
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BACKGROUND AND OBJECTIVES: Discharging patients from the NICU may be delayed for nonmedical
reasons including the need for medical equipment, parental education, and children’s services.
We describe a method to predict which patients will be medically ready for discharge in
the next 2 to 10 days, providing lead time to address nonmedical reasons for delayed
discharge.

METHODS: A retrospective study examined 26 features (17 extracted, 9 engineered)

from daily progress notes of 4693 patients (103 206 patient-days) from the NICU of
a large, academic children’s hospital. These data were used to develop a supervised
machine learning problem to predict days to discharge (DTD). Random forest
classifiers were trained by using examined features and International Classification of
Diseases, Ninth Revision-based subpopulations to determine the most important
features.

resuLts: Three of the 4 subpopulations (premature, cardiac, gastrointestinal surgery) and all
patients combined performed similarly at 2, 4, 7, and 10 DTD with area under the curve
(AUC) ranging from 0.854 to 0.865 at 2 DTD and 0.723 to 0.729 at 10 DTD. Patients
undergoing neurosurgery performed worse at every DTD measure, scoring 0.749 at 2 DTD
and 0.614 at 10 DTD. This model was also able to identify important features and provide
“rule-of-thumb” criteria for patients close to discharge. By using DTD equal to 4 and 2
features (oral percentage of feedings and weight), we constructed a model with an AUC of
0.843.

concLusions: Using clinical features from daily progress notes provides an accurate method to
predict when patients in the NICU are nearing discharge.
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WHAT THIS STUDY ADDS: We developed

a supervised machine learning approach using
real-time patient data from the daily neonatology

progress note to predict when patients will be
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Approximately 4 million babies are
born every year in the United States,
and about 11% (~440 000) of them
are born prematurely.! Caring for
infants in the NICU poses a significant
financial burden to the health care
system, with an estimated total cost of
$26 billion.! The cost per day of NICU
care can be several thousand dollars;
therefore, discharging these infants as
soon as they are medically ready is
critical to controlling expenditures.

Delayed discharge of hospitalized
patients who are medically ready is
a common occurrence often linked to
dependency and the need to provide
postdischarge services.? In older
adults, difficulties in coordinating
postdischarge services, lack of
anticipation of discharge, and absence
of caregivers at home were associated
with delayed discharge of medically
ready patients.3 Similarly, discharging
a patient from the NICU usually
requires a great deal of coordination.
Neonates discharged from the NICU
are prime examples of patients with
dependencies (on parents and
caregivers) and significant
postdischarge needs such as primary
care, specialists, physical and speech
therapy, neonatal follow-up
appointments, home equipment
services, and home nursing. In cases
of intrauterine drug exposure,
discharge is often dependent on Child
Protective Services approval. Parents
have to demonstrate their ability to
operate medical equipment,
administer home medication, and
feed and care for their medically
fragile infant. In addition, a number of
services must be scheduled around
the time of discharge, such as hearing
screens, car seat tests, immunizations,
repeat state screens, and eye
examinations. All these requirements
can delay the discharge of a patient
who is medically ready and,
consequently, unnecessarily increase
the cost of hospitalization.

The goal of this project is to build
a predictive model to identify patients
who are close to discharge from
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a medical perspective so staff can be

alerted to impending discharges. Doing
so will allow the nonmedical factors to
be addressed in advance to ensure that
the patient’s discharge is not delayed.

Almost all previous studies attempt to
predict length of stay (LOS) using
clinical and diagnostic information at
or near the time of admission.4-7
Although it is important to pursue
LOS prediction to understand total
hospitalization costs, these methods
lack sufficient clinical context to
accurately predict the discharge date.
Instead, the focus of this research
project is to identify, based on the
most recent clinical data, which
patients in the NICU are likely to be
discharged from the hospital in the
next 2 to 10 days. Our method
predicts the upcoming discharge date,
not the LOS from time of admission.

To prevent delayed discharge, 3
questions will be answered. First, can
the discharge date for a patient in the
NICU be accurately predicted?
Second, what combinations of clinical
data improve predictive accuracy?
Third, are there simple, “rule-of-
thumb” factors that are responsible
for a substantial fraction of the
prediction accuracy?

Because of the potential impact on
cost savings, predicting the LOS for
patients in the NICU has been well
studied. Most of the following
prediction methods were performed
at or near the time of admission.
Powell et al® found gestational age,
low birth weight, and respiratory
difficulties to be most predictive of
LOS. Bannwart et al® developed 2
models to predict the LOS for patients
in the NICU. The first model
considered only risk factors present
in the first 3 days of life, whereas the
second model used factors present
during the entire hospitalization.

Despite the use of models
incorporating multiple diagnostic
factors at the time of admission and
during the hospitalization, the
accuracy of these models varied

significantly, making LOS prediction
difficult. Studying the Canadian NICU
Network, Lee et all0 found that
“significant variation in NICU
practices and outcomes was observed
despite Canada’s universal health
insurance system.” Using data from the
California Perinatal Quality Care
Collaborative, Lee et alll reported
“wide variance in LOS by birth weight,
gestational age, and other factors.”

In 2012, Levin et al'2 described

a real-time model to forecast LOS in
a PICU by using physician orders
from a provider order entry system.
This model used physician orders
(not diagnostic data) to provide

a cumulative probability of discharge
from the PICU over the next 72 hours.
Counts of medications by
administration route (injected,
infused, or enteral) were more
significant in predicting discharge
from the PICU than the types of
medication the patient received.
Activity, diet (regular diet vs
parenteral nutrition) and mechanical
ventilation orders were highly
predictive of remaining in the PICU
over the next 72 hours.

It was our hypothesis that using

a real-time data source that reflects
orders, physiologic data, and
diagnostic information will allow
improved NICU discharge prediction.

In contrast to LOS models that are
performed at the time of admission,
our model is updated daily with the
most recent progress note data. The
calculated probability of discharge
may, in the future, be displayed in the
electronic medical record.

METHODS

Patients and Setting

We conducted a retrospective study
of all patients admitted to the NICU at
a large academic medical center from
June 2007 to May 2013.

Exclusion Criteria

All patients admitted to the NICU
were considered for the study.
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Patients who were back-transferred
to another facility or who died during
their NICU hospitalization were
excluded from the analysis. Also
excluded from the analysis were
patients with any missing daily
neonatology progress notes.

Data Collection and Extraction

A large database containing all daily
progress notes written by
neonatology attending physicians was
made available to the investigators.
The data from the progress notes
were in a semistructured text format
that was extracted through regular
expressions in Python version 2.7.3
(Python Software Foundation,
Beaverton, OR) and SQL. In addition,
these data were cross-referenced
with the enterprise data warehouse
to obtain basic patient information
such as date of birth and
International Classification of
Diseases, Ninth Revision (ICD-9)
codes used for billing during the
hospitalization.

Feature Descriptions

The clinical features used in our
model fell into 4 main categories:
quantitative, qualitative, engineered,
and derived subpopulations. Thirteen
features were obtained directly from

TABLE 1 Features Used in the Predictive Model

data contained in the daily progress
notes. These extracted features were
classified as quantitative (values fell
within a range) and qualitative
(assigned a value of 0 or 1). Nine
features were engineered from the
extracted data. These engineered
features do not actually exist as data
in the progress note but were derived
from the extracted data. For example,
progress notes contain information
on the number of apnea and
bradycardia events (A&Bs) in the last
24 hours. The engineered feature
from these data was the number of
days since the last A&B.

Additionally, a neonatologist (C.U.L.)
reviewed 138 of the most frequently
occurring ICD-9 codes in the NICU
patient population to categorize
patients into 4 subpopulations:
prematurity, cardiac disease,
gastrointestinal (GI) surgical disease,
and neurosurgical (NS) disease (see
the Appendix for a list of ICD-9 codes
and categories). A single patient could
belong to 1, many, or none of the
subpopulations. Table 1 contains

a list of all features used in the model.

Matrix Generation

All extracted data, subpopulation
categories, engineered features, and
days to discharge (DTD) were inserted

Quantitative Features

(Unit of Measure) (Unit of Measure)

Qualitative Features

Engineered Features
(Unit of Measure)

Subpopulation
Features

Wt (kg) On infused
medication (Y/N)

Birth wt (kg) On caffeine (Y/N)

A&Bs (no.) On ventilator (Y/N)

Amount of oral feeds (mL) —
Amount of tube feeds (mL) —

Percentage of oral feeds (%) —

Gestational age (wk) —

Gestational age at birth (wk) —
Day of life (d) —

Oxygen (L) —

Number of days Premature (Y/N)
since last A&B (d)
Number of days off
infused medication (d)
Number of days
off caffeine (d)
Number of days
off ventilator (d)
Number of days —
off oxygen (d)
Number of days —
percentage of
oral feeds >90% (d)
Total feeds (oral + —
tube feeds) (mL)
Ratio of wt to birth wt —
Amount of oral feeds/wt —
(mL/kg/day)

Cardiac surgery (Y/N)
Gl surgery (Y/N)

Neurosurgery (Y/N)

—, not applicable.
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into a matrix. Each row represented
data for 1 hospital day for a specific
patient. If a row contained missing
data in any field, the entire row was
excluded from the final matrix.

Because the matrix is constructed
using historical data, the outcome of
interest (discharge date) is known.
The DTD column contains the number
of hospital days until the patient is
discharged. For example, if the
patient was discharged on March 15,
the row of the matrix containing
patient features for March 10 would
have a DTD of 5 (Fig 1).

Data Analysis

A supervised machine learning
approach using a random forest (RF)
classifier in Python’s Sci-kit Learn
module (version 0.15.2)13 was used
to analyze the data, engineer
important features, and build

a predictive model. An RF constructs
many binary decision trees that
branch based on randomly chosen
features. The RF in Sci-kit Learn uses
an optimized Classification and
Regression Trees (CART) algorithm
for constructing binary trees by
using the input features and values
that yield the largest information
gain at each node. The Sci-kit Learn
package allows the selection of
either the gini impurity or entropy
algorithms to determine feature
importance. These algorithms
performed similarly, and we chose to
use gini impurity because it is
slightly more robust to
misclassifications. We ran the
models using many different
combinations of parameters, and the
best-performing models used a RF
with 100 trees, maximum tree depth
of 10, and a minimum of 200
samples per split.

Models were trained with different
combinations of subpopulations (all
patients, premature, cardiac, GI
surgical, and NS), DTD (2, 4, 7, and 10
days), and number of features (any
combination of features from 2 to

all 26).
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Days to
Discharge

6 0
5 0
4 1
3 0
53 0
4 1
3 = 0
2 0
4 1
3 0
2 0
1 0

Example data matrix construction showing an attempt to model 4 DTD. HD, hospital day.

Training Vector

To train our model, we converted the
DTD variable into a binary outcome
variable based on the number of days
we were trying to model. For
example, if we were training the
model to predict when patients were
4 days from discharge, all values in
the model where the DTD was not
equal to 4 were set to 0. The rows in
which the number of DTD was 4 were
set to 1 (Fig 1). This same process
was followed for 2, 7, and 10 DTD.

Cross-Validation

Each time a model was run, half of the
patients (and all their associated daily
rows) were randomly assigned to

a training set, and the other half were
assigned to the testing set. Because
each patient provides only a single
DTD, halving the data provided both
testing and training sets an adequate
number of the DTD of interest. To
achieve small enough standard
deviations, the patients were
randomly assigned 5 times for each
model and the area under the curve
(AUC) for the receiver operating
characteristic curve was obtained for
the testing set. The reported AUC is
the average of the 5 AUCs obtained
after each round of randomization.
Additionally, each time a model was
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run, the features used in the model
were ranked in order of importance.

Model Generation

We ran the model for all patients and
for each subpopulation to determine
how well the model performed, to
choose the most important features
for each group, and to determine
whether different features had

a greater impact on certain patient
populations. Finally, the most
important features at 2, 4, 7, and 10
DTD were evaluated to determine
whether the most important features
changed as a patient was getting
closer to discharge.

Institutional Review Board Approval

The Institutional Review Board of
Vanderbilt University approved this
study.

RESULTS

The initial database consisted of 6302
patients (116 299 hospital days)
admitted to the NICU between June
2007 and May 2013. There were 256
(4%) deaths during this time period.
A total of 1154 (18%) patients were
excluded because the database did
not contain physician progress notes
for every day of the hospital course.
There were 199 (3%) patients back-

transferred to other NICUs in the
region. The final matrix consisted of
4693 (74%) unique patients,
accounting for 103 206 (89%)
hospital days with a mean LOS of 30
days. A total of 3689 (79%) patients
were categorized into =1
subpopulations based on ICD-9
codes; the other 1004 (21%) patients
did not have an ICD-9 code that
matched our criteria (Fig 2).

The average AUC for the model using
all 26 features for all patients and
each patient subpopulation is shown
in Fig 3. Three of the 4
subpopulations (premature, cardiac,
GI surgery) and all patients combined
performed very similarly at 2, 4, 7,
and 10 DTD, with AUCs ranging from
0.854 to 0.865 at 2 DTD and 0.723 to
0.729 at 10 DTD. The NS
subpopulation performed worse on
every DTD measure, scoring 0.749 at
2 DTD and 0.614 at 10 DTD (Fig 3).
Using fivefold cross-validation
provided a sufficiently narrow SD
range for AUCs of ~0.005 to 0.01.

The 9 most predictive features for
each subpopulation were very similar,
and their plots are shown in Fig 4. In
each subpopulation, the combination
of all features performed better than
any single feature alone. Once again,
the poorest-performing
subpopulation included the NS
patients.

In addition to analyzing the most
important features for each
subpopulation, we explored the best-
performing features by the DTD. For
each DTD (2, 4, 7, 10 days) the top 20
features in order of importance are
shown in Table 2. The combination of
all features performed best at each
DTD, and model performance
improved as patients moved closer to
discharge.

DISCUSSION

We were able to use data from daily
progress notes to predict impending
discharge from the NICU accurately.

Our model improved as more clinical
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Cardiac
n=1.524

Premature
n= 3,004

FIGURE 2
Distribution of patients in each subpopulation.

information was included, and its
prediction improved as the DTD
became smaller (closer to discharge
date). Three of the 4 subpopulations
and all patients combined performed

GI Surgery
n=1400

Neurosurgery
n =396

very similarly. The only population on
which the model consistently
underperformed was the NS
population, for 2 possible reasons.
First, the NS population was the

1.00 -
0.865
=
e e
R — ———— g L 0.729
0.749
0.614
(@]
S050-
<
Population
All Patients
0.25 0 It Premature
' = = = = (Cardiac
= = = GI Surgery
R N S
0.00 -
2 4 6 8 10
Time Until Discharge (d)
FIGURE 3

AUC for each patient subpopulation for all features.
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smallest cohort by far, and therefore
the model may not have had enough
patients on which to train. Second,
the NS population may be very
different clinically from the other
patients seen in the NICU, and their
readiness for discharge may not be
captured in the features extracted for
this model.

When we broke the most important
features down by subpopulation and
DTD, the features remained
surprisingly consistent across the
subpopulations and DTD. This result
was unexpected because we thought
that different subpopulations of
patients with different medical
conditions would have different
features that were important for
discharge prediction. The top features
centered on various feeding metrics,
gestational age, and weight.
Surprisingly, none of the metrics
involving infused medications,
caffeine use, A&Bs, or oxygen usage
had a significant impact on the
predictive power of the model.

Two interesting features are worth
discussing. First, the percentage of
oral feeds (eg, oral amount divided by
the oral amount plus the tube fed
amount) was the best-performing or
nearly the best-performing feature
across populations and DTD values.
For example, using this feature alone
gives an AUC score of 0.766 at 2 DTD.
The second-best feature was the
engineered feature of the number of
days with oral feedings of >90%. At
10 DTD this feature ranks 20th in
importance, but at 2 DTD this feature
has advanced to third place. This
indicates that consuming most of
their feedings orally instead of by
tube is an important predictor of
impending discharge.

We used 26 features to predict with
a high degree of accuracy which
patients will be discharged from the
hospital in the next 2 to 10 days.
However, it may not always be
practical or possible to include all
these features into a decision support
tool to construct this predictive
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AUC for Top 9 Features Among Premature Patients

AUC for Top 9 Features Among Cardiac Patients

model to alert staff of impending
discharges. One beneficial aspect of
our approach is the ability to identify
and use the most important features
to build a scaled-down but still highly
predictive model.

A few simple “rule of thumb” models
can be created to determine which
patients are nearing discharge. For
example, a very simple decision tree

can be constructed from only 2
features (Fig 5). This tree is based on
data from all patients, 2 features (oral
percentage of feeds and weight),
a DTD of 4 days, and a maximum tree
depth of 3. The first branch of the tree
splits the patients into 2 groups based
on whether their oral percentage of

feeds is >80%. On the right, the next
differentiator is based on weight. If
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AUC for Top 9 Features Among Gl Surgery Patients AUC for Top 9 Features Among NS Patients
1.00 - 1.00 -
0.865
0.749
075 ) . 0.729 075
e " -.h;‘-‘ —— = l:'ru- ==
il S e — B BT rre~ 0.614
-"'-.q_-_= - o — "_ i'-—r:.-—-.. -
— -':..-.._: — — r— h’qu:’.
Features o Features T A et
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= = = Days feeds >90% = = = Days feeds >90%
025- * =+ =+ Oral Intake/kg 025- ==+ =+ Oral Intake/kg
+ = = Weight » = « = Birth Weight
= = Gest Age = = Gest Age
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0.00 - = == Total Feeds 0.00 - » = = = Total Feeds
2 4 6 8 10 2 4 6 8 10
Time Until Discharge (d) Time Until Discharge (d)
FIGURE 4

The 9 most predictive features for each subpopulation. A single patient may be represented in >1 subpopulation.

the patient weighs <1.5 kg, his or her
probability of being discharged in the
next 4 days is 0.23 (on a scale of 0-1).
If the patient weighs between 1.5 and

1.7 kg, his or her probability for

discharge in the next 4 days is 0.48. If
the patient weighs >1.7 kg and takes

>90% of his or her feeds orally, the

patient has a 0.81 probability of being

discharged in the next 4 days. The

TEMPLE et al




TABLE 2 Top 20 Features in Order of Importance for All Patients for All DTD values

2 DTD 4 DTD 7 DTD 10 DTD

Feature AUC Feature AUC Feature AUC Feature AUC
Al 0.854 Al 0.795 All 0.754 Al 0.723
% of oral feeds 0.766 % of oral feeds 0.704  Amount of oral feeds 0649 % of oral feeds 0.623
Amount of oral feeds 0.764  Amount of oral feeds 0.703  Gestational age birth 0.647  Amount of oral feeds 0.620
No. days oral % >90% 0.753  Amount of oral feeds/wt 0.700  Amount of oral feeds/wt 0.646  Amount of oral feeds/wt  0.620
Amount of oral feeds/wt 0.750  No. days oral % >90% 0.681 % of oral feeds 0.646  Gestational age 0.617
Total feeds 0.720  Gestational age birth 0.678 Birth wt 0632 Wt 0.617
Gestational age birth 0.707  Gestational age 0673 Wt 0.632 Gestational age birth 0.609
Birth wt 0.698 Birth wt 0.672  Gestational age 0.631  Birth wt 0.607
Gestational age 0.698 Wt 0.667 No. days off caffeine 0.610 On caffeine 0.594
Wt 0.690 Total feeds 0.652  On caffeine 0.605 No. days off caffeine 0.592
No. days off caffeine 0.643 No. days off caffeine 0.630 Gl surgery 0.594 Total feeds 0.569
Gl surgery 0.637 Gl surgery 0.622 Total feeds 0.590 Gl surgery 0.566
No. days off ventilator 0.624  On caffeine 0.608 No. days oral % >90% 0.589 No. days off oxygen 0.560
No. days off infused medication 0.620 No. days off ventilator 0.605 Cardiac 0.563  On oxygen 0.548
Ratio of wt to birth wt 0.613 No. days off infused medication 0.594 No. days off ventilator 0.562  On ventilator 0.543
On caffeine 0.613  Ratio wt/Birth wt 0.592  Ratio wt/birth wt 0.561  Cardiac 0.542
No. days off oxygen 0.609 Days of life 0.587  No. days off oxygen 0.558  No. days off ventilator 0.537
Days of life 0.604 Cardiac 0.582  No. days off infused medication  0.555 No. of A&Bs 0.535
No. days no A&B 0.601  No. days off oxygen 0.581  Days of life 0.547  No. days oral % >90% 0.534

probabilities for discharge in 4 days
for patients at different weights and
taking <80% of their feeds orally are
listed in the left-side branch.

This simple decision tree has an AUC
of 0.843. Although it is not as
accurate as using all features to
obtain an AUC of 0.865, it is still an
excellent predictor and can be easily
calculated at the bedside.

It is interesting that using all 26
features yields an AUC of 0.865,
whereas using only 2 features can
yield an AUC 0.843. This result
illustrates just how important feeding
and weight gain are to the improving
health of a neonate.

One possible way to improve our
current model’s performance would

be to add more features. The use of
trending data (eg, the average amount
of feeding increase over a 5-day
period) could be beneficial. Another
consideration for model improvement
would be to predict a range of days
until discharge (eg, 3-5 days instead
of just 4).

There are several limitations to this
study. First, some of the features used
in the model are more difficult to
obtain than others, and extracting
certain features from commercial
electronic medical record systems can
be challenging.14 Second, the data
extracted included pediatric- and
neonatology-specific data, which was
collected using specific pediatric
functions built into Vanderbilt’s
electronic health record. These

‘ Oral percentage of feeds >80% ‘

NO/

Wt <1.7 kg Wt 1.7-2.1kg
.02 .18
Wt2.1-28kg || Wt>2.8kg
.31 43
FIGURE 5

\ YES

Wt<1.5kg Wt 1.5-1.7 kg
.23 48
Wt>17kg
Oral percentage Oral percentage
80-90% >90%

.57 .81

A simple decision tree demonstrating how 2 features can be used to create an accurate discharge
prediction model. The fraction in each cell denotes the probability of discharge in the next 4 days.

This tree has an AUC of 0.843.

PEDIATRICS Volume 136, number 2, August 2015

functions may not be supported by all
electronic health record systems.15.16
Third, categorizing hospitalized
patients based on ICD-9 codes would
be difficult because these codes are
not usually available until after
discharge. However, as the analysis
showed, diagnosis categories added
surprisingly little to the prediction
model. Should we need our model to
differentiate patients, admitting
diagnoses could be used. Fourth, our
sample could be potentially biased
because we did exclude patients if
they were missing any progress
notes. Although an RF does provide
techniques to address missing data,
we felt thought excluding these
patients was a conservative and
appropriate approach.

We trained the model by using actual
discharge dates. This limitation
worked against us because some of the
patients in the data set may have been
medically ready for discharge sooner.
The model may have performed better
if we had been able to determine and
adjust for the patients who had
delayed discharges for nonmedical
reasons. Additionally, once fully
implemented our model might predict
discharge too early, which could result
in premature expectations of parents
and possible wasted effort.
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Future work will have to include
testing the model in different ways.
First, we will analyze the model on
a new data set, such as patient
records obtained from June 2013 to
the present. Second, once we finish
operationalizing this model, we will
collect provider feedback about

a patient’s discharge potential during
daily rounds. We will then compare
those results with the prediction of
our model to determine whether the
providers or the machine learning
model is most accurate.

CONCLUSIONS

A supervised machine learning
approach using an RF classifier
accurately predicts which patients
will be discharged from the NICU in

the next 2 to 10 days. Running our
model daily with the most recent

progress note data will identify which
patients are close to being medically
ready for discharge and may alert the
clinical staff through indicators in the

electronic medical record. This
method would allow more timely
discharge planning and has the
potential to prevent delayed
discharges for nonmedical reasons.
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APPENDIX

ICD-9 Code Description Category
746.01 Atresia of pulmonary valve, congenital Cardiac
747.49 Other anomalies of great veins Cardiac
428 Congestive heart failure, unspecified Cardiac
428.2 Systolic heart failure, unspecified Cardiac
429 Myocarditis, unspecified Cardiac
429.3 Cardiomegaly Cardiac
745.1 Complete transposition of great vessels Cardiac
7451 Complete transposition of great vessels Cardiac
745.11 Double outlet right ventricle Cardiac
745.2 Tetralogy of Fallot Cardiac
427.89 Other specified cardiac dysrhythmias, other Cardiac
745.6 Endocardial cushion defect, unspecified type Cardiac
42742 Ventricular flutter Cardiac
746.02 Stenosis of pulmonary valve, congenital Cardiac
746.09 Other congenital anomalies of pulmonary valve Cardiac
746.3 Congenital stenosis of aortic valve Cardiac
746.4 Congenital insufficiency of aortic valve Cardiac
746.87 Malposition of heart and cardiac apex Cardiac
746.89 Other specified congenital anomalies of heart Cardiac
746.9 Unspecified congenital anomaly of heart Cardiac
7471 Coarctation of aorta (preductal) (postductal) Cardiac
747.21 Congenital anomalies of aortic arch Cardiac
7473 Congenital anomalies of pulmonary artery Cardiac
7454 Ventricular septal defect Cardiac
4249 Endocarditis, valve unspecified, unspecified cause Cardiac
396.3 Mitral valve insufficiency and aortic valve insufficiency Cardiac
397 Diseases of tricuspid valve Cardiac
4209 Acute pericarditis, unspecified Cardiac
420.99 Other acute pericarditis Cardiac
421 Acute and subacute bacterial endocarditis Cardiac
42291 Idiopathic myocarditis Cardiac
423.3 Cardiac tamponade Cardiac
424 Mitral valve disorders Cardiac
4241 Aortic valve disorders Cardiac
4279 Cardiac dysrhythmia, unspecified Cardiac
424.3 Pulmonary valve disorders Cardiac
745.3 Common ventricle Cardiac
4251 Hypertrophic cardiomyopathy Cardiac
4253 Endocardial fibroelastosis Cardiac
4254 Other primary cardiomyopathies Cardiac
425.8 Cardiomyopathy in other diseases classified elsewhere Cardiac
426 Atrioventricular block, complete Cardiac
426.1 Atrioventricular block, unspecified Cardiac
426.11 First-degree atrioventricular block Cardiac
426.12 Mobitz (type) Il atrioventricular block Cardiac
426.13 Other second-degree atrioventricular block Cardiac
427.41 Ventricular fibrillation Cardiac
4242 Tricuspid valve disorders, specified as nonrheumatic Cardiac
V15.1 Personal history of surgery to heart and great vessels, presenting hazards  Cardiac
to health
794.3 Unspecified nonspecific abnormal function study of cardiovascular system  Cardiac
794.39 Other nonspecific abnormal function study of cardiovascular system Cardiac
9971 Cardiac complications, not elsewhere classified Cardiac
74512 Corrected transposition of great vessels Cardiac
997.79 Vascular complications of other vessels Cardiac
7771 Meconium obstruction in fetus or newborn Gl surgery
530.3 Stricture and stenosis of esophagus Gl surgery
530.4 Perforation of esophagus Gl surgery
530.6 Diverticulum of esophagus, acquired Gl surgery
7775 Necrotizing enterocolitis in newborn, unspecified Gl surgery
530.89 Other specified disorders of the esophagus Gl surgery
777.51 Stage | necrotizing enterocolitis in newborn Gl surgery
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Continued

ICD-9 Code Description Category
553.1 Umbilical hernia without mention of obstruction or gangrene Gl surgery
557.9 Unspecified vascular insufficiency of intestine Gl surgery
560.2 Volvulus Gl surgery
560.81 Intestinal or peritoneal adhesions with obstruction (postoperative) Gl surgery
(postinfection)
560.89 Other specified intestinal obstruction, other Gl surgery
569.83 Perforation of intestine Gl surgery
569.69 Other colostomy and enterostomy complication Gl surgery
530.84 Tracheoesophageal fistula Gl surgery
756.79 Other congenital anomalies of abdominal wall Gl surgery
7513 Hirschsprung disease and other congenital functional disorders of colon Gl surgery
7512 Congenital atresia and stenosis of large intestine, rectum, and anal canal Gl surgery
751.1 Congenital atresia and stenosis of small intestine Gl surgery
750.4 Other specified congenital anomalies of esophagus Gl surgery
V55.2 Attention to ileostomy Gl surgery
756.72 Congenital anomalies of abdominal wall, omphalocele Gl surgery
V55.4 Attention to other artificial opening of digestive tract Gl surgery
756.73 Congenital anomalies of abdominal wall, gastroschisis Gl surgery
560.9 Unspecified intestinal obstruction Gl surgery
777.53 Stage Ill necrotizing enterocolitis in newborn Gl surgery
777.52 Stage Il necrotizing enterocolitis in newborn Gl surgery
777.5 Necrotizing enterocolitis in newborn, unspecified Gl surgery
V55.1 Attention to gastrostomy Gl surgery
V441 Gastrostomy status Gl surgery
536.49 Other gastrostomy complications Gl surgery
536.42 Mechanical complication of gastrostomy Gl surgery
536.41 Infection of gastrostomy Gl surgery
7429 Unspecified congenital anomaly of brain, spinal cord, and nervous system  Neurosurgery
741 Spina bifida, unspecified region, with hydrocephalus Neurosurgery
331.3 Other cerebral degenerations, communicating hydrocephalus Neurosurgery
3314 Other cerebral degenerations, obstructive hydrocephalus Neurosurgery
7424 Other specified congenital anomalies of brain Neurosurgery
742.3 Congenital hydrocephalus Neurosurgery
7419 Spina bifida, unspecified region, without mention of hydrocephalus Neurosurgery
741.02 Spina bifida, dorsal (thoracic) region, with hydrocephalus Neurosurgery
741.03 Spina bifida, lumbar region, with hydrocephalus Neurosurgery
7421 Microcephalus Neurosurgery
741.93 Spina bifida, lumbar region, without mention of hydrocephalus Neurosurgery
552.3 Diaphragmatic hernia with obstruction PPH/ECMO
756.6 Congenital anomalies of diaphragm PPH/ECMO
747.83 Congenital anomaly, persistent fetal circulation PPH/ECMO
416 Primary pulmonary hypertension PPH/ECMO
763.84 Meconium passage during delivery affecting fetus or newborn PPH/ECMO
764.94 Unspecified fetal growth retardation, 1000-1249 g Premature
765.01 Disorders relating to extreme immaturity of infant, <500 g Premature
362.24 Retinopathy of prematurity, stage 2 Premature
779.7 Periventricular leukomalacia Premature
764.95 Unspecified fetal growth retardation, 1250—1499 g Premature
765 Disorders relating to extreme immaturity of infant, wt unspecified Premature
764.92 Unspecified fetal growth retardation, 500749 g Premature
77213 Intraventricular hemorrhage of fetus or newborn, grade llI Premature
765.02 Disorders relating to extreme immaturity of infant, 500-749 ¢ Premature
362.25 Retinopathy of prematurity, stage 3 Premature
77212 Intraventricular hemorrhage of fetus or newborn, grade |l Premature
362.23 Retinopathy of prematurity, stage 1 Premature
362.21 Retrolental fibroplasia Premature
362.2 Retinopathy of prematurity, unspecified Premature
362.27 Retinopathy of prematurity, stage 5 Premature
765.28 Disorders related to weeks of gestation completed, 35-36 wk Premature
765.17 Disorders relating to other preterm infants, 1750—1999 g Premature
765.16 Disorders relating to other preterm infants, 1500—1749 g Premature
765.15 Disorders relating to other preterm infants, 1250—1499 g Premature
e404
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Continued

ICD-9 Code Description Category
765.18 Disorders relating to other preterm infants, 2000-2499 g Premature
765.22 Disorders related to weeks of gestation completed, 24 wk Premature
765.24 Disorders related to weeks of gestation completed, 27-28 wk Premature
765.25 Disorders related to weeks of gestation completed, 29-30 wk Premature
776.6 Anemia of prematurity Premature
765.27 Disorders related to weeks of gestation completed, 33—-34 wk Premature
765.03 Disorders relating to extreme immaturity of infant, 750-999 g Premature
769 Respiratory distress syndrome in newborn Premature
770.7 Chronic respiratory disease arising in the perinatal period Premature
7721 Intraventricular hemorrhage of fetus or newborn, unspecified grade Premature
77211 Intraventricular hemorrhage of fetus or newborn, grade | Premature
77214 Intraventricular hemorrhage of fetus or newborn, grade IV Premature
765.14 Disorders relating to other preterm infants, 1000-1249 g Premature
765.13 Disorders relating to other preterm infants, 750-999 g Premature
765.1 Disorders relating to other preterm infants, wt unspecified Premature
765.26 Disorders related to weeks of gestation completed, 31-32 wk Premature

ECMO, extracorporeal membrane oxygenation; PPH, persistent pulmonary hypertension.
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