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Abstract

Extracting diagnosis codes from medical records is a complex task carried out by trained coders 

by reading all the documents associated with a patient’s visit. With the popularity of electronic 

medical records (EMRs), computational approaches to code extraction have been proposed in the 

recent years. Machine learning approaches to multi-label text classification provide an important 

methodology in this task given each EMR can be associated with multiple codes. In this paper, 

we study the the role of feature selection, training data selection, and probabilistic threshold 

optimization in improving different multi-label classification approaches. We conduct experiments 

based on two different datasets: a recent gold standard dataset used for this task and a second 

larger and more complex EMR dataset we curated from the University of Kentucky Medical 

Center. While conventional approaches achieve results comparable to the state-of-the-art on the 

gold standard dataset, on our complex in-house dataset, we show that feature selection, training 

data selection, and probabilistic thresholding provide significant gains in performance.

I. Introduction

Extracting codes from standard terminologies is a regular and indispensable task often 

encountered in medical and healthcare fields. Diagnosis codes, procedure codes, cancer site 

and morphology codes are all manually extracted from patient records by trained human 

coders. The extracted codes serve multiple purposes including billing and reimbursement, 

quality control, epidemiological studies, and cohort identification for clinical trials. In this 

paper we focus on extracting international classification of diseases, clinical modification, 

9th revision (ICD-9-CM) diagnosis codes from electronic medical records (EMRs), and the 

application of supervised multi-label text classification approaches to this problem.

Diagnosis codes are the primary means to systematically encode patient conditions treated 

in healthcare facilities both for billing purposes and for secondary data usage. In the US, 
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ICD-9-CM (just ICD-9 henceforth) is the coding scheme still used by many healthcare 

providers while they are required to comply with ICD-10-CM, the next and latest revision, 

by October 1, 2014. Regardless of the coding scheme used, both ICD code sets are very 

large, with ICD-9 having a total of 13,000 diagnoses while ICD-10 has 68,000 diagnosis 

codes [1] and as will be made clear in the rest of the paper, our methods will also apply to 

ICD-10 extraction tasks. ICD-9 codes contain 3 to 5 digits and are organized hierarchically: 

they take the form abc.xy where the first three character part before the period abc is the 

main disease category, while the x and y components represents subdivisions of the abc 

category. For example, the code 530.12 is for the condition reflux esophagitis and its parent 

code 530.1 is for the broader condition of esophagitis and the three character code 530 

subsumes all diseases of esophagus. Any allowed code assignment should at least assign 

codes at the category level (that is, the first three digits). At the category levels there are 

nearly 1300 different ICD-9 codes.

The process of assigning diagnosis codes is carried out by trained human coders who look 

at the entire EMR for a patient visit to assign codes. Majority of the artifacts in an EMR 

are textual documents such as discharge summaries, operative reports, and progress notes 

authored by physicians, nurses, or social workers who attended the patient. The codes are 

assigned based on a set of guidelines [2] established by the National Center for Health 

Statistics and the Centers for Medicare and Medicaid Services. The guidelines contain rules 

that state how coding should be done in specific cases. For example, the signs and symptoms 

( 780–799) codes are often not coded if the underlying causal condition is determined 

and coded. Given the large set of possible ICD-9 codes and the need to carefully review 

the entire EMR, the coding process is a complex and time consuming process. Hence, 

several attempts have been made to automate the coding process. However, computational 

approaches are inherently error prone. Hence, we would like to emphasize that automatic 

medical coding systems, including our current attempt, are generally not intended to replace 

trained coders but are mainly motivated to expedite the coding process and increase the 

productivity of medical record coding and management.

In this paper, we explore supervised text classification approaches to automatically 

extract ICD-9 codes from clinical narratives using two different datasets: a gold standard 

dataset created for the BioNLP 2007 shared task [3] by researchers affiliated with the 

Computational Medicine Center (CMC1) and a new dataset we curated from in-patient 

EMRs at the University of Kentucky (UKY). The BioNLP dataset (henceforth referred to 

as the CMC dataset) is a high quality, but relatively small, dataset of clinical reports that 

covers the pediatric radiology domain. The gold standard correct codes are provided for 

each report. To experiment with a more realistic dataset, we curated the UKY dataset that 

covers more codes from a random selection of in-patient EMRs, where the correct codes are 

obtained per EMR from trained coders in the medical records office at UKY.

In supervised classification, multi-label problems are generally transformed into several 

multi-class (where each artifact belongs to a single class) or binary classification problems. 

In this effort, we explore these different transformation techniques with different base 

1 http://computationalmedicine.org/ 

Rios and Kavuluru Page 2

Proc (IEEE Int Conf Healthc Inform). Author manuscript; available in PMC 2017 July 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://computationalmedicine.org/


classifiers (support vector machines, naive Bayes, and logistic regression). Large label 

sets, high label cardinality (number of labels per artifact), class imbalance, inter-class 

correlations, large feature sets are some of the factors that negatively affect performance 

in multi-label classification problems. We experiment with different state-of-the-art 

feature selection, training data selection, classifier chaining, and probabilistic thresholding 

approaches to address some of these issues. We achieve comparable results to the state-of-

the-art on the CMC dataset. Our experiments reveal how the differences in the nature of 

our two datasets significantly affect the performance of different supervised approaches. Our 

ablation experiments also demonstrate the utility of training data selection, feature selection, 

and threshold optimization on the overall performance of our best classifiers and point to the 

potential of these approaches in the general problem of computational code extraction.

The rest of the paper is organized as follows: In Section II we discuss related work on 

diagnosis code extraction and provide background on multi-label classification approaches. 

We elaborate on the two different datasets used in Section III. In Section IV, we present 

details of different text classification algorithms and different learning components used in 

our experiments. After a brief discussion of evaluation measures in Section V, we present 

our results in Section VI.

II. Related Work and Background

In this section we discuss related work on prior efforts in extracting ICD-9 codes and briefly 

discuss the general background for multi-label classification techniques.

Several attempts have been made to extract ICD-9 codes from clinical documents since 

the 1990s. Advances in natural language and semantic processing techniques contributed 

to a recent surge in automatic extraction. de Lima et al. [4] use a hierarchical approach 

utilizing the alphabetical index provided with the ICD-9-CM resource. Although completely 

unsupervised, this approach is limited by the index not being able to capture all synonymous 

occurrences and also the inability to code both specific exclusions and other condition 

specific guidelines. Gunderson et al. [5] extracted ICD-9 codes from short free text diagnosis 

statements that were generated at the time of patient admission using a Bayesian network 

to encode semantic information. However, in the recent past, concept extraction from longer 

documents such as discharge summaries has gained interest. Especially for ICD-9 code 

extraction, recent results are mostly based on the systems and the CMC dataset developed 

for the BioNLP workshop shared task on multi-label classification of clinical texts [3] in 

2007.

The CMC dataset consists of 1954 radiology reports arising from outpatient chest x-ray 

and renal procedures and is observed to cover a substantial portion of pediatric radiology 

activity. The radiology reports are also formatted in XML with explicit tags for history and 

impression fields. Finally, there are a total of 45 unique codes and 94 distinct combinations 

of these codes in the dataset. The dataset is split into training and testing sets of nearly 

equal size where example reports for all possible codes and combinations occur in both 

sets. This means that all possible combinations that will be encountered in the test set 

are known ahead of time. The top system obtained a micro-average F-score of 0.89 
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and 21 of the 44 participating systems scored between 0.8 and 0.9. Next we list some 

notable results that fall in this range obtained by various participants and others who used 

the dataset later. The techniques used range from completely handcrafted rules to fully 

automated machine learning approaches. Aronson et al. [6] adapted a hybrid MeSH term 

indexing program MTI that is in use at the NLM and included it with SVM and k nearest 

neighbor classifiers for a hybrid stacked model. Goldstein et al. [7] applied three different 

classification approaches - traditional information retrieval using the search engine library 

Apache Lucene, Boosting, and rule-based approaches. Crammer et al. [8] use an online 

learning approach in combination with a rule-based system. Farkas and Szarvas [9] use an 

interesting approach to induce new rules and acquire synonyms using decision trees. Névéol 

et al. [10] also model rules based on indexing guidelines used by coders using semantic 

predications to assign MeSH heading-subheading pairs to indexing biomedical articles. A 

recent attempt [11] also exploits the hierarchical nature of the the ICD-9-CM terminology 

to improve the performance achieving comparable performance to the best scores achieved 

during the competition.

Next, we provide a brief review of the background and state-of-the-art in multi-label 

classification, the general problem of choosing multiple labels among a set of possible 

labels for each object that needs to be classified. A class of approaches called problem 

transformation approaches convert the multi-label problem into multiple single-label 

classification instances. A second class of methods adapts the specific algorithms for 

single-label classification problems to directly predict multiple labels. Both problem 

transformation and algorithm adaptation techniques are covered in this recent survey by 

[12]. Recent attempts in multi-label classification also consider label correlations [13]–[15] 

when building a model for multi-label data. An important challenge in problems with a 

large number of labels per document is to decide the number of candidates after which 

candidate labels should be ignored, which has been recently addressed by calibrated ranking 

[16] and probabilistic thresholding [17]. Feature selection is an important aspect when 

building classifiers using machine learning. We request the readers to refer to Forman [18] 

for a detailed comparative analysis of feature selection methods. Combining the scores 

for each feature using different feature selection methods has also been applied to multi-

label classification [19]. When dealing with datasets with class imbalance, methods such 

as random under/over-sampling, synthetic training sample generation, and cost-sensitive 

learning were proposed (see [20] for a survey). In contrast with these approaches, Sohn et al 

[21] propose an alternative Bayesian approach to curate customized optimal training sets for 

each label. In the next section, we discuss the characteristics of the two datasets used in this 

paper.

III. Datasets

We already introduced the CMC dataset in Section II when discussing related work. Here 

we will give some additional details to contrast it with the our UKY hospital dataset. From 

the 1954 reports in the CMC dataset, 978 are included in the training dataset with their 

corresponding ICD-9 codes; the remaining documents form the testing set. All labels sets 

that occur in the testing set occur at least once in the training dataset. In Figure 1, we 

show how many times each of the 45 ICD-9 codes occurred in the training set. We can 
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see that 75% of the codes appear less than 50 times in the training set. Almost 50% of 

the 45 labels appear less than ten times. For each instance in the CMC dataset there are 

two fields that contain textual data, ‘clinical history’ and ‘impression’. Clinical history field 

contains textual information entered by a physician before a radiological procedure about 

the patient’s history. The impression field contains textual entered by a radiologist after the 

radiological procedure about his observations of the patient’s condition as obtained from 

the procedure. Many of the textual entries contained in these two fields are very short. 

An example of the clinical history field is “22 month old with cough.” The corresponding 

impression is just one word “normal.” The average size of a report is 21 words.

We also built a second dataset to study code extraction at the EMR level. We created a 

dataset of 1000 clinical document sets corresponding to a randomly chosen set of 1000 

in-patient visits to the UKY Medical Center in the month of February, 20122 We also 

collected the ICD-9 codes for these EMRs assigned by a trained coder at the UKY medical 

records office. Aggregating all billing data, this dataset has a total of 7480 diagnoses leading 

to 1811 unique ICD-9 codes. Recall, that the ICD-9 codes have the format abc.xy where 

the first three digits abc capture the category. Using the (category code, label, count) 

representation the top 5 most frequent categories are ( 401, essential hypertension, 325), 

( 276, Disorders of fluid electrolyte and acid-base balance, 239), ( 305, nondependent 
abuse of drugs, 236), ( 272, disorders of lipoid metabolism, 188), and ( 530, diseases of 
esophagus, 169). The average number of codes is 7.5 per EMR with a median of 6 codes. 

There are EMRs with only one code, while the maximum number assigned to an EMR is 49 

codes. For each in-patient visit, the original EMR consisted of several documents, some of 

which are not conventional text files but are stored in the RTF format. Some documents, like 

care flowsheets, vital signs sheets, ventilator records were not considered for this analysis. 

We have a total of 5583 documents for all 1000 EMRs. On an average there are 5.6 textual 

documents per EMR, but considering only those authored by physicians, there are 2.8 

documents per EMR.

Since many of the 1811 codes in the UKY dataset have very few examples, we decided to 

consider extracting codes at the fourth digit level. That is, all codes of the form abc.xy 

for different ‘y’ are mapped to the four digit code abc.x. With this mapping we had 1410 

unique codes. Note the the average number of codes per EMR even when we collapsed the 

fifth digit is still 7.5 (the same value as for the case of full five digit codes). This is because, 

in general, an EMR does not have two codes that differ at the fifth digit, which captures the 

finest level of classification. The average size of each EMR (that is, of all textual documents 

in it) in the UKY dataset is 2088 words. Even when truncated to 4 digits, there were still 

many codes that had too few examples to apply supervised methods. Hence we resorted 

to using 56 codes (at that fourth digit level) that had at least 20 EMRs in the dataset; the 

number of unique combinations of these 56 codes is about 554. After removing those EMRs 

that did not have any of these frequently occurring 56 codes, we are left with 827 EMRs in 

the dataset. We randomly selected and removed 100 examples from the dataset to be used for 

2This dataset has been approved by the UKY IRB for use in research projects (protocol #12-0139-p3h).
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testing and the remaining 727 EMRs formed the training dataset. The distribution of the 4 

digit code counts in the training set can be seen in Figure 1.

Label-cardinality is the average number of codes per report (or EMR in the UKY dataset). 

To use consistent terminology we refer to the single reports in the CMC dataset as EMRs 

that consist of just one document. Let m be the total number of EMRs and Yi be the set of 

labels for the i-th EMR. Then we have

Label‐Cardinality = 1
m ∑

i = 1

m
∣ Yi ∣ .

The CMC training dataset had a label cardinality of 1.24 and the UKY dataset has a label 

cardinality of 3.86. Another useful statistic that describes the datasets is label-density, which 

divides the average number of codes per EMR by the total number of unique codes q. We 

have

Label‐Density = 1
q · 1

m ∑
i = 1

m
∣ Yi ∣ .

The label-density for the CMC training dataset is 0.03 and for the UKY dataset is 0.06. 

Unlike label-cardinality, label-density also takes into account the number of unique labels 

possible. Two datasets with the same label cardinality can have different label densities and 

might need different learning approaches tailored to the situations. Intuitively, in this case, 

the dataset with the smaller density is expected to have fewer training examples per label.

As we can see, the datasets have significant differences: the CMC data set is coded by 

three different coding companies and final codes are consolidated from these three different 

extractions. As such, it is of higher quality compared to the UKY dataset which is coded by 

only one trained coder from the UKY medical records office. On the other hand, the CMC 

dataset does not have the broad coverage of the UKY dataset, which models a more realistic 

dataset at the EMR level. The CMC dataset only includes radiology reports and has 45 codes 

with 94 code combinations and has on an average 21 words per EMR. In contrast, even with 

the final set of 56 codes (at the four digit level) that have at least 20 examples that we use for 

our experiments, the number of combinations for the UKY dataset is 554 with the average 

EMR size two orders of magnitude more than the average for the CMC dataset.

IV. Multi-Label Text Classification Approaches

In this section, we describe the methods we employ for multi-label classification to 

extract ICD-9 codes from both the datasets. Our core methods primarily use the problem 

transformation approach where the multi-label classification problem is converted into 

multiple binary classification problems. We also use different approaches that take into 

account label correlations expressed in the training data. Besides this basic framework, we 

utilize feature selection, training data selection, and probabilistic thresholding as additional 
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components of our classification systems. One of our goals is to see how all these 

components and transformation approaches perform on the two different datasets we discuss 

(Section III).

We used the Java based packages Weka [22] and Mulan [23] for our classification 

experiments. Next, we describe different components of our classification approaches.

A. Document Features

We used unigram and bigram counts as features. Stop words (determiners, prepositions, and 

so on) were removed from the unigram features. Since unigrams and bigrams are syntactic 

features, we also used semantic features such as named entities and binary relationships 

(between named entities) extracted from text, popularly called semantic predications, as 

features.

To extract named entities and semantic predications, we used software made available 

through the Semantic Knowledge Representation (SKR) project by the National Library 

of Medicine (NLM). The two software packages we used were MetaMap and SemRep. 

MetaMap [24] is a biomedical named entity recognition program that identifies concepts 

from the Unified Medical Language System (UMLS) Metathesaurus, an aggregation of over 

160 biomedical terminologies. When MetaMap outputs different named entities, it associates 

a confidence score in the range from 0 to 1000. We only used concepts with a confidence 

score of at least 700 as features. Each of the concepts extracted by MetaMap also contains 

a field specifying if the concept was negated (e.g., “no evidence of hypertension”). We 

used negated concepts that capture the absence of conditions/symptoms as different features 

from the original concepts. We used SemRep, a relationship extraction program developed 

by Thomas Rindflesch [25] and team at the NLM that extracts semantic predications of 

the form C1 → relationType → C2 where C1 and C2 are two different biomedical named 

entities and relationType expresses a relation between them (e.g., “Tamoxifen treats Breast 

Cancer”). Because predication extraction is made by making calls using the Web API 

provided by SKR, we only used predications as features for the de-identified CMC dataset 

and not for the UKY dataset. If there is more than one document in an EMR, features are 

aggregated from all documents authored by a physician.

B. Base Classifiers and Problem Transformation Approaches for Multi-Label Classification

For the binary classifiers for each label, we experimented with three base classifiers: Support 

Vector Machines (SVMs), Logistic Regression (LR), and Multinomial Naive Bayes (MNB). 

We used the MNB classifier that is made available as part of the Weka framework. For LR, 

we used LibLINEAR [26] implementation in Weka and for SVMs we used LibSVM [27] in 

Weka.

We experimented with four different multi-label multi-label problem transformation 

methods: binary relevance, copy transformation, ensemble of classifier chains, and ensemble 
of pruned label sets.

Let T be the set of labels and let q = |T|. Binary relevance learns q binary classifiers, one 

for each label in T. It transforms the dataset into q separate datasets. For each label Tm, 
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we obtain the dataset for the corresponding binary classifier by considering each document–

label-set pair (Di,Yi) and generating the document-label pair (Did, Tm) when Tm ∈ Yi 

and generating the pair (Did, ¬Tj) when Tm ∉ Yi. When predicting, the labels are ranked 

based on their score output by the corresponding binary classifiers and the top k labels 

are considered as the predicted set for a suitable k. The copy transformation transforms 

multi-label data into single label data. Let T = {T1, …, Tq} be the set of q possible labels 

for a given multi-label problem. Let each document Dj ∈ D, j = 1, …, m, have a set of labels 

Yj ⊆ T associated with it. The copy transformation transforms each document–label-set pair 

(Dj,Yj) into |Yj | document–label pairs (Dj, Ts), for all Ts ∈ Yj. After the transformation, 

each input pair for the classification algorithm will only have one label associated with it and 

one can use any single-label method for classification. The labels are then ranked based on 

the score given from the classifier when generating predictions. We then take the top k labels 

as our predicted label set.

One of the main disadvantages of the binary relevance and copy transformation methods 

is that they assume label independence. In practical situations, there can be dependence 

between labels where labels co-occur very frequently or where a label occurs only when 

a different label is also tagged. Classifier chains [13], based on the binary relevance 

transformation, try to account for these dependencies that the basic transformations cannot. 

Like binary relevance, classifier chains transform the dataset into q datasets for binary 

classification per each label. But they differ from binary relevance in the training phase. 

Classifier chains loop through each dataset in some order, training each classifier one at a 

time. Each binary classifier in this order will add a new Boolean feature to the subsequent 

binary classifier datasets to be trained next. For further details of the chaining approach and 

the ensemble of chains modification that overcomes dependence on the chaining order, we 

request the reader to refer the paper by Read et al. [13].

While ensemble of classifier chains overcomes some of the issues involving the ordering of 

chaining, the more labels in the training set, the larger the number of ensembles one needs 

in the training set. Another multi-label classification method that takes label correlations into 

account is the pruned label sets approach [15]. In this approach, a multi-label problem is 

transformed into a multi-class problem by representing combinations of different labels as 

new classes. Let each document Dj ∈ D, j = 1, …, m, have a set of labels I ⊂ T associated 

with it. Pruned sets will treat each unique set of labels among I as a single class and 

corresponding EMRs as training examples for that class. Only combinations whose training 

data counts are above a user chosen threshold are converted into new classes. For infrequent 

combinations, smaller subsets of these combinations that are more frequent are converted 

into new classes with training examples obtained from the corresponding combinations. To 

overcome the issue of not being able to predict subsets of very frequent combinations (since 

they are already converted into separate classes) in the basic pruned sets approach, using 

an ensemble approach, several pruned set classifiers are trained on random subsets of the 

original training data with final predictions made using a voting approach (please see [15] 

for more specific details).
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C. Feature Selection

An important issue in classification problems with a large number of number of classes and 

features is that the features most relevant in classifying one class from the rest might not be 

the same for every class. Furthermore, many features are either redundant or irrelevant to 

the classification tasks at hand. In the domain of text classification, Bi-Normal Separation 

(BNS) score was observed to result in best performance in most situations among a set of 12 

feature selection methods applied to 229 text classification problems [18]. We employ this 

feature scoring method for our current effort. Let T = {T1, …, Tq} be the set of q possible 

labels. For each label Ti ∈ T and for each feature, we calculate the number of true positives 

(tp) and false positives (fop) with respect to that feature – tp is the number of training EMRs 

(with label Ti) in which the feature occurs. Similarly, fop is the number of negative examples 

for Ti in which the feature occurs. Let pos and neg be the total number of positive and 

negative examples for Ti, respectively. With F−1 denoting the inverse cumulative probability 

function for the standard normal distribution, we define the BNS score of a given feature for 

a particular class as

BNS = ∣ F−1(tpr) − F−1(fpr) ∣

where

tpr = tp
pos and fpr = fp

neg .

Because F−1(0) is undefined, we set tpr and fpr to 0.0005 when tp or fop are equal to zero.

For each of the q binary classification problems, we pick the top k ranked features for each 

label. In our experiments k = 8000 gave the best performance out of a total of 68364 features 

for the UKY dataset. The number of features was very small for the CMC dataset, a total of 

2296 features, feature selection did not improve the performance.

D. Greedy ‘Optimal’ Training Data Selection

In the case of multi-label problems with a large number of classes, the number of 

negative examples is overwhelmingly larger than the number of positive examples for 

most labels. We experimented with the synthetic minority oversampling approach [28] for 

the positive examples which did not prove beneficial for our task. Deviating from the 

conventional random under/over-sampling approaches, we adapted the ‘optimal’ training set 

(OTS) selection approach used for medical subject heading (MeSH terms) extraction from 

biomedical abstracts by Sohn et al. [21]. The OTS approach is a greedy Bayesian approach 

that under-samples the negative examples to select a customized dataset for each label. The 

greedy selection is not technically optimal but we stick with the terminology in [21] for 

clarity. The method for finding OTS is described in Algorithm 1. Intuitively, the method 

ranks negative examples according to their similarity to positive examples and iteratively 
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selects negative examples according to this ranking and finally selects the negative subset 

that offers the best performance on a validation set for that label.
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Algorithm 1

Optimal Training Set Selection

1: for all Binary datasets B1 to Bqdo

2:  Move 20% of the positive examples and 20% of the negative examples from Bi to a validation dataset (Vi).

3:  Put the remaining positive examples into a smaller training dataset (STSi).

4:  Score the remaining negative examples in Bi according to their similarity with positive examples.

5:  Initialize snapshot variable k = 1

6:  whileBi is not empty do

7:   Remove the top 10% scored negative examples in Bi and add them to STSi.

8:
  Record the snapshot of the current training set, STSi

k = STSi.

9:
  Build a binary classifier for i-th code with training dataset STSi

k and record the F1.5 score on Vi.

10:   k = k + 1

11:
 Set the optimal training set OTS = the snapshot STSi

k with the highest F1.5 score.

Here we describe how to compute the score for negative examples. Since we want to select 

those negative examples that are the most difficult to distinguish from the positive examples, 

for a given negative training example Dj, we would like our score to be proportional to 

P(positive|Dj). Using Bayes theorem, this quantity can be shown (see the online appendix A 

of [21]) to monotonically increase with the following score Function

Score(Dj) = ln P(Dj ∣ positive)
P(Dj ∣ negative) ,

where P(Dj |positive) is the probability estimate of document Dj given the class is positive, 

which is estimated using Πi P(wi|positive) where wis are the unigrams in Dj. Each 

P(wi|positive) is estimated using counts of wi in the positive examples in the training 

data. Similarly, P(Dj |negative) is also estimated. The measure we use for assessing the 

performance of each STS on the validation set in algorithm 1 is the traditional Fβ measure 

with β = 1.5. We chose F1.5 over the traditional balanced F1 measure to give more 

importance to recall since the main utility of code prediction is to assist trained coders. 

Our adaptation of Sohn et al.’s method differs from the original approach in that we don’t 

resort to the leave-one-out cross validation and instead use a validation set to select the OTS. 

We also use the naive Bayes assumption for estimates of P(Dj |positive) involving terms for 

unigrams that occur in the document.

E. Probabilistic Thresholding of Number of Labels

In multi-label classification, it is also important to consider effect of the number of labels 

predicted per document on the performance of the approaches used. A straightforward 

(and the default approach in many implementations) is to predict all labels whose base 

binary classifiers predict them with posterior probabilities > 0.5. This could lead to more 

labels than is actually the case or fewer labels than the actual number. A quick fix that 
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many employ is to pick a threshold of top r (r-cut) labels where the r picked is the one 

that maximizes the example-based F-score (see Section V) on the training data. However, 

using this method always results in the same number of labels for each document in the 

testing set. We used an advanced thresholding method, Multi Label Probabilistic Threshold 

Optimizer [17] (MLPTO), for choosing a different number of labels per EMR that changes 

for each EMR instance. The optimizer we employed uses 1 − (Example-Based-F-score) as 

the loss function and finds the r that minimizes the expected loss function across all possible 

example-based contingency tables for each instance. For specific details of this strategy, 

please see [17].

V. Evaluation Measures

Before we discuss our findings, we establish notation to be used for evaluation measures. 

Since the task of assigning multiple codes to an EMR is the multi-label classification 

problem, there are multiple complementary methods [29] for evaluating automatic 

approaches for this task. Recall that Yi, i = 1, …, m, is the set of correct labels in the dataset 

for the i-th EMR, where m is the total number of EMRs. Let Zi be the set of predicted labels 

for the i-th EMR. The example-based precision, recall, and F-score are defined as

Pex = 1
m ∑

i = 1

m ∣ Yi ∩ Zi ∣
∣ Zi ∣ , Rex = 1

m ∑
i = 1

m ∣ Yi ∩ Zi ∣
∣ Yi ∣ ,

and Fex = 1
m ∑

i = 1

m 2 ∣ Yi ∩ Zi ∣
∣ Zi ∣ + ∣ Yi ∣ , respectively.

For each label Tm in the set of labels T being considered, we have label-based precision 

P(Tm), recall R(Tm), and F-score F(Tm) defined as

P(T j) = TP j
TP j + FP j

, R(T j) = TP j
TP j + FNj

,

and F(T j) = 2P(T j)R(T j)
P(T j) + R(T j) ,

where TPj, FPj, and FNj are true positives, false positives, and false negatives, respectively, 

of label Tm. Given this, the label-based macro average F-score is

Macro‐F = 1
∣ T ∣ ∑

j = 1

∣ T ∣
F(T j) .

The label-based micro precision, recall, and F-score are defined as
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Pmic = ∑j = 1
∣ T ∣ TP j

∑j = 1
∣ T ∣ (TP j + FP j)

, Rmic = ∑j = 1
∣ T ∣ TP j

∑j = 1
∣ T ∣ (TP j + FNj)

and Micro‐F = 2Pmic · Rmic

Pmic + Rmic ,

While the macro measures consider all labels as equally important, micro measures tend 

to give more importance to labels that are more frequent. This is relevant for our dataset 

because we have a very unbalanced set of label counts (see Figure 1) and in such cases 

micro measures are considered more important.

VI. Results and Discussion

In this section we present the results we obtain on both datasets and assess the role of 

different components of the learning approaches we explored in Section IV.

A. CMC Dataset Results

The best results on the CMC dataset were obtained using unigrams and named entity 

counts (without any weighting) as features and SVMs as the base classifiers. Here, we 

present the results when using binary relevance (BR), ensemble of classifier chains (ECC), 

and ensemble of pruned sets (EPS) problem transformation methods. We also used SVMs 

with bagging to compare BR with the more complex ensemble approaches, ECC and EPS, 

that take label dependencies into account. In Table I, we can see that the best performing 

classifier is the ensemble of classifier chains with an F-score of 0.85. It is interesting to see 

that BR with bagging also performed reasonably well. For the CMC competition, the micro 

F-score was the measure used for comparing relative performances of contestants. The mean 

score in the competition was 0.77 with a standard deviation of 0.13. The best performing 

method was able to achieve a 0.90 micro F-score.

There were many instances in the CMC dataset where our methods did not predict any 

codes. We experimented with using an unsupervised approach to generate predictions for 

those examples: we generated named entities using MetaMap for each of these documents 

that did not have any predictions. We mapped these entities to ICD-9-CM codes via a 

knowledge-based mapping approach [30] that exploits the graph of relationships in the 

UMLS Metathesaurus (which also includes ICD-9-CM). If MetaMap generated a concept 

that got mapped to an ICD-9 code we trained on, we used that ICD-9 code as our prediction. 

We were able to increase our best F-Score from using ECC from 0.85 to 0.86 using this 

method. Also, while we don’t report the results for when we added semantic predications 

as features, the results were comparable with no major improvements. Feature selection, 

optimal training sets, and probabilistic thresholding did not make significant improvements 

for the CMC dataset.

B. UKY Dataset Results

Table II shows the results on the testing set for the UKY dataset. For this dataset, we first 

tried our best performing models from the CMC dataset. We noticed that ECC did not 
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perform well on this larger dataset; there seem to have been very few label dependencies 

in this dataset – recall that there were over 500 unique label sets of the 56 labels used for 

training for the in house dataset. Also, on this dataset we achieved the best results using LR 

instead of an SVM as our base classifier. Because there was much more text available per 

example, we were able to take advantage of tf-idf weighting and used bigrams, unigrams, 

and CUIs. To generate the features used for the models in Table II, we used feature selection 

with BNS and also removed features that did not occur at least 5 times in the training 

set. In Table II, we show the results for four combinations: 1. BR with LR; 2. BR with 

OTS and probabilistic thresholding (MLPTO); 3. BR with optimal training sets (OTS) and 

always picking 3 labels (RCut 3); and 4. Copy Transformation (RCut 3). The second row, 

the combination of OTS, BNS, and MLPTO gives the best F-scores across all three types of 

measures although other combinations in rows 3 and 4 offer a higher recall with substantial 

losses in precision. Since these methods use RCut 3, that is, three labels are always picked 

for each EMR, we can see how the recall gain also introduced many false positives, a 

scenario that MLPTO seems to have handled effectively with separate thresholding for each 

instance. Finally, we can see from the first row, where only BR is used without any other 

components, diagnosis code extraction is a difficult problem that does not lend itself to 

simple basic transformation approaches in multi-label classification.

In Table III, we show the results of learning component ablation on our best classifier (from 

row 2 of Table II) shown as the first row. While removal of MLPTO and OTS caused losses 

of up to 8% in F-scores, dropping feature selection with BNS caused a drop of 30% in 

F-score, which clearly demonstrates the importance of appropriate feature selection in these 

combinations. However, interestingly, just using BNS alone without MLPTO and OTS did 

not result in major performance gains compared to the first row of Table II.

VII. Concluding Remarks

In this paper we used supervised multi-label text classification approaches to extract 

ICD-9-CM diagnosis codes from EMRs from two different datasets. Using a combination 

of problem transformation approaches with feature selection, training data selection, and 

probabilistic threshold optimization, we compared our results with the basic approaches to 

assess the contribution of these additional learning components in the task of diagnosis code 

extraction. We plan to pursue the following future research directions.

• We are four percentage points behind the best performer (0.9 F-score) on the 

CMC dataset. Although we are not aware of the best performer methods from 

published literature, we notice that Farkas and Szarvas [9] used rule induction 

approaches to achieve 0.89 micro F-score. However, it is not clear how rule 

induction fares with more complex datasets like our UKY dataset. We would like 

to explore automatic rule induction as a learning component in future work.

• Our best results on the UKY dataset all have F-scores below 0.5. Granted our 

dataset is more complex with multiple documents per EMR and a high number 

of possible code combinations, clearly, major improvements are needed some of 

which will not be clear unless we run our experiments on larger datasets. An 

important future task for us is to curate a bigger dataset both in terms of number 
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of codes and number of examples per code to gain a better understanding of the 

complexity and possible alternatives to methods we used in this paper. To gain 

insights into the nature of our errors, a detailed qualitative error analysis based 

on the experiments conducted in this work is also on our immediate agenda.
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Fig. 1. 
Distribution of ICD-9 code counts in the datasets. Number of EMRs on the Y-axis and the 

codes arranged in descending order of frequencies on the X-axis
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Algorithm 1

Optimal Training Set Selection

1: for all Binary datasets B1 to Bqdo

2:  Move 20% of the positive examples and 20% of the negative examples from Bi to a validation dataset (Vi).

3:  Put the remaining positive examples into a smaller training dataset (STSi).

4:  Score the remaining negative examples in Bi according to their similarity with positive examples.

5:  Initialize snapshot variable k = 1

6:  whileBi is not empty do

7:   Remove the top 10% scored negative examples in Bi and add them to STSi.

8:
  Record the snapshot of the current training set, STSi

k = STSi.

9:
  Build a binary classifier for i-th code with training dataset STSi

k and record the F1.5 score on Vi.

10:   k = k + 1

11:
 Set the optimal training set OTS = the snapshot STSi

k with the highest F1.5 score.
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