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Protein interactions between virus and host are essential for viral propagation and movement, as viruses lack
most of the proteins required to thrive on their own. Precision methods aimed at disrupting virus–host
interactions represent new approaches to disease management but require in-depth knowledge of the identity
and binding specificity of host proteins within these interaction networks. Protein coimmunoprecipitation (co-IP)
coupled with mass spectrometry (MS) provides a high-throughput way to characterize virus–host interactomes in
a single experiment. Common co-IP methods use antibodies immobilized on agarose or magnetic beads to
isolate virus–host complexes in solutions of host tissue homogenate. Although these workflows are well
established, they can be fairly laborious and expensive. Therefore, we evaluated the feasibility of using antibody-
coated microtiter plates coupled with MS analysis as an easy, less expensive way to identify host proteins that
interact with Potato leafroll virus (PLRV), an insect-borne RNA virus that infects potatoes. With the use of
the bead-free platform, we were able to detect 36 plant and 1 nonstructural viral protein significantly
coimmunoprecipitating with PLRV. Two of these proteins, a 14-3-3 signal transduction protein and malate
dehydrogenase 2 (mMDH2), were detected as having a weakened or lost association with a structural mutant of
the virus, demonstrating that the bead-free method is sensitive enough to detect quantitative differences that can
be used to pin-point domains of interaction. Collectively, our analysis shows that the bead-free platform is a low-
cost alternative that can be used by core facilities and other investigators to identify plant and viral proteins
interacting with virions and/or the viral structural proteins.

KEY WORDS: potato leafroll, Luteoviridae, polerovirus, phloem-limited pathogen, insect-borne virus, molecular
virology

INTRODUCTION

Viruses, as infectious agents, are dependent on the cells of
living hosts for replication and movement. They exist as
small nucleic acid structures (DNA or RNA) enclosed
within a protein shell (capsid) that is sometimes surrounded
by a lipid membrane or as nucleic acid-protein complexes
comprised of one or more viral proteins required for
movement and/or replication.1Once inside a host cell, these
independent particles and the small repertoire of viral
proteins they encode must form physical connections with
various host protein complexes to evade host defenses, form

viral replication sites, move cell to cell, and in some cases,
manipulate host physiology to attract biotic vectors for viral
dissemination.2 Thus, identification and characterization of
virus–host protein interaction networks are critical steps in
understanding how pathogens cause disease. Knowledge
gleaned can be useful in developing strategies aimed at
disrupting these interactions to prevent infection and/or
viral transmission.

Molecular-based approaches for discovering and vali-
dating protein–protein interactions include two-hybrid
screening3 and biomolecular fluorescence complementa-
tion,4 where 2 proteins of interest (bait and prey) are
genetically fused to separate fragments of a transcription
factor or a fluorescent protein that are inactive in their split
state. If the bait and prey physically interact, then protein-
fragment complementation between the 2 halves of the
transcription factor/fluorescent protein tags, respectively,
leads to expression of a set of reporter genes or fluorescence
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that can be visually assessed. Although these methods have
been used successfully to identify some host proteins that
directly interact with individual viral proteins,5, 6 they are
not amenable to studying interactions with multimeric
protein complexes, such as assembled virion or virus
replication factories. In addition, these techniques require
extensive cloning andmultiple roundsof screening, often in cells
(i.e., yeast) that are outside of the biologic context of a natural
infection. Alternatively, protein co-immunoprecipitation (co-
IP) works by using target protein-specific antibodies affixed to a
beaded support to capture protein complexes directly from
infected cells in buffer conditions that preserve biologically
important protein conformations, including post-translational
modifications (PTMs) that may be required for binding.
Coupled to high-resolution mass spectrometry (MS), co-IP
provides a high-throughput way to identify and characterize
multiple virus–host interactions in a single experiment.
Optimized workflows in yeast, mammals, and plants show
that rapid extraction and immunoprecipitation of a protein of
interest maintain the structural integrity of its associated
protein complexes, while minimizing nonspecific protein
interactions.7–10 Although the technique is becoming more
established in the field of virology, co-IP remains a fairly
expensive and laborious process, requiring large amounts of
antibody and beads, extensive optimization of conditions,
and numerous tube transfers during downstream washing
steps.7, 9–11 The binding of virus-specific antibodies to
microtiter plates and then the addition of diluted tissue
homogenate fromvirus-infected plants has long beenused as an
effective, widely used, inexpensive method (Supplemental
Table S1) to capture virus, e.g., ELISA, in the field of plant
virology, and may be a method to capture virus–host protein
complexes that can subsequently be analyzed by MS. This
technique has been used previously by Mikula et al.11 to assess
the interaction dynamics of human heterogeneous nuclear
RNPK, a single protein, under different stress conditions using
UV-C light-treated PCR plates precoated with Protein A/G.11

This protein is a highly abundant, pleiotropic protein in human
cells,12 known to interact with other highly abundant proteins,
such as ribosomal proteins.13 Comparatively, identification of
protein–protein interactions of plant viruses has its own set of
challenges, in that plant cells are surrounded by thick cell walls
that are recalcitrant to extraction methods used in mammalian
studies.14 In addition, most plant viruses move as multimeric
structures and not as a single protein.15 Therefore, in this study,
we tested the effectiveness of using a simplified, bead-free,
microplate-based co-IP assay (Fig. 1A), following conditions
used for detection of virus by ELISA, as an alternative approach
to identify plant proteins that interact with PLRV, a phloem-
limited pathogen that infects solanaceous crops.

PLRV is a positive-sense, single-stranded RNA virus
in the family Luteoviridae (genus polerovirus) that is

transmitted by the green peach aphid, Myzus persicae, in a
circulative-persistent manner.16 Disease symptoms include
severe stunting of plants, chlorosis, and leaf roll and in some
potato cultivars, net necrosis, which makes tubers undesir-
able for sale.17 The ;5.8 kb genome of PLRV is compact
and comprised of 9 open-reading frames (ORFs) that have
been found to code for biologically functional proteins.17, 18

The capsid structure for this family is a nonenveloped,
icosohedral virion composed of 2 structural proteins. The
coat protein (CP), encoded by ORF3, accounts for the
majority of the 180 proteins in the capsid structure. Aminor
capsid protein, known as the read-through protein (RTP), is
generated by translational read-through of a leaky stop
codon at the end of ORF3, which creates an ;500 aa
carboxyl-terminal extension, known as the read-through
domain (RTD). The RTP accounts for ,10% of the total
proteins incorporated into the capsid via its CP domain,
with the RTD located on the surface of the capsid. It has
been shown that microdomains within both the CP and
RTD, as well as different nonstructural forms of these
proteins, regulate virus propagation andmovement through
the plant and aphid19–21 via specific interactions with host
proteins and other nonstructural virus proteins.10, 22, 23

Previously, we reported the identification of over 1000
plants and 3 viral proteins in complex with wild-type (WT)
PLRV using a magnetic, bead-based co-IP workflow.10, 23

Some of these viral–plant interactions were weakened or lost
in the absence of the RTD (DRTD mutant), suggesting a
role for these host proteins in viral functions regulated by
this domain, e.g., phloem retention, systemic movement,
and symptom development.20, 24 The 3 viral nonstructural
proteins found associating with virion and/or structural
proteins included the P17movement protein (ORF4) that is
required for cell-to-cell trafficking of virions,25 the viral
RNA-dependent RNA polymerase generated by a 21
ribosomal frameshift in the overlapping region ofORF1 and
ORF2,26 and the multidomain P1 protease (ORF1), which
undergoes self-proteolysis to produce 3 distinct protein
species, including the viral genome-linked protein.27 The
association of these nonstructural proteins in viral co-IP
experiments was not dependent on the presence of the
RTD.23With the use of the bead-free platform,wewere able
to identify 36 plant proteins and the P1 viral protein
significantly coimmunoprecipitating with PLRV. Among
the host proteins identified, 16 were also detected as high-
confident interactions in our previous PLRV–plant
co-immunoprecipitation analysis using antibody-coated
magnetic beads.10 Two of these host proteins were reproducibly
identified as having a weakened or lost association with the
DRTD mutant in both assays,23 showing that the bead-free
method is sensitive enough to detect quantitative differences
between samples. An in silico functional analyses of the 36
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FIGURE 1

Schematic representation of the microplate-based, bead-free co-IP protocol and optimization of experimental conditions
for efficient capture of PLRV–plant complexes. A) N. benthamiana leaves locally infected with PLRV (WT or DRTD) by
Agrobacterium-mediated infiltration were cryogenically lysed using a Mixer Mill and virus–host protein complexes
extracted in 13PBS (pH7.4) in the absence of detergent. Plant homogenatewas added to a 96-wellmicrotiter plate coated
with a commercially available a-PLRV capture antibody and incubated at 4°C for ;16 h. Wells were washed and PLRV
protein complexes subjected to on-plateMS sample preparation. Tryptic peptides were analyzed by nanoflow LC-MS/MS
using anOrbitrap Velos mass spectrometer. Protein identification and label-free quantification of resulting peptide spectra
were performed using various proteomic software tools. A detailed protocol is described in Materials and Methods. B, C)
DAS-ELISA analysis ofWTPLRV levels show that (B) extractionwith a nondetergent-based buffer (13PBS) and (C) a longer
incubation time (16h) result in a greater level of PLRVcaptured on-plate comparedwith conditions used for bead-based co-
IP experiments,10 i.e., detergent-basedHEPES buffer and a rapid 1 h incubation, respectively. D) Blocking antibody-coated
microtiter plates with 3% BSA (blocked) before addition of plant homogenate resulted in slightly lower levels of captured
PLRV comparedwith plates thatwere unblocked. Bar graphs represent the average change in absorbance (4052490 nm)
6 SE, measured by DAS-ELISA for n = 2 biologic replicates. E) The blocking of microtiter plates with BSA (black bars) also
leads to a reduction in the detection of precursor ions from IGG and PLRV CP inWTco-IP samples compared with co-IPs
performed on unblocked plates (gray). Bars represent the average MS1 peak areas 6 SE for 4 peptides (Supplemental
Dataset S1) fromBSA, IGG, andPLRVCP fromWTco-IPs for n=9 (blocked) and n=6 (unblocked). F)Maximumamountof
peptide coverage of PLRVCP/RTD inWTPLRVmicrotiter plate co-IPs. Yellowblocks indicated the sequence coveredwith
peptides identified by nanoflow LC-MS/MS after analysis in Scaffold. Green blocks highlight sites where methionine was
identified as oxidized.
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host proteins found in complex with PLRV using the bead-free
workflow revealed roles in pathways involving biosynthesis of
defensive compounds, plant metabolism, and stress response.

MATERIALS AND METHODS

Plant infection

Agrobacterium tumefaciens (strain LB4404), containing in-
fectious clones of WT PLRV,28 or the DRTD mutant,29 a
PLRV that does not translate the minor capsid protein, were
grown and infiltrated into individual Nicotiana benthamiana
leaves, as outlined in DeBlasio et al.10 A separate set of plants
were mock infected with LB4404 as a negative control
condition. Locally infected leaf tissue was harvested 3–
4 d postinfiltration and stored at 280°C for subsequent
experiments. Each biologic replicate consisted of a pool of
2–3 infiltrated leaves from 5 to 10 individual plants.

Lysis buffer and blocking conditions

Leaf tissue was cryogenically lysed using a Mixer Mill MM
400, following the protocol outlined in DeBlasio et al.10

Protein complexes were extracted from 1 g cyro-lysed tissue
on ice using 2.5 ml 13 PBS, pH 7.4, supplemented with a
1:100 dilution of Halt EDTA-free protease inhibitor (PI)
cocktail (Thermo Fisher Scientific,Waltham,MA, USA) or
50 mM HEPES–KOH (pH 7.4), 0.1% Triton X-100,
110 mM potassium acetate, 2 mMMgCl2, 0.5 mM PMSF,
and PI (1:100) for 1 h with brief vortexing (maximum
speed) every 10–15 min. The resulting homogenate was
used for subsequent experiments without centrifugation.

Relative levels of WT PLRV were measured by
double-antibody sandwich (DAS)-ELISA following
procedures outlined in Barker and Solomon30 and Lee
et al.,25 using commercially available PLRV capture and
alkaline phosphatase-conjugated detection antibodies
(Agdia, Elkhart, IN, USA). For the assessment of lysis
buffer conditions, wells remained unblocked and were
washed in the appropriate lysis buffer following our
microtiter plate co-IP workflow (see below). For assessing
the effect of blocking on immunocapture of PLRV, wells
were washed in 13 PBS (pH 7.4) after coating with capture
antibody and then blocked with 200 ml 3% bovine serum
albumin (BSA) in 13 PBS (pH 7.4) for 2 h at room
temperature before addition of plant homogenate (in 13
PBS, pH 7.4, plus PI). For the unblocked condition, wells
were incubated with 13 PBS (pH 7.4) for 2 h. For
assessment of optimal incubation time, 100 ml plant
homogenate (in 13 PBS, pH 7.4, plus PI) was incubated
in unblocked, antibody-coated wells for 1 or 16 h at 4°C.

For all experiments, change in absorbance (405 minus
490 nm) was measured on an Epoch spectrophotometer
(BioTek Instruments, Winooski, VT, USA), 1 h after
addition of phosphatase substrate (Sigma-Aldrich, St. Louis,

MO, USA), dissolved in 10% diethanolamine, pH 9.8
(1 mg/ml). All values were normalized to the absorbance
readings of the respective lysis buffer used.

Bead-free co-IP

One hundred microliters of polyclonal a-PLRV capture
antibody (Agdia), diluted to afinal concentration of 2mg/ml
in coating buffer (15mMNa2CO3, 35mMNaHCO3), was
added to individual wells of a 96-well microtiter plate
(Agdia). This antibody has been independently validated
to be specific for detecting PLRV virion and structural
proteins by DAS-ELISA19, 25 and Western blot analysis,
respectively.10, 22, 23 Plates were incubated at 37°C for 2 h.
Antibody solution was removed with a pipette, and each
well washed 43 with 100 ml 13 PBS, pH 7.2 (PBS), made
with Nanopure H2O, using detergent-free glassware. For
the first wash, 100 ml 13 PBS was quickly pipetted up and
down within the well, 4 times before being discarded. For
the additional 3 washes, wells were incubated with 100 ml
13 PBS for 5 min at room temperature before the solution
was discarded. The plate was dried between each washing
step by inverting and tapping the plate firmly on lint-free
KimtechKimWipes (Kimberly-Clark Professional, Roswell,
GA, USA). One hundred microliters of the 13 PBS-
extracted plant homogenate mentioned above was added to
antibody-coated wells. The plate was sealed with ParafilmM
and incubated at 4°C for;16 h in a humid chamber. Plant
homogenate was carefully removed with a pipette and
individual wells washed and dried following the same
procedure mentioned above. Plates were stored at –80°C
until the on-plate sample preparation for MS analysis. A
total of 2–3 technical replicates were performed for
each biologic replicate. Data represent 2 independent
experiments.

Sample preparation for MS

Protein complexes resulting from the microtiter plate co-IP
were reduced by adding 22 ml 6 M urea and 10 mM DTT
(Sigma-Aldrich) in 100 mM ammonium bicarbonate
(Sigma-Aldrich) to each well and pipetting vigorously to
resuspend captured host–virus protein complexes. Plates
were sealed with foil and Parafilm, sonicated for 2 min, and
incubated at 37°C for 1 h. Cysteines were then blocked with
30 mM methyl methanethiosulfonate (Sigma-Aldrich) for
1 h at 37°C. Microtiter plates were sonicated for 2 min and
the urea in each sample diluted to 1 M with 100 mM
ammonium bicarbonate. Proteins were then digested with
100 ng sequencing grade trypsin (Promega, Madison, WI,
USA) overnight at 37°C. After digestion, plates were
sonicated for 10 min and dried in a vacuum concentrator.
Samples were resuspended in 20 ml 0.1% formic acid,
sonicated, and desalted using C18 ZipTip (MilliporeSigma,
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Billerica, MA, USA), following the manufacturer’s instruc-
tions. Peptides were stored at 280°C before MS analysis.

MS

For MS analysis, tryptic peptides were solubilized in 5–8 ml
Solvent A by vortexing for 10 min at 37°C and bath
sonication for 5min. Splitless nanoflow chromatography was
performed in the vented column configuration using a
nanoACQUITY liquid chromatography (LC) system (Wa-
ters, Milford, MA, USA). Solvents A and B were 99.9/0.1
water/formic acid and 99.9/0.1 acetonitrile/formic acid,
respectively. A flow rate of 2 ml/min (98% A/2% B) flushed
the sample out of a 5ml loop and onto a self-packed capillary
trap column (100 mm inner diameter3 4 cm). After 10 ml
wash, the 6-port valve switched and closed the vent that
initiated the gradient flow (250 nl/min) and data acquisition.
A 60 min analysis was run in which Solvent B ramped from
2 to32%Bover 40min (1–41min), held constant at 80% for
5 min (41–46 min), and initial conditions were restored for
the final 14 min (46–60 min). An Orbitrap Velos (Thermo
Fisher Scientific, Bremen, Germany) was operated in a data-
dependent mode, where the top 10most abundant ions were
selected for tandemMS per precursor scan. ForMS1 analysis
performed in the Orbitrap, a scan range of a mass-to-charge
ratio of 400–1400, with a resolving power of 60,000 at a
mass-to-charge ratio of 400,was used.Automatic gain control
was set to 1,000,000 ions, with a max ion injection time of
200ms. For data-dependentMS2 scans, performed in the ion
trapwith an automatic gain control of 10,000 ions and a max
ion injection time of 80 ms, a 60 s exclusion window was
used to avoid repeated interrogation of abundant ions. For
selection of ions, monoisotopic precursor selection was on
with the exclusion of unassigned and 1+ charge states. Each
sample was analyzed once as a result of the small sample
volume used to maximize peptide concentration.

MS data analysis

Protein identification and label-free quantification of MS
data were performed following methods described in
DeBlasio et al.23 with the following exceptions: 1) oxidized
methionine (variable) and methylthio on cysteines (fixed)
were the only modifications used for the dataset presented,
2) a separate Mascot search (Matrix Science, London,
United Kingdom) was done using lysine acetylation
and phosphorylation of serine and threonine as variable
modifications to identify PTMs of PLRVCP/RTD, and 3) a
peptide and protein identification threshold of $95 and
$90%, respectively, was used for cluster analysis in Scaffold
Q+ v4.4.6 (Proteome Software, Portland, OR, USA) and
the total spectral counts (SpCs) detected per biologic
replicate for individual proteins reported. The false
discovery rate for this analysis was ,1% on the protein

and peptide level. A Venn diagram presenting overlap of
plant and viral proteins identified in microtiter plate
immunoprecipitations was generated using VENNY 2.1
(http://bioinfogp.cnb.csic.es/tools/venny/). The interaction
specificity of each prey protein with PLRV was calculated
using the Significance Analysis of Interactome (SAINT)
webserver,31–33 following parameters reported in DeBlasio
et al.23 with WT PLRV and DRTD co-IPs analyzed
separately against the same mock-infected control data.
Contaminating mammalian proteins that were identified
were dropped from further analysis. The relative levels of
PLRV CP (gi|21040163), IgG1 constant region (IGG;
gi|89242507), and BSA (gi|3336842) were also quantified
in Skyline,34 using precursor ion (MS1) peak integration of
3–4 peptides.MS1 and SpCdata presented in Supplemental
Fig. S1 were analyzed by 1-way ANOVA, followed by a
Tukey’s honestly significant difference post hoc test using the
webserver http://astatsa.com/OneWay_Anova_with_Tu-
keyHSD/. All raw MS, Mascot generic format, mzID, and
Scaffold analysis files used in this study are available for
download on ProteomeXchange (PXD006338). Charac-
terization of biologic processes regulated by proteins in
the identified PLRV–host interactome was performed in
Blast2GO PRO 3.3.535 using the unique Arabidopsis
thaliana orthologs of N. benthamiana proteins found to
form confident interactions [probability score (SP) $ 0.6]
with PLRV. Putative biologic functions of featured proteins
for Table 1 were manually curated from our in-house
database or through literature searches.

RESULTS AND DISCUSSION

Bead-free co-IP workflow

For immunocapture of PLRV–plant protein complexes on
microtiter plates, we compared methods commonly used for
detection of PLRVbyDAS-ELISA,19, 25 an immunocapture-
based technique used for plant infection diagnostics,30 with
those previously determined to be optimal for capture of
PLRV–plant protein complexes using antibody-coated
magnetic beads.10, 23 Plates were coated with a commercially
available pAb, specific for detecting PLRV virion and the
nonincorporated forms of both structural proteins, including
the truncated and multimeric forms of the RTP that have
been described previously.10, 19, 22, 23, 25, 36 In our bead-based
workflow, cellular lysis in a detergent-based HEPES buffer,
supplemented with PIs, resulted in higher levels of PLRV
extracted from cryo-milled N. benthamiana tissue that did
not interfere with enrichment of virus on antibody-coated
magnetic beads.10 However, use of this buffer composition
resulted in a severe reduction (6.3-fold) in the amount of
PLRV captured on antibody-coated microtiter wells com-
pared with solubilization/washing in 13 PBS (pH 7.4),
supplementedwith PIs, the buffer typically used for detection
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of PLRVbyDAS-ELISA25 (Fig. 1B). Likewise, the reduction
of the incubation time of PLRV-infected homogenate with
antibody-coated wells from;16 h (used for DAS-ELISA) to
1 h (used for bead-based methods) also resulted in a lower
amount (2.2-fold) of captured PLRV (Fig. 1C). Next, we
tested whether the blocking of the microtiter wells would
increase the interaction specificity of PLRV with antibody.
This method is often implemented in diagnostic protocols to
increase signal-to-noise by preventing nonspecific reactants
from binding to the microtiter well.37 In our study, the
blocking of antibody-coated plates with 3% BSA before the
additionof infectedplanthomogenate led to a slight decrease in
the amount of PLRV captured (Fig. 1D). More importantly,
the large abundance of BSA drastically lowered our ability to
detect peptides from IGGandPLRVCP inWTco-IP samples
by data-dependent MS compared with co-IP experiments
performed on unblocked plates (Fig. 1E). Detection of lower
abundant peptides in complex samples, such as co-IP
mixtures, becomes difficult as a result of the dynamic range
of coeluting peptides from abundant proteins competing for
MS/MS acquisition.38

Collectively, our results show that optimal conditions for
immunoprecipitationof PLRVusing antibody-coatedmicro-
titer plates are in line with what is best for detection of virus
using ELISA rather than conditions used for bead-based
immunoprecipitation of virus-plant complexes, with the
exception ofblockingplateswithBSA. It is possible that in the
bead-free system, the use of detergent interferes with binding
of virus to antibody. Alternatively, the adherence of antibody
to themicrotiter platematrixmay beweaker than in the bead-
based system, where antibody is either covalently conjugated
to magnetic beads in a uniformmanner9 or tightly bound by
Protein A.10 Thus, the washing of wells with detergent would
readily disrupt retention of the antibody. A cost analysis of the
microtiter plate assay comparedwith our previous bead-based
assay (Supplemental Table S1) revealed a $59 decrease in
spending onmatrix support, over $200 saved in purchasing a
commercially available a-PLRV antibody optimized for
DAS-ELISA compared with using a custom-made anti-
body that required user validation of specificity and cross-
absorption before use with magnetic beads,14 and the use of
nanograms instead of micrograms of trypsin.Money was also
saved on reagents andmaterials not required for the bead-free
workflow, such as the protein LoBind microfuge tubes, a
magnet, and Pmax Surfactant for trypsin digestion. Although
the overall time spent completing the bead-free workflowwas
longer (.24 h) compared with using magnetic beads (;6 h,
depending on the number of samples), time spent actively
manipulating co-IP samples was longer for the bead-based
method as a result of the individual washing steps, which are
more amenable to high-throughput automationwhenusing a
microtiter plate.

Mass spectrometric analysis of plant–virus complexes
captured using bead-free co-IP platform

With the use of our bead-free co-IP workflow (Fig. 1A), we
detected peptides spanning the entire PLRV RTP in WT
PLRV microtiter plate co-IPs with sequence coverage
between 1 and 46% (Fig. 1F). This result is similar to what
we observed when using antibody-coated magnetic beads to
capture PLRV–host complexes.10 The PLRV RTP was
detected with an averageMascot protein score of 743 and an
average exponentially modified protein abundant index of
1.8 inWTco-IP samples. These scores were lower thanwhat
we observed when using antibody-coated magnetic beads
(13,632 and 78.23, respectively),10 indicating a lower
abundance of PLRV captured using the bead-freemethod. As
expected, peptides from the RTD were not detected in
DRTDmutant co-IP experiments (data not shown). Previous
studies with mammalian cells have shown that the use of a
similar bead-free immunoprecipitation technique coupled to
offline separation of captured proteins by SDS-PAGE before
MS analysis allowed for the identification of bait peptides
containing PTMs, including phosphorylation and acetyla-
tion.11Despite the identification of 3 phosphorylated peptide
isoforms from the PLRV RTD in our bead-based study,
which did not include SDS-PAGE separation of proteins
complexes,10 these were not identified here.

Levels of PLRV, captured perwell, were too low to detect
by conventional assays, such as Western blot analysis and
Bradford assay, after sample incubation (data not shown).
Therefore, reproducibility of well-to-well protein recovery
was assessed by quantifying the number of total SpCs and the
MS1 peptide intensities detected for IgG and the PLRV
structural proteins across all technical replicates using the
proteomic software tools Scaffold Q+ and Skyline,34 re-
spectively. On average, levels of IgG were not significantly
different among WT PLRV, DRTD, and mock-infected co-
IP samples by SpC or MS1 peak integration (Supplemental
Fig. S1A, B), indicating good reproducibility of antibody
coating. However, we observed a 30.2% coefficient of
variation (CV) of SpC and a median CV of 60.7% for MS1
peak intensities among co-IP technical replicates (Supple-
mental Dataset S2), suggesting that well-to-well protein
recovery was variable. Interestingly, median levels of PLRV
CP in mutant co-IPs were 1.7 (SpC) and 2.5 (MS1 of 3 CP
peptides)-fold lower compared withWT (Supplemental Fig.
S1C, D), a difference we did not observe when using
magnetic beads.23 However, statistical analysis (ANOVA,
Tukey’s honestly significant difference) indicated these
differences as being insignificant (P. 0.07). As the antibody
used in the analysis was a pAb, raised against sucrose density-
purified virion, it is possible that themutant virion is captured
less efficiently as a result of the loss of epitopes from theRTD,
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which would lead to lower levels of CP being detected
in mutant co-IP samples. CV values for CP MS1 signal
intensities for DRTD and WT technical replicates were
44.4 and 105.9%, respectively. CV for SpC was 22.6 and
79.6% for DRTD and WT, respectively. As a result of the
well-to-well variability we observed, SpCdata generated from
technical replicates for each prey protein were combined into
a single biologic replicate for subsequent analyses to identify
PLRV interacting partners.

In total, 849 N. benthamiana and 2 PLRV non-
structural proteins (P1 and P17) were detected in micro-
titer plate co-IP experiments (Supplemental Dataset S3).
Figure 2A shows a Venn diagrampresenting the number of
prey proteins detected in each of the co-IP PLRV infection
conditions and their overlap. Themajority of prey proteins
detected (467) were shared among all PLRV co-IP
conditions, including negative controls, 25 of which had
an average SpC that was $2-fold enriched in PLRV
(WT and DRTD) co-IPs compared with mock-infected,
negative controls (Fig. 2B and Supplemental Dataset S3).
Eighty-one and 51 proteins were detected in WT or
mutant PLRV samples only, whereas 64 proteins were
detected in both PLRV co-IPs but not mock-infected
negative controls, including the 2 nonstructural viral
proteins P1 and P17 (Supplemental Dataset S3). An
additional 188 plant proteins were detected in either
mock-infected-only or mock-infected and 1 of the PLRV
co-IP conditions, with only 16 of these proteins enriched
$2-fold in the PLRV bead-free co-IPs (WT or DRTD)
compared with mock. The comparison of all proteins
identified in our microtiter plate dataset with those
identified as forming high-confident interactions with
WT PLRV using antibody-coated magnetic beads10, 23

revealed that proteins enriched $2-fold in both WT and
DRTDplate co-IPs comparedwithmock-infected controls
exhibited the highest degree of overlap (64%) with
proteins identified as interacting with PLRV in the bead-
based assay, whereas proteins that were detected in both
our viral bead-free co-IPs but not detected in mock-
infected controls shared only a 40.6% overlap in identity
(Fig. 2 and Supplemental Dataset S3). Those proteins
detected in only 1 of the viral bead-free co-IPs but not
mock-infected controls also showed a high degree of
overlap (53–57%) with proteins identified within the
bead-based plant–PLRV interactome, whereas proteins
detected in either mock-infected-only or mock-infected
and the WT PLRV co-IPs had the lowest percentage of
overlap (Fig. 2A). Surprisingly, out of 408 plant proteins
that were not enriched (,2-fold) in viral bead-free co-IPs
compared with the negative controls, we found that;62%
of these proteins were significantly enriched using the
magnetic bead approach (Supplemental Dataset S3). It is

FIGURE 2

co-IP of PLRV from infected tissue using antibody-coated micro-
titer plates enriches for host–virus interactions that overlap with
those identified using a bead-based protocol. A) Venn diagram
shows the number of plant and viral proteins identified by at least 1
unique peptide spectra in microtiter plate co-IPs from plants
infected with WT PLRV (n = 4 biologic, 13 technical replicates) or
the DRTDmutant (n = 3 biologic, 9 technical replicates) compared
with negative control immunoprecipitations from mock-infiltrated
tissue (n = 3 biologic, 10 technical replicates). Protein annotations
and total SpC data for these proteins can be found in Supplemental
Dataset S3. For each category, the percent overlap in identity with
proteins detected as significantly enriched inWTPLRV co-IPs using
antibody-coated magnetic beads10, 18 is shown in parentheses.
Proteins found enriched in co-IPs from both WT PLRV- and DRTD-
infected tissue compared with mock-infected co-IPs (categories
highlighted in yellow) were identified as forming high-confident
interactions by SAINT24–26 (Table 1). B) Number of plant/viral
proteins identified as enriched$2-fold in bothWTPLRVandDRTD
microtiter plate co-IPs compared with mock-infected controls.
Fold change was computed as the ratio of average total SpCs
assigned in PLRV co-IPs compared with mock using Scaffold. The
number of host proteins that were detected in the PLRV co-IPs by
SpC but not in mock is indicated by 6. The percent overlap with
proteins identified as significantly enriched in WT PLRV co-IPs
using antibody-coated magnetic beads10, 18 compared with
negative controls is shown in red.
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interesting to note that most of these plant proteins were
abundantly detected (average SpC .20) in our co-IP
samples, suggesting that there may be a limit in detecting
plant–virus interactions using the bead-free workflow when
the prey protein is highly abundant within the homogenate.
Alternatively, further optimization of antibody concentration
and/or antigen affinity could lead to an increase in the capture
of lower abundant or transient host–virus complexes, as has
been reported for bead-based co-IPs.9 Furthermore, differ-
ences in lysis buffer conditions between the two methodol-
ogies may also be a contributing factor.

To assign confidence scores to the enriched interac-
tions detected in our dataset, we used SAINT, a
proteomic software tool that statistically models pro-
tein SpCs to calculate interaction SPs based on fold
enrichment and reproducible detection of peptides in
biologic replicates of bait co-IPs compared with negative
controls.31, 32 From our current dataset, we detected a
total of 36 N. benthamiana proteins and 1 nonstructural
viral protein (P1 protein) having SPs indicative of
confident interaction with PLRV (SP $0.6) in at least 1
of the viral co-IPs (Table 1), 50% of which were also
identified as significantly interacting with PLRV in our
magnetic bead-basedmethod (Supplemental Dataset S3).
One of these proteins—luminal binding protein—was
previously identified by our group as directly interacting
with PLRV CP to regulate functionally PLRV accumu-
lation in planta using protein interaction reporter, an
approach that uses chemical cross-linking and high-
resolution MS to define interaction topologies.22 The
remaining 18 proteins detected as significantly coimmu-
noprecipitating with PLRV (Table 1) were unique to the
bead-free method, most likely as a result of the differences
in lysis buffers used and/or immunoprecipitation times
between the two co-IP methods. All proteins found to be
forming high-confidence interactions (SP $0.6) in the
bead-free assay, except one—general regulatory factor 2
(GRF2)—were enriched in both WT PLRV and DRTD
compared with mock-infected controls, indicating that these
are proteins whose interaction with PLRV is dependent
on the CP. Three proteins—GRF2, mMDH2, and 40S
ribosomal protein S4 (RPS4.1)—exhibited a lost orweakened
association in DRTD plate co-IPs compared with WT,
suggesting an interaction dependence on the RTD domain.
However, only GRF2 (14-3-3 signal transduction mole-
cule39) and mMDH2 were identified as having the same
interaction dynamics in our magnetic bead-based experi-
ments (Table 1). RPS4.1 was identified as interacting equally
with WT and mutant when antibody-coated magnetic
beads were used.23 Conversely, some proteins that were
identified as having lost or weakened association with
DRTD in our magnetic bead co-IPs23 were not detected as

such in the bead-free platform (Table 1 and Supplemental
Dataset S3). Proteins that were only detected in either WT
PLRV or DRTD microtiter plate co-IPs, compared with
mock-infected samples (6, Table 1 and Supplemental
Dataset S3), had some of the lowest confidence interactions
scores as a result of inconsistent detection across biologic
replicates, despite.53% of these proteins being detected as
significantly enrichedwithWTPLRV in themagnetic bead-
based method (Fig. 2A).10, 23 Together, our analysis shows
that the bead-free microtiter plate platform can be used
to identify confidently some plant and viral proteins
interacting with virion and/or the structural proteins,
although not all viral–host interactions may be stable or
abundant enough for the quantification of these differ-
ences using 3–4 biologic replicates, as they can be using
magnetic beads. Whereas not mutually exclusive, an
increased level of nonspecific interactions occurring in
antibody-coatedmicrotiter wells could have also contributed
to the variability of protein complex stability that we
observed in the bead-free co-IPs comparedwith themagnetic
bead-based workflow, which is optimized for rapid immu-
noprecipitation to minimize such interactions.7, 9

In silico characterization of the bead-free
PLRV–plant interactome

To characterize the function of N. benthamiana proteins
identified in our bead-free co-IP study, we used an
homology-based bioinformatics approach to identify
gene ontology terms associated with the A. thaliana
orthologs of host proteins that we found significantly
enriched in PLRV co-IP experiments (Table 1). Sequence
annotation, statistics, and visualization of enriched
biologic processes in our current PLRV–host interaction
dataset were performed in Blast2GO PRO.35 Interest-
ingly, processes associated with plant metabolism, stress
response, and small molecule biosynthesis were those
terms associated with the greatest number of host proteins
in the network (Fig. 3). Lipoxygenase 1 (LOX1) was a
host protein that had the highest SAINT interaction
scores in both the WT and mutant PLRV co-IPs (SP
$0.98; Table 1), indicating it as a high-confident interacting
partner of virus.This specific proteinwas not identified in our
pervious interactome study using magnetic beads, although
other LOX family members were.10 LOXs are enzymes that
catalyze the hydroperoxidation of polyunsaturated fats for the
synthesis of many bioregulatory molecules, including the
defense response hormone jasmonic acid.40 Several LOXs,
including LOX1, have been implicated in the mediation of
plant immunity in response to pathogen and insect attack,
specifically through the production of volatile substances.41, 42

We also identified vetispiradiene synthase [terpene synthase
21 (TPS21)] and caffeic acid 3-O-methyltransferase 1
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(OMT1), additional enzymes involved in the biosynthesis of
defensive molecules, in response to pathogen infection.43, 44

OMT1 plays a central role in the biosynthesis of lignin,45 a
polymer that is important for maintaining cell-wall integrity
during pathogen resistance.46 In fact, protein expression of
OMT has been found to be up-regulated in maize infected
with rice black-streaked dwarf virus,47 a double-stranded
RNA virus from the family Reoviridae. TPS21, also known as
a-humulene/(2)-(E)-b-caryophyllene synthase, is responsi-
ble for the formation of almost all sesquiterpenes emitted from
Arabidopsis flowers.48 It is known that infection of potato
plants with PLRV influences the behavior of its aphid vector,
M. persicae, through the induction of plant volatiles that
attract and induce feeding, which promotes virus acquisition
and ultimately transmission.49 a-Humulene was 1 of 6
headspace volatiles elevated by PLRV infection but not
infection by potato virus Y and X,49 a group of plant viruses
that are mechanically transmitted and do not require
prolonged feeding of insect vectors for transmission.50 Our
data suggest that PLRV may manipulate plant physiology
by interacting with and changing the activity of key enzymes
in pathways that lead to the biosynthesis of volatiles and
compounds that are attractive to aphids to facilitate its
own transmission. These pathways also play a role in plant
defense,41, 43, 44 which PLRV would need to sequester to
mount a successful infection. Future work on disrupting these
plant–virus interactions would provide further insight to the
function of these host proteins in the PLRV disease cycle
and may lead to novel strategies for control of Luteoviridae
infection of crop plants.

CONCLUSIONS

Comparison of plant and viral proteins identified as
interacting directly or indirectly with PLRV using a bead-
free immunoprecipitation platform with those identi-
fied using a traditional bead-based method that is more
comprehensive and also more costly revealed that some
plant–virus protein interactions can be reproducibly
identified using the less-expensive assay. Our work provides
core labs aiming to reduce costs and those looking to do a
cursory screen for binding partners with an easier, higher
throughput alternative to characterizing interactions be-
tween host and viral proteins.
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