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Dorsal root ganglia (DRG) relay sensory information to the brain, giving rise to the perception of 

pain, disorders of which are prevalent and burdensome. Here, we mapped expression quantitative 

trait loci (eQTLs) in a collection of human DRGs. DRG eQTLs were enriched within untranslated 

regions of coding genes of low abundance, with some overlapping with other brain regions and 

blood cell cis-eQTLs. We confirm functionality of identified eQTLs through their significant 

enrichment within open chromatin and highly deleterious SNPs, particularly at the exon level, 

suggesting substantial contribution of eQTLs to alternative splicing regulation. We illustrate pain-

related genetic association results explained by DRG eQTLs, with the strongest evidence for 

contribution of the human leukocyte antigen (HLA) locus, confirmed using a mouse inflammatory 

pain model. Finally, we show that DRG eQTLs are found among hits in numerous genome-wide 

association studies, suggesting that this dataset will help address pain components of non-pain 

disorders.

Graphical abstract

INTRODUCTION

Pain is the primary reason for seeking medical assistance, but its underlying causes remain 

difficult to identify and remediate. The societal cost of chronic pain is substantial; estimated 

at around $635 billion in the U.S., and affecting more than 25% of the population (Gereau et 

al., 2014). Associated sensory pathologies including itch, dysesthesia and numbness also 

represent a major clinical burden. About half of the inter-individual variability in the 

experience of pain, risk of development of chronic pain, and responses to treatment are 

attributable to genetic factors (Diatchenko et al., 2013). Identifying these genetic elements 

will improve diagnosis and facilitate the development of personalized therapies for people 

afflicted with chronic pain.

Genome-wide association studies (GWAS) have successfully identified genetic variants 

affecting risk for a wide range of human psychiatric and neurological conditions (Hardy and 
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Singleton, 2009). The assessment of human chronic pain conditions using GWAS is an 

emerging but rapidly growing field. The major difficulty in the interpretation of GWAS 

results derives from the fact that most genetic variants, majority of which are single 

nucleotide polymorphisms (SNPs), are not protein-coding, thus seldom provide a simple, 

straightforward molecular-level explanation. Other than producing coding changes, 

alternative alleles can affect gene function through their effect on mRNA expression level or 

splicing. SNPs associated with the expression level of a gene or an exon are called 

expression quantitative trait loci (eQTLs). Both SNPs that produce local expression effects 

(cis-eQTLs) and SNPs that affect expression levels of distant genes (trans-eQTLs) have been 

found to be functional. More than half of the known eQTLs are tissue-specific, making the 

identification of eQTLs in tissues relevant to disease pathogenesis a crucial matter 

(Ramasamy et al., 2014).

The perception of pain, and other somatosensory experience, results from the relay of neural 

signals from the periphery into the central nervous system (CNS). Primary afferent neurons, 

which have their cell bodies located in dorsal root ganglia (DRG), convey sensory 

information (pain, itch, touch, pressure, vibration and temperature; Figure 1a). DRG neurons 

are heterogeneous and can be classified according to their size, neurochemical markers, 

stimulus modality and gene expression profiles (Usoskin et al., 2015). DRG are situated at 

the junction between the spinal nerve and the dorsal root. They are maintained by a network 

of permeable capillaries lined by endothelial cells (Jacobs et al., 1976) and are held together 

by a connective tissue capsule. In addition, resident T-lymphocytes and macrophages are 

found in DRG, with increasing in number following injury (Zhu et al., 2016). The perception 

of acute pain results from the activation of specialized DRG neurons referred to as 

“nociceptors”. Increased nociceptor excitability following nerve injury and/or exposure to 

inflammatory mediators contributes to the hyperalgesia and allodynia often observed in 

chronic pain states (Woolf and Ma, 2007). Due to their critical role in initiating, detecting, 

and perpetuating pain and related sensations, DRGs are a primary tissue target for 

analgesics, anesthetics, antipruritics and neuro-stimulation procedures.

Here, we present a study mapping eQTLs in a collection of human DRGs in order to gain an 

understanding of the architecture of gene expression and locus-specific regulation, focusing 

our functional analysis on pain phenotypes. Our dataset presents a valuable resource for 

others: it is an exhaustive survey of eQTLs in this unique and important human tissue, which 

is freely available online (http://diatchenko.lab.mcgill.ca/DRG-eQTLs/) for future 

interpretation of GWAS focused on pain and other sensory phenotypes.

RESULTS

eQTL discovery

A total of 214 human DRGs specimens that passed quality control on DNA genotyping 

(Figure S1, Tables S1a, b) and on RNA expression (Figure S2) were used in this study 

(Figure S3). The cohort size is comparable with other eQTL studies involving human 

neuronal tissue (GTEx_Consortium, 2015). We searched for eQTL associations of ~4.88 

million independent SNPs with 36,552 gene-level and 386,507 exon-level expression points. 

We considered an eQTL to be any SNP that is significantly associated with the mRNA level 
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of a gene or an exon, and we defined such a gene or exon to be an eGene or eExon. We 

found a total of 1927 gene-level and 6364 exon-level cis-acting eQTL-gene/-exon pairs, and 

607 gene-level and 2646 exon-level trans-acting pairs (Tables S1c–i). About 77% of the cis-

eQTL signals and 81% of the trans-eQTL signals were found only from exon-specific 

expression. The sex-specific composition of identified DRG eQTLs also has been estimated 

(Figure S4, Tables S1e, f).

Global characterization of DRG eQTLs

Our dataset was used to compare DRG to other tissues at the eQTL and transcriptome levels. 

This analysis identified similarities of DRG transcriptomics and eQTLs with other tissues, 

thus confirming that the discovered set represents true eQTL signal, while the same time 

illustrated the uniqueness of the dataset. The recently published data on genetic variability in 

gene regulation in 10 different human brain regions (Ramasamy et al., 2014) was considered 

representative of the CNS, for contrast with DRG, part of the peripheral nervous system 

(PNS). In comparisons across brain regions, DRG eQTLs displayed resemblance to some 

brain regions, particularly cerebellum, whereas greater differences were observed compared 

to subcortical regions (Figure 1b). However, when we compared the DRG transcriptome 

with the 10 brain tissues, we found that DRGs displayed a unique transcriptome that stood 

out from brain tissues (Figure 1c). An additional analysis of mRNA expression obtained 

from other previously published microarray experiments on ganglia (Figure 1d, Harvard 

dataset) (Benita et al., 2010) found the most similarity with other ganglia, in particular to 

ciliary, trigeminal and superior cervical ganglia. In line with the previous result, the ganglia 

group altogether diverged from brain-related tissues. The dissimilarity of ganglia 

transcription pattern from brain regions is in accordance with its embryonic development 

stemming from neural crest cells as opposed to the neural tube (Frank and Sanes, 1991).

To investigate the global biological function of DRG eGenes that were associated with cis-

acting eQTLs, we compared them with eGenes from ten brain regions (Ramasamy et al., 

2014), and from whole blood (GTEx_Consortium, 2015) (Figure 1e, Table S2). We chose 

whole blood because it has been proven to be a useful surrogate for gene expression in the 

CNS and it is easily available from human subjects for genetic marker assessment (Sullivan 

et al., 2006). To gain insights into pathways potentially affected by eQTLs, we performed 

gene ontology (GO) analyses for DRG eGenes alone, and for those that intersect with other 

tissues using Pathway Studio (Nikitin et al., 2003) (Table S2). For DRG alone, GO 

biological processes identified as “gamma-delta T cell activation” (N=4/4 eGenes, 

P=1.77e-6), “antigen processing and presentation” (N=11/56 eGenes, P=4.77e-6), and 

“glutathione derivative biosynthetic process” (N=8/27 eGenes, P=3.66e-6) passed correction 

for multiple testing. For eGenes shared between DRG and blood, fourteen GO biological 

processes were found significant, of which eleven are related to immune response and three 

are related to glutathione derivative biosynthesis. For genes shared between DRG and brain, 

we found 3 pathways; two were related to glutathione and one was related to dihydrofolate 

metabolic process. Hence, “glutathione derivative biosynthetic process” related pathways 

eGenes showed the strongest contribution at the intersection of DRG, blood and brain.
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To understand the level of inter-species conservation of eGenes, we estimated overlap 

between human DRG eGenes and mouse DRG expressed genes. We calculated that 51%–

77% of human eGenes are also expressed in mouse DRGs. From microarray data, we found 

3rd quartile gene expression above 1st quartile overall expression for 333 (77%) out of 432 

matched eGenes (Figure S5a, GEO set GSE65997) (Wieskopf et al., 2015). From single-cell 

mouse RNA-Seq data, we found expression of 3rd quartile above zero for 376 (51%) out of 

731 matched eGenes (Usoskin et al., 2015). Hence, most human eGenes are expressed in 

mouse DRG. To assess the neuronal versus non-neuronal origin of eQTL signals in human 

DRG we compared our human DRG eGenes list with gene expression data of single-cell 

RNA-Seq from mouse DRG (Usoskin et al., 2015). In this dataset, cells were classified into 

five categories: four neuronal and one non-neuronal. Only one eGene, out of the 376 

matched eGenes expressed in any of five cell types, had higher expression in non-neuronal 

cell types than in any one of the four neuronal types: RPSA (Table S3). Therefore, virtually 

all (375 out of 376) of identified eGenes in human DRG show characteristics of the neuronal 

type. We should note that this expression is not exclusive for neuronal cells and does not 

guarantee biological relevance of any particular molecular pathway.

Functional characterization of the eQTLs in DRGs

To characterize eQTLs identified in DRG tissue, we first analyzed cis-eQTL signals as they 

have been shown to have a higher confidence of association with eGenes across datasets 

(Ramasamy et al., 2014) compared to trans-eQTL signals. We tested if the distribution of the 

DRG cis-eQTLs throughout the genome is non-random with respect to the eQTL’s location. 

At the gene level, a histogram of the distance between the cis-eQTL and the TSS shows that 

55% of cis-eQTLs (N=1055) are located around 100 Kb from the TSS (Z=21.4, P=3.1e-102, 

Figure 2a), consistent with previous reports (GTEx_Consortium, 2015; Ramasamy et al., 

2014). The eQTL signal is still detectable as far as 1 million nucleotides away from the TSS, 

suggesting that either this low eQTL signal represents the background of the analytical 

methods or that the true eQTLs can be situated far from the TSS. At the exon level, cis 
eQTL signals were found most predominantly within 200 bp of the intronic boundaries 

inside exons. In contrast, we observed strong and consistent eQTL enrichment throughout 

the flanking introns (Figure 2b).

We next characterized genetic locations of identified cis-eQTLs. Our analysis showed that 

for both gene-level and exon-level mRNAs, most eQTLs are “intronic”, followed by 

“regulatory” (Figure 2c–d, pie). After normalization for minor allele frequencies and gene 

densities (SNPsnap (Pers et al., 2015), cis-acting eQTLs at the gene level were found 

significantly enriched in non-synonymous (3.1-fold), regulatory (3-fold), 3′UTR (2-fold) 

and intergenic (1.4-fold) regions (Figure 2c, bar plot), while depleted in intronic (0.7-fold), 

upstream (0.6-fold) and downstream (0.5-fold) categories. At the exon level, we observed 

that non-synonymous (17.5-fold) and regulatory (1.9-fold) regions are likewise significantly 

enriched, as well as synonymous (16-fold), 5′UTR (4.9-fold) and 3′UTR (6.5-fold), and 

splice site (5-fold) changes, whereas eQTLs in intergenic (0.1-fold), upstream, downstream 

and intronic (0.9-fold) regions are depleted.
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To examine if there is enrichment for identified cis-eQTLs in open chromatin as an evidence 

of their functionality, we used the Encyclopedia of DNA Elements (ENCODE) (Birney et 

al., 2007) database to compare the cumulative distribution functions of these values for cis-
eQTLs in DRGs with those of SNPs previously obtained by the SNPsnap server (Pers et al., 

2015) as a background. Both gene- and exon-level cis-acting eQTLs displayed significantly 

lower P-values (or higher phred-scaled values) than the SNPsnap background sets (Figure 

2e–f; P=2.2e-4 and 3.1e-5 for gene- and exon-level, respectively). These data are in line with 

other evidence of substantial statistical enrichment for eQTLs across all tissues within active 

chromatin (Croteau-Chonka et al., 2015).

As further confirmation of DRG cis-eQTLs functionality, we used the Combined Annotation 

Dependent Depletion (CADD) database to test if they are predicted to be more deleterious 

than the population of randomly matched SNPs. Consistently with eQTL data from other 

tissues (Ionita-Laza et al., 2016), CADD scores of cis-acting eQTLs in DRGs significantly 

differed from the background distribution for both gene-level (Figure 2g; P=2.4e-2) and 

exon-level (Figure 2h; P=1.6e-33). Interestingly, this difference is by far more noticeable at 

the exon-level of cis-eQTLs. If this particular enrichment for pathogenicity within exon-

level cis-eQTLs is a reflection of analytical tools allowing identifying the enrichment at 

exon-level with higher statistical power or there are many more deleterious changes of the 

substantial impact within alternative exons, it remains to be understood.

Functional characterization of eGenes in DRGs

To further characterize identified eQTLs in DRGs, we next analyzed DRG eGenes: genes for 

which mRNA or specific exon levels were associated strongly with eQTLs (Figure 3). At the 

gene level, almost 54% of eGenes code for proteins (Figure 3a; left pie). Among the non-

coding genes, the long intergenic non-coding RNAs (lincRNA) class represents the biggest 

family, at almost 39% (Fig 3a; right pie). Antisense RNAs are also highly represented 

(14%). The exon-level eGene distribution is substantially different, wherein coding genes 

represent more than 77% of the total number (Figure 3b, left pie). If we remove eQTLs that 

are already associated at the gene-level from the analysis, the coding fraction increases up to 

almost 81% (Fig 3b, right pie). These data suggest that cis-eQTLs contribute more 

substantially to the expression of specific alternatively-spliced forms of coding genes than 

overall gene expression. Though only some non-coding RNAs have introns and are thus 

subject to splicing, most coding genes are expressed as multiple alternately spliced forms 

(Pal et al., 2011).

We then conducted a comparative analysis for enrichment of observed gene categories 

relative to those found on the expression platform. It shows that protein coding transcripts 

are statistically significantly enriched (1.1-fold) in the cis-acting eGenes set, while non-

coding RNAs are depleted (0.9-fold, Figure 3c, top). A breakdown of non-coding RNA 

shows that categories that remarkably depart from expected counts are piwi-interacting 

RNAs (piRNAs; 0.5-fold) and pseudogenes (0.8-fold, Figure 3c, bottom). Thus, though 

piRNAs lack sequence conservation and display immense complexity (Seto et al., 2007), we 

found them less frequently associated to eQTLs than expected.
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At the exon-level, both 3′ and 5′ UTRs display enrichment (1.7-fold and 1.4-fold, 

respectively) (Figure 3d), as well as the exons that embed coding sequence ends (1.1-fold) or 

beginnings (1.2-fold) (Figure 3d). On the contrary, exons that embed exclusively coding 

regions (CDS; 0.9-fold) or the transcription start site (TSS; 0.8-fold) are associated less 

often than expected (Figure 3d).

Last, we analyzed how eGene expression levels compare to tissue-wide levels. We found 

that eGene expression is generally lower at both the gene level (Figure 3e, P=4.1e-4, 

Bonferroni threshold is 0.05/2 = 2.5e-2), and the exon level (Figure 3f, P=8.3e-45). 

Furthermore, the expression levels of eGenes and eExons and effect sizes of eQTLs are not 

correlated, at either gene level (Figure 3g, Pearson’s R=0.05 for beta < 0), or exon level 

(Figure 3h, R=0.02 for beta < 0, R=0.06 for beta > 0). Only a weak correlation was found 

for gene-level with positive effect size (Figure 3g, R=0.25, beta > 0; P=4.9e-13). One 

noticeable difference between gene and exon level was found in the range of effect sizes; for 

gene level, half the density of beta values lay between −0.2 and +0.2, while for exon level, 

half the density of beta values lay between −0.4 and +0.4. Only 11% of eGenes are 

associated with |beta| > 0.5 at the gene-level (Figure 3g), whereas we find almost 36% for 

exon level (Figure 3h). To summarize, our results suggest that DRG eQTLs regulate in 

general lower abundant genes, and the effect size of the regulation is more substantial at the 

level of alternatively spliced forms.

NHGRI catalog for human diseases

One of the primary practical uses for the DRG eQTL dataset is to confer functionality to the 

results of human association studies, especially in the field of pain-related clinical 

conditions. To do so, we looked at the enrichment of DRG eQTLs among existing genetic 

association result hits.

We started our analysis by using the NHGRI catalog (Welter et al., 2014), since it provides a 

unified list of GWAS results. We analyzed gene-level cis-acting DRG eQTLs and found that 

some concur with SNPs already associated with human diseases or conditions (Figure 4, 

Table S4). Given that multiple tissues frequently share eQTLs, an enrichment of DRG 

eQTLs among known hits from human association studies further validates potential 

functionality of identified eQTLs. To analyze eQTLs that coincide with GWAS-associated 

SNPs, we examined how these coincident DRG SNPs (Figure 4a) are also shared by brain 

eQTLs (Figure 4b) or blood eQTLs (Figure 4c), or by brain and blood (Figure 4d). We 

observed several coincident SNPs in DRG that were both brain and blood eQTLs (for 

example, rs1142287), or only brain (rs885224) or only blood (rs11191676) eQTLs. Finally, 

we also observed a rich set of eQTLs unique to DRG (Figure 4e), not shared by other 

tissues’ eQTLs. These signals represent additional DRG eQTLs and provide a basis for the 

functional characterization of future GWAS risk loci.

Association studies of human pain conditions

The diseases listed in the NHGRI catalog do not include pain-centric conditions, and, 

currently, there are very few high-powered GWAS available in the field of chronic pain 

(Chasman et al., 2011; Peters et al., 2013). However, a fair number of candidate gene-based 
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studies have reported genes associated with various chronic pain conditions, including 

temporomandibular disorders (TMD) (Aneiros-Guerrero et al., 2011; Smith et al., 2011), 

fibromyalgia (FM) (Smith et al., 2012), and lower back pain (LBP) (Guo et al., 2011). To 

assemble a list of SNPs currently associated with human pain conditions, we used the 

Human Pain Genetics Database (http://diatchenko.lab.mcgill.ca/hpgdb/), a hand-curated 

literature survey of genetic associations related to human pain phenotypes. The database 

currently contains around 150 genetic variants associated with pain in both gene-candidates 

and GWAS association studies. For each featured SNP, a full scan at gene and exon levels, 

and at cis- and trans-acting correspondences was performed. We tested if SNPs that have 

been associated with human pain phenotypes are also DRG eQTLs, thus pointing to a 

functional molecular pathophysiology that underlies the original association results. Eleven 

loci have been identified (Table S5) at FDR 5%. Four loci were found to be eQTLs by more 

than one test.

We first assessed candidate gene-targeted association studies. The lowest eQTL association 

P value was identified for SNP rs7911 (Table S5a), whose minor allele was shown to be 

associated with increased risk of FM from among a large panel of 350 pain-related genes 

(Smith et al., 2012). This SNP is situated in the 3′UTR of the guanylate binding protein 1 

(GBP1) gene (Figure 5a) and is rated fairly inconsequential by the CADD database (phred-

scaled score of ~5). In DRG, association of SNP rs7911 with mRNA level of GBP1 is weak 

(P=1.9e-2). However, SNP rs7911 is also upstream of another guanylate binding protein 

family member, GBP3 (Figure 5a), with which it is associated very strongly (P=2.5e-20). On 

the other hand, rs7911 is also associated with GBP1 at the exon level (P=4.89e-07). In both 

human and mouse DRGs, matching genes from the GBP cluster are found to be expressed 

(Figure S5b). As GBP-1 and -3 proteins are interferon-inducible contributors to T-cell 

activation (Forster et al., 2014), viral response (Nordmann et al., 2012), and actin 

cytoskeleton remodeling factors (Ostler et al., 2014), the minor allele-dependent decrease in 

expression levels for both GBP3 and GBP1 is a potential indicator of a protective role of one 

or both proteins in a pathophysiology of FM.

Although only a handful of GWAS association studies on pain have been published to date 

(Anttila et al., 2010; Chasman et al., 2011; Cook-Sather et al., 2014; Docampo et al., 2014; 

Kim et al., 2009; Peters et al., 2013), they have identified many significant and suggestive 

SNPs. Among the GWAS hits passing FDR correction for multiple testing, the minor allele 

of rs13361160 (Table S5b) linked with a higher risk of chronic widespread pain (Peters et 

al., 2013) (CWP) showed association with expression sequence tag AK092568 
(P=7.37e-03). AK092568 is not the gene suggested by the original publication, which 

speculated on the role of chaperonin-containing-TCP1-complex-5 gene (CCT5, P=1.83e-01) 

and/or family with sequence similarity 173, member B (FAM173B, P=4.36e-01). 

Interestingly, AK092568 is situated within death-associated protein (DAP) gene, which is a 

positive mediator of programmed cell death induced by interferon-gamma, and can 

potentially regulate expression of DAP, which can be found in mouse DRG (GEO set 

GSE65997 (Wieskopf et al., 2015)), in both neuronal and non-neuronal DRG cell types (2.5 

and 1.0 rpkM respectively (Usoskin et al., 2015), Figure S5c). As such, the potential role of 

AK092568 in pain is at least as likely as CCT5 or FAM173B.
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Finally, we compared the distribution of P-values of DRG eQTLs for all genes with the 

distribution of P-values of DRG eQTLs corresponding to the eGenes previously associated 

with pain phenotypes (Table S6). We found that at both the gene (Figure 5b) and exon 

(Figure 5c) levels, the P-values in the eGenes previously associated with pain conditions are 

lower than in the genome-wide case. This result suggests that a significant proportion of 

genetic variability contributing to pain phenotypes may act by modifying corresponding 

RNA levels in DRGs.

Next, we conducted genome wide association tests that evaluated the contribution of DRG 

eQTLs to pain phenotypes in humans (Figure 6). Data were from the 3,014 participants in 

the OPPERA (Orofacial Pain Prospective Evaluation and Risk Assessment) GWAS study 

(Maixner et al., 2011). The phenotypes represented either clinical pain conditions (TMD and 

low back pain (LBP)) or responses to quantitative sensory testing (QST; mechanical pain, 

pressure pain threshold (PPT) and heat pain). For all pain phenotypes, significant enrichment 

for lower P-values within DRG eQTLs was detected (Figure 6a–f). Then, tissue-specific 

eQTLs’ contribution to tested phenotypes was quantitatively assessed by enrichment 

measures using either our DRG eQTL dataset, blood eQTL dataset (GTEx_Consortium, 

2015), or brain eQTL datasets, grouped as cortical or sub-cortical (Ramasamy et al., 2014). 

First, we took the sum of observed to expected ratio for P-values of the top 50 contributing 

eQTLs from QQ plots (Figure 6, QQ bar plot). When comparing the relative contribution of 

other tissues’ eQTLs to each of the six phenotypes, DRG eQTLs contributed most to LBP 

(Figure 6a), while in TMD, DRG eQTLs were preceded by cortical brain structures (Figure 

6b). Interestingly, PPT showed greatest enrichment for cortical eQTLs followed by DRG 

eQTLs (Figure 6c) whereas mechanical pain showed greater enrichment for sub-cortical 

brain eQTLs than DRG eQTLs (Figure 6d). Finally, for heat pain tolerance and threshold, 

brain-specific and blood eQTLs made the greatest contribution (Figure 6e–f). Another 

enrichment analysis was concerned with over-representation of observed eQTLs in the top 1, 

10 or 100% GWAS hits compared to chance (Figure 6, GWAS curve plot). From the 

perspective of eQTL over-representation, both LBP (Figure 6a) and PPT (Figure 6c) 

phenotypes display more observed DRG eQTLs than expected in top 1% GWAS hits among 

all tissues. For TMD, DRG eQTLs still show significant enrichment as well, following the 

cortical brain eQTLs. The mechanical pain threshold phenotype seems to be sub-cortical in 

character.

To identify DRG eQTLs that would potentially interpret association results with pain 

phenotypes, we searched for alignment of the DRG eQTL signals with that of GWAS 

associations. Since association strength varies substantially in magnitude between GWAS 

and eQTL studies, we first converted P-values of association into rank-based scores in their 

respective association studies (GWAS and eQTL). We assigned a score S from 1 to 0 to all 

association results in GWAS and eQTL datasets, where a score of 1 was the most strongly 

associated. We then ranked the SNPs by their Scombined = SGWAS * SeQTL scores to identify 

eQTLs with the highest probability to contribute to chronic pain conditions (Table S7). 

Combined scores are evaluated genome-wide, and distribution fitted to a negative 

exponential; P-value for statistical significance of a combined score can thus be evaluated. 

One region of the human genome that was systematically statistically significantly 

associated (FDR 1%) with multiple pain phenotypes was the human HLA region expressing 
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MHCII class genes (Figure 7, Table S7). This region was not only associated with gene 

expression levels in DRG (Table S7 SeQTL, Figure 7b), but also with all the selected pain 

phenotypes from the OPPERA cohort, and especially TMD and LBP (SGWAS, Figures 7c–

h). The greater overlap of DRG eQTL signal with LBP and TMD association results suggest 

a greater contribution of DRG eQTLs from HLA locus to these two chronic pain phenotypes 

rather than to QSTs (Figures 7c–d).

In an effort to further confirm association of the HLA locus with pain phenotypes, we sought 

replication of OPPERA’s discovery results (Figure 7c, d) in the UK BioBank cohort, which 

is a high-powered prospective study of 150,000 people recruited in the United Kingdom 

(Sudlow et al., 2015). GWAS on both self-reported chronic (>3 months) back and facial pain 

show enrichment for lower P-values for SNPs whose combined eQTL/GWAS discovery 

score is better than the threshold of statistical significance (FDR 1%). There is a significant 

difference in replication P-values for SNPs above (pink) or below (grey) the threshold for (I) 

back pain and (II) facial pain (Figure 7i, Kolmogorov-Smirnov test P < 2e-16). For back 

pain, 90% of high-scored SNPs have P-values lower than 0.2, when only 20% are expected 

by chance alone. For facial pain, 20% of high-scored SNPs have P-values lower than 0.1, 

when only 10% are expected by chance alone.

We were then able to examine whether HLA locus region containing MHCII genes 

contribute to the development and maintenance of inflammatory pain and allodynia in a 

mouse pain model. MHCII gene expression in human DRGs is mirrored in mouse DRGs by 

matching genes in the H2 complex (Figure S5d). We compared the mechanical allodynia 

induced by hind paw injection of complete Freund’s adjuvant (CFA) between wild type 

(WT) and MHCII−/− mice (Figure 7i). We observed no strain difference in baseline 

mechanical thresholds prior to CFA injection or peak mechanical allodynia observed 3 days 

after CFA injection (Figure 7i). However, we observed a significant strain difference over 

time as MHCII−/− mice maintained their allodynic phenotype at 10 and 14 days, while WT 

mice returned to baseline values by day 10 post-injection (repeated measures x strain: 

F5,60=3.8, P=0.03). These data suggest that MHCII is not required for the development of 

allodynia evoked by CFA, but is important for the recovery phase. The prolonged allodynia 

observed in MHC−/− mice is consistent with the direction of human association results, in 

which chronic pain risk alleles correlated with lower MHCII gene expressions (Table S7), 

and suggests that variable levels of MHCII expression in humans could influence the 

duration of an inflammatory pain episode.

DISCUSSION

Given the central role of DRGs in pain signal transduction, insights into the molecular 

genetic architecture of DRGs will be helpful to understand the pathophysiology of human 

pain conditions. Because much of variability of steady-state protein expression levels can be 

attributed to mRNA levels (Csardi et al., 2015), any dysregulation of mRNA levels or of 

alternative splicing patterns can alter the balance of multiple feedback loops and sensory 

relays intersecting with DRGs. Here, the combination of high-density genotyping arrays 

with second-generation expression microarrays allowed for a detailed view of the impact of 

allelic variants on mRNA levels in unique cohort of human DRG. The DRG sample size is 
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among the largest used for eQTL studies of hard-to-obtain human nervous system tissues to 

date (GTEx_Consortium, 2015; Ramasamy et al., 2014), and thus is highly powered and 

suitably equipped to detect eQTL signals. Additionally, we used the latest and largest cDNA 

array expression array platform providing robust hybridization signal detection via resiliency 

to polymorphic sites, high sensitivity to cost ratio, and fine exon mapping.

First, we compared human DRGs to other tissues. The transcript analysis indicated that 

DRG expression is very similar to that of sympathetic ganglia; however, it differs 

significantly from the CNS. On the other hand, DRG eQTLs cluster with brain region eQTL 

patterns (Figure 1b). Taken together, it seems that although the transcription pattern of DRG 

substantially differs from CNS, DRG-specific genes are less regulated by common genetic 

variability in the human population, possibly reflecting their high degree of evolutionary 

conservation and importance for basic function. On the other hand, the regulatory 

architecture of the human brain regions and DRG at the level of cis-eQTLs is shared, 

suggesting that DRG eQTLs could work in concert with eQTLs in other tissues affecting 

simultaneously multiple functions within the nervous system. Comparison with mouse 

expression data not only suggests that most eGenes identified in humans are also expressed 

in mouse (between 51% and 77%), but also that virtually all identified eGenes show more 

expression in neuronal cell types than in non-neuronal ones. Pathway analyses of DRG 

eGenes, and eGenes common between DRG and brain regions and blood, show that genetic 

variability in the human population affects expression of immune response and glutathione 

derivative biosynthesis genes. The latter is particularly important, as it is shared with blood- 

and brain-specific gene expression. Given the role of glutathione in neurotoxicity, aging, 

oxidative stress, and neurodegenerative diseases, our finding provides insights into the 

pathogenesis of pain conditions.

Next, we undertook a detailed analysis of the identified set of DRG eQTLs to localize 

eQTLs to functional sites in the human genome (Figure 2) and to distinguish classes of 

eGenes (Figure 3). These analyses provided converging results and offered a global 

overview of DRG eQTL architecture that has genome-wide implications outside of the 

tissue-specific DRG-related expression. Our results support previous discoveries related to 

basic processes underlying gene regulation driven by genetic variability and provide 

additional insights (Ramasamy et al., 2014).

The enrichment for 5′ and 3′UTRs, and especially synonymous or non-synonymous 

changes over regulated regions is in line with previously reported conclusions that internal 

cis-eQTL signals more substantially change the rate of mRNA degradation than the rate of 

transcription per se (Ramasamy et al., 2014), though previous studies have only examined 

the entire coding mRNA category. Particular enrichment for synonymous and non-

synonymous changes is possibly an indication of its crucial contribution to mRNA stability, 

or it may also be a reflection of trans-regulation of transcription through the negative 

feedback loop by non-synonymous changes rather than direct regulation of mRNA level.

At the level of gene structure, our results suggest that human genetic variability influences 

the regulation of protein coding genes more than non-coding genes, and preferably low 

abundant coding genes. Within coding mRNAs, coding nucleotides are conserved while 3′ 
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and 5′ UTRs are under greatest regulation by genetic variability. Interestingly, although 

there is a strong enrichment for synonymous and non-synonymous changes among eQTLs 

(Figure 2d), the coding regions of eGenes are depleted. This discrepancy can be either a 

reflection of generally lower genetic variant density within coding regions or indicate that 

synonymous and non-synonymous changes mostly control level of nearby 3′ and 5′ UTRs 

rather than corresponding coding region. Finally, the enrichment for low-abundance genes 

among eGenes probably suggests easier tuning of lower-abundance genes by common 

genetic variability.

We also gathered further confirmation of the functionality of our eQTL set through 

significant enrichment for cis-eQTLs for open chromatin and pathogenicity level. In both 

cases, exon-level eQTLs showed stronger enrichment than gene-level eQTLs, especially for 

pathogenicity, providing evidence for substantial contribution of alternative splicing 

regulation in disease etiology, consistent with reports on other tissues’ eQTLs (Ionita-Laza 

et al., 2016).

We illustrated the value of our eQTL data set for the interpretation of existing association 

results (Figure 4), particularly for the field of pain (Table S5, Figure 5). We tested SNP 

rs7911 of the 3′UTR GBP1 gene, previously associated with FM, in our data set and showed 

that in fact GBP1 and GBP3 gene expression are associated with corresponding mRNA 

levels with different strength, and our eQTL data provided stronger evidence for GBP3. The 

full value of our DRG eQTL resource for the interpretation of GWAS results will be 

demonstrated as further GWAS associations in the pain field are reported. It appears thus far 

that none of the multiple migraine GWAS hits seem to be DRG eQTLs. On the other hand, 

the only significant SNP associated with complex widespread pain by GWAS seems to be in 

association with EST AK092568, possibly controlling DAP expression.

We also provided evidence for the functional role of identified DRG eQTLs for GWAS-

associated loci (Figure 4, 6). Access to a new GWAS dataset from the OPPERA cohort, 

characterized for a diverse set of pain phenotypes, allowed us to assess the contribution of 

eQTLs from various tissues, including DRG eQTLs, to clinical and experimental pain 

(Figure 6). All tested pain phenotypes showed significant enrichment for DRG eQTL top 

associations. LBP showed the strongest contribution of DRG eQTLs relative to cortical and 

sub-cortical brain structures and blood by two enrichment analyses, followed by TMD and 

PPT (Figure 6a–f). Significant enrichment of DRG eQTLs in LBP, TMD and PPT GWAS 

results supports their critical role in pathogenesis of pain states. Comparison of tissue-

specific eQTLs’ contributions to various phenotypes clearly show a distinct DRG eQTL 

signature despite a noticeable overlap between DRG eQTLs with brain and blood eQTLs 

(Figure 1e).

The distinct DRG eQTL signature is also observed among SNPs from the NHGRI catalog 

that matches eQTLs in DRG not shared by other tissues eQTLs (Figure 4e). This suggests 

that our DRG eQTL collection contains additional functional SNPs associated with human 

disease, including human pain conditions. Importantly, we found numerous SNPs in the 

NHGRI catalog that uniquely match eQTLs in DRG, hence promising that our dataset will 
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be useful outside of the pain field, for example to address the pain component of non-pain 

disorders such as multiple sclerosis or Crohn’s disease (Table S4).

When we searched for an eQTL locus with the strongest association with chronic pain 

conditions, the eQTLs in the HLA region through MHCII genes consistently showed the 

best scores, SNPs within the HLA region often demonstrate strong association in many 

GWAS, including psychiatric and immune disorders (Wang et al., 2015). Replication in the 

UK BioBank cohort of OPPERA’s findings for back and facial pain further strengthens the 

evidence for HLA’s role in pathophysiology of chronic pain.

The function of MHCII is to present peptides derived from extracellular sources to CD4+ T 

helper cells as part of the adaptive immune response. The normal development of peak 

allodynia at day 3 in MHC−/− mice suggests that the innate immune response to CFA was 

not affected. However, the extended allodynia that followed suggests that MHCII complex 

contributes to successful pain resolution after injury. At the clinical level this finding 

suggests that individuals with lower MHCII expression levels may be at higher risk to 

develop chronic pain following acute inflammatory injury.

In conclusion, here we present a characterized set of 8,551 DRG eQTLs, a driving force of 

the genetic susceptibility and maintenance of chronic pain and related somatosensory 

disorders. The identification of the genes and pathways in which these DRG eQTLs are 

enriched is essential to understand the functional genotypic structure and pathophysiology of 

pain perception, and to identify therapeutic targets and biomarkers for pain.

EXPERIMENTAL PROCEDURES

The DRG Cohort

Dorsal root ganglia were collected from human subjects with the consent of first-tier family 

members. They consist of snap-frozen bilateral lumbar L4 and L5, collected from brain-dead 

subject following asystole. All procedures were approved by the University of Pittsburgh 

Committee for Oversight of Research and Clinical Training Involving Decedents and the 

Center for Organ Recovery and Education, Pittsburgh, PA (http://www.core.org). A total of 

214 samples had matched genotype/phenotypes.

DNA Genotyping

Genomic DNA was isolated from frozen and homogenized DRG tissue using a QIAamp 

DNA Mini kit (Qiagen, Austin, TX, US). The genotyping was done on Illumina’s Infinium 

Human Omni Express Exome-8 v1.2 chip (~1M probes). Arrays were scanned using 

Illumina iScan, and data analyzed using Illumina Genome Studio 2011.1 with Genotyping 

module 1.9.4 (Illumina Inc., San Diego, CA, USA). Imputation of the data followed: pre-

phasing was performed with SHAPEIT version v2.r790 (O’Connell et al., 2014) with phase 

3 data of the 1,000 genomes project, followed by imputation with impute2 version 2.3.2 

(Howie et al., 2012), again with the 1,000 genomes project phase 3 data.
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mRNA Expression

RNA was isolated from DRG samples frozen in TRIzol® reagent (Qiagen, Austin, TX, US). 

Total RNA levels were measured with Affymetrix’ Human Transcriptome Array 2.0 (~70K 

gene-level probes, ~900K isoform-level probes), scanned with Affymetrix’ GeneChip 3000 

G7 Instrument System. Normalization of the microarray data was done in the R statistical 

software (R Core Team, 2014), with the help of the oligo (Carvalho and Irizarry, 2010) the 

Platform Design Info for Affymetrix HTA-2_0 (MacDonald, 2015), and the Robust Multi-

Array Average (RMA) algorithm (Irizarry et al., 2003). As a default post-processing step, 

the RMA algorithm performs quantile normalization of the probe intensities.

GWAS of DRG eQTLs

We considered an eQTL to be cis-acting when the distance separating the eQTL to the 

transcription start site (TSS) of the associated gene was ≤ 1M nucleotides 

(GTEx_Consortium, 2015; Ramasamy et al., 2014), and trans-acting otherwise. For exons, 

cis-acting eQTLs were set to be found within 5K nucleotides of the exon-intron boundaries 

(GTEx_Consortium, 2015), and trans-acting otherwise. All association tests have been 

performed using Matrix eQTL (Shabalin, 2012), with knowledge of cis- and trans- 

boundaries. All statistical tests were performed with age, gender, sample’s average 

expression and genotype’s first two racial eigenvectors per chromosome as covariates. eQTL 

discovery was performed on 36,552 gene-level (52% of probesets) and 386,507 exon-level 

(42% of probesets) expression points of intensity level above 4.

Correction for multiple testing was done using the Benjamini-Hochberg procedure, 

considering false discovery rates (FDR) of 5% for cis-acting, and 1% for trans-acting 

eQTLs. Estimated number of independent statistical tests was 4.7M for gene-level and 1M 

for exon-level cis-acting eQTLs, while 6.6M for gene-level and 70M for exon-level trans-

acting eQTLs, following linkage-disequilibrium with r2 ≥ 0.5 dependence. List of eQTLs as 

well as input files for matrix_eQTL can be found on our web portal at http://

diatchenko.lab.mcgill.ca/DRG-eQTLs/.

Animal Pain Model

Animal testing was approved by the Downtown Animal Care Committee at McGill 

University, and conformed to ethical guidelines of the Canadian Council on Animal Care. 

Eight homozygous 10-week-old mice (4 male; 4 female) with a deletion targeting the region 

of the H2 locus encoding all genes for MHC class II in mice (Madsen et al., 1999) (MHCII
−/−) and age-matched C57BL/6J mice (3 males; 4 females) were purchased from The 

Jackson Laboratory (stock #003584; B6.129S2-H2dlAb1-Ea/J). All mice received 20-μl 

unilateral injections of 50% complete Freund’s adjuvant (CFA, Sigma) into the plantar 

surface of the left hind paw. Mice were tested for mechanical sensitivity using von Frey 

fibers before at baseline and 3, 7, 10, 14 and 21 days’ post-injection to quantify mechanical 

allodynia. Statistical analyses were conducted using an α level of 0.05. Data were analyzed 

by repeated-measures two-way ANOVA followed by a posthoc Sidak’s test with reported P 
values adjusted for multiple comparisons.

Parisien et al. Page 14

Cell Rep. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://diatchenko.lab.mcgill.ca/DRG-eQTLs/
http://diatchenko.lab.mcgill.ca/DRG-eQTLs/


Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Funding for this work is kindly provided by the US Cancer Pain Relief Committee Career Development Award 
“Neurochemistry and Physiology of Human Pain-Processing Nuclei” (IB), by the Canadian Excellence Research 
Chairs (CERC) Program, Grant CERC08 (LD), and by NIDCR U01-DE017018 grant. This project used the 
University of Pittsburgh HSCRF Genomics Research Core services. We thank Drs. Simon Gravel and Shamil 
Sunyaev for fruitful discussions.

ABREVIATIONS

CNS Central nervous system

PNS peripheral nervous system

DRG dorsal root ganglion

GWAS genome-wide association study

SNP single nucleotide polymorphism

eQTL expression quantitative trait loci

QST quantitative sensory testing

HLA human leukocyte antigen

MHCII major histocompatibility complex class II

References

Aneiros-Guerrero A, Lendinez AM, Palomares AR, Perez-Nevot B, Aguado L, Mayor-Olea A, Ruiz-
Galdon M, Reyes-Engel A. 2011; Genetic polymorphisms in folate pathway enzymes, DRD4 and 
GSTM1 are related to temporomandibular disorder. BMC medical genetics. 12:75. [PubMed: 
21615938] 

Anttila V, Stefansson H, Kallela M, Todt U, Terwindt GM, Calafato MS, Nyholt DR, Dimas AS, 
Freilinger T, Muller-Myhsok B, et al. 2010; Genome-wide association study of migraine implicates 
a common susceptibility variant on 8q22.1. Nat Genet. 42:869–873. [PubMed: 20802479] 

Benita Y, Cao Z, Giallourakis C, Li C, Gardet A, Xavier RJ. 2010; Gene enrichment profiles reveal T-
cell development, differentiation, and lineage-specific transcription factors including ZBTB25 as a 
novel NF-AT repressor. Blood. 115:5376–5384. [PubMed: 20410506] 

Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, Margulies EH, Weng Z, Snyder 
M, Dermitzakis ET, Thurman RE, et al. 2007; Identification and analysis of functional elements in 
1% of the human genome by the ENCODE pilot project. Nature. 447:799–816. [PubMed: 
17571346] 

Carvalho BS, Irizarry RA. 2010; A framework for oligonucleotide microarray preprocessing. 
Bioinformatics. 26:2363–2367. [PubMed: 20688976] 

Chasman DI, Schurks M, Anttila V, de Vries B, Schminke U, Launer LJ, Terwindt GM, van den 
Maagdenberg AM, Fendrich K, Volzke H, et al. 2011; Genome-wide association study reveals three 
susceptibility loci for common migraine in the general population. Nat Genet. 43:695–698. 
[PubMed: 21666692] 

Parisien et al. Page 15

Cell Rep. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cook-Sather SD, Li J, Goebel TK, Sussman EM, Rehman MA, Hakonarson H. 2014; TAOK3, a novel 
genome-wide association study locus associated with morphine requirement and postoperative pain 
in a retrospective pediatric day surgery population. Pain. 155:1773–1783. [PubMed: 24909733] 

Croteau-Chonka DC, Rogers AJ, Raj T, McGeachie MJ, Qiu W, Ziniti JP, Stubbs BJ, Liang L, 
Martinez FD, Strunk RC, et al. 2015; Expression Quantitative Trait Loci Information Improves 
Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation. PLoS One. 
10:e0140758. [PubMed: 26474488] 

Csardi G, Franks A, Choi DS, Airoldi EM, Drummond DA. 2015; Accounting for experimental noise 
reveals that mRNA levels, amplified by post-transcriptional processes, largely determine steady-
state protein levels in yeast. PLoS Genet. 11:e1005206. [PubMed: 25950722] 

Diatchenko L, Fillingim RB, Smith SB, Maixner W. 2013; The phenotypic and genetic signatures of 
common musculoskeletal pain conditions. Nat Rev Rheumatol. 9:340–350. [PubMed: 23545734] 

Docampo E, Escaramis G, Gratacos M, Villatoro S, Puig A, Kogevinas M, Collado A, Carbonell J, 
Rivera J, Vidal J, et al. 2014; Genome-wide analysis of single nucleotide polymorphisms and copy 
number variants in fibromyalgia suggest a role for the central nervous system. Pain. 155:1102–
1109. [PubMed: 24582949] 

Forster F, Paster W, Supper V, Schatzlmaier P, Sunzenauer S, Ostler N, Saliba A, Eckerstorfer P, 
Britzen-Laurent N, Schutz G, et al. 2014; Guanylate binding protein 1-mediated interaction of T 
cell antigen receptor signaling with the cytoskeleton. J Immunol. 192:771–781. [PubMed: 
24337748] 

Frank E, Sanes JR. 1991; Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo 
with a recombinant retrovirus. Development. 111:895–908. [PubMed: 1908772] 

Gereau, RWt; Sluka, KA; Maixner, W; Savage, SR; Price, TJ; Murinson, BB; Sullivan, MD; Fillingim, 
RB. 2014; A pain research agenda for the 21st century. J Pain. 15:1203–1214. [PubMed: 
25419990] 

GTEx_Consortium. 2015; The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene 
regulation in humans. Science. 348:648–660. [PubMed: 25954001] 

Guo TM, Liu M, Zhang YG, Guo WT, Wu SX. 2011; Association between Caspase-9 promoter region 
polymorphisms and discogenic low back pain. Connect Tissue Res. 52:133–138. [PubMed: 
21091209] 

Hardy J, Singleton A. 2009; Genomewide association studies and human disease. N Engl J Med. 
360:1759–1768. [PubMed: 19369657] 

Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. 2012; Fast and accurate genotype 
imputation in genome-wide association studies through pre-phasing. Nat Genet. 44:955–959. 
[PubMed: 22820512] 

Ionita-Laza I, McCallum K, Xu B, Buxbaum JD. 2016; A spectral approach integrating functional 
genomic annotations for coding and noncoding variants. Nat Genet. 48:214–220. [PubMed: 
26727659] 

Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. 2003; 
Exploration, normalization, and summaries of high density oligonucleotide array probe level data. 
Biostatistics. 4:249–264. [PubMed: 12925520] 

Jacobs JM, Macfarlane RM, Cavanagh JB. 1976; Vascular leakage in the dorsal root ganglia of the rat, 
studied with horseradish peroxidase. Journal of the neurological sciences. 29:95–107. [PubMed: 
950578] 

Kim H, Ramsay E, Lee H, Wahl S, Dionne RA. 2009; Genome-wide association study of acute post-
surgical pain in humans. Pharmacogenomics. 10:171–179. [PubMed: 19207018] 

MacDonald, JW. pd.hta.2.0: Platform Design Info for Affymetrix HTA-2_0. 2015. 

Madsen L, Labrecque N, Engberg J, Dierich A, Svejgaard A, Benoist C, Mathis D, Fugger L. 1999; 
Mice lacking all conventional MHC class II genes. Proceedings of the National Academy of 
Sciences of the United States of America. 96:10338–10343. [PubMed: 10468609] 

Maixner W, Diatchenko L, Dubner R, Fillingim RB, Greenspan JD, Knott C, Ohrbach R, Weir B, 
Slade GD. 2011; Orofacial pain prospective evaluation and risk assessment study--the OPPERA 
study. J Pain. 12:T4–11. e11–12. [PubMed: 22074751] 

Parisien et al. Page 16

Cell Rep. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Nikitin A, Egorov S, Daraselia N, Mazo I. 2003; Pathway studio--the analysis and navigation of 
molecular networks. Bioinformatics. 19:2155–2157. [PubMed: 14594725] 

Nordmann A, Wixler L, Boergeling Y, Wixler V, Ludwig S. 2012; A new splice variant of the human 
guanylate-binding protein 3 mediates anti-influenza activity through inhibition of viral 
transcription and replication. FASEB J. 26:1290–1300. [PubMed: 22106366] 

O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, Traglia M, Huang J, Huffman JE, 
Rudan I, et al. 2014; A general approach for haplotype phasing across the full spectrum of 
relatedness. PLoS Genet. 10:e1004234. [PubMed: 24743097] 

Ostler N, Britzen-Laurent N, Liebl A, Naschberger E, Lochnit G, Ostler M, Forster F, Kunzelmann P, 
Ince S, Supper V, et al. 2014; Gamma interferon-induced guanylate binding protein 1 is a novel 
actin cytoskeleton remodeling factor. Mol Cell Biol. 34:196–209. [PubMed: 24190970] 

Pal S, Gupta R, Kim H, Wickramasinghe P, Baubet V, Showe LC, Dahmane N, Davuluri RV. 2011; 
Alternative transcription exceeds alternative splicing in generating the transcriptome diversity of 
cerebellar development. Genome Res. 21:1260–1272. [PubMed: 21712398] 

Pers TH, Timshel P, Hirschhorn JN. 2015; SNPsnap: a Web-based tool for identification and 
annotation of matched SNPs. Bioinformatics. 31:418–420. [PubMed: 25316677] 

Peters MJ, Broer L, Willemen HL, Eiriksdottir G, Hocking LJ, Holliday KL, Horan MA, Meulenbelt I, 
Neogi T, Popham M, et al. 2013; Genome-wide association study meta-analysis of chronic 
widespread pain: evidence for involvement of the 5p15.2 region. Ann Rheum Dis. 72:427–436. 
[PubMed: 22956598] 

R Core Team. R: A language and environment for statistical computing. 2014. 

Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, De T, Coin L, de Silva R, 
Cookson MR, et al. 2014; Genetic variability in the regulation of gene expression in ten regions of 
the human brain. Nat Neurosci. 17:1418–1428. [PubMed: 25174004] 

Seto AG, Kingston RE, Lau NC. 2007; The coming of age for Piwi proteins. Mol Cell. 26:603–609. 
[PubMed: 17560367] 

Shabalin AA. 2012; Matrix eQTL: ultra fast eQTL analysis via large matrix operations. 
Bioinformatics. 28:1353–1358. [PubMed: 22492648] 

Smith SB, Maixner DW, Fillingim RB, Slade G, Gracely RH, Ambrose K, Zaykin DV, Hyde C, John 
S, Tan K, et al. 2012; Large candidate gene association study reveals genetic risk factors and 
therapeutic targets for fibromyalgia. Arthritis Rheum. 64:584–593. [PubMed: 21905019] 

Smith SB, Maixner DW, Greenspan JD, Dubner R, Fillingim RB, Ohrbach R, Knott C, Slade GD, Bair 
E, Gibson DG, et al. 2011; Potential genetic risk factors for chronic TMD: genetic associations 
from the OPPERA case control study. J Pain. 12:T92–101. [PubMed: 22074755] 

Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, 
et al. 2015; UK biobank: an open access resource for identifying the causes of a wide range of 
complex diseases of middle and old age. PLoS Med. 12:e1001779. [PubMed: 25826379] 

Sullivan PF, Fan C, Perou CM. 2006; Evaluating the comparability of gene expression in blood and 
brain. Am J Med Genet B Neuropsychiatr Genet. 141B:261–268. [PubMed: 16526044] 

Usoskin D, Furlan A, Islam S, Abdo H, Lonnerberg P, Lou D, Hjerling-Leffler J, Haeggstrom J, 
Kharchenko O, Kharchenko PV, et al. 2015; Unbiased classification of sensory neuron types by 
large-scale single-cell RNA sequencing. Nat Neurosci. 18:145–153. [PubMed: 25420068] 

Wang Q, Yang C, Gelernter J, Zhao H. 2015; Pervasive pleiotropy between psychiatric disorders and 
immune disorders revealed by integrative analysis of multiple GWAS. Hum Genet. 134:1195–
1209. [PubMed: 26340901] 

Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, Klemm A, Flicek P, Manolio T, 
Hindorff L, et al. 2014; The NHGRI GWAS Catalog, a curated resource of SNP-trait associations. 
Nucleic Acids Res. 42:D1001–1006. [PubMed: 24316577] 

Wieskopf JS, Mathur J, Limapichat W, Post MR, Al-Qazzaz M, Sorge RE, Martin LJ, Zaykin DV, 
Smith SB, Freitas K, et al. 2015; The nicotinic alpha6 subunit gene determines variability in 
chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Sci Transl Med. 7:287ra272.

Woolf CJ, Ma Q. 2007; Nociceptors--noxious stimulus detectors. Neuron. 55:353–364. [PubMed: 
17678850] 

Parisien et al. Page 17

Cell Rep. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, Montgomery GW, Goddard ME, Wray 
NR, Visscher PM, et al. 2016; Integration of summary data from GWAS and eQTL studies predicts 
complex trait gene targets. Nat Genet. 48:481–487. [PubMed: 27019110] 

Parisien et al. Page 18

Cell Rep. Author manuscript; available in PMC 2018 May 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Comparative analysis of DRG transriptome and cis-eQTLs. (a) Spinal cord and DRG 

anatomy. (b) Unsupervised hierarchical clustering of DRG (red) cis-eQTLs or (c) DRG (red) 

transcriptome with 10 brain regions (braineac dataset). (d) Unsupervised hierarchical 

clustering of transcriptomes between various tissue types of the central and peripheral 

nervous system (Harvard dataset), including dorsal root ganglia (red). (e) 3-way Venn 

diagram showing the extent of shared eGenes across DRGs, whole blood and a mixture of 

10 brain tissues. See also Figures S1 to S5, and Tables S1 to S3.
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Figure 2. 
Characterization of cis-eQTLs in DRGs. (a) Histogram of the distance between cis-eQTL 

and the transcription start site (TSS) of the associated eGene. Grey is intergenic and purple 

is intragenic regions. (b) Histogram of the distance between cis-eQTL and the associated 

exon. Grey is intronic and purple is exonic regions. (c) Functional annotation of gene-level 

or (d) exon-level cis-eQTLs. Horizontal barplots track enrichment as log-ratios of observed 

to expected counts. Positive enrichment (yellow) signifies counts that are higher than 

expected, while negative enrichment (brown) signifies counts that are lower than expected. 

Observed counts less than ten may not be reliable (grey). Counts are binned by categories, 

defined by the CADD web resource. Categories are synonymous (SYN), non-synonymous 

(NON_SYN), 5′UTR (5P_UTR), 3′UTR (3P_UTR), splice site (SPLICE), regulatory 

(REG), intron (INTRON), upstream (UPSTRM), downstream (DWNSTRM), intergenic 

(INTERGEN), and non-coding change (NON_CHNG). Pie charts (green shades) track the 

relative counts per categories, labeled from 1 to 5, and others “0” combining the remaining 

categories. Categories marked with a star * pass Bonferroni correction following a binomial 

test for enrichment of observed over expected. Open chromatin evidence at gene-level (e) or 

exon-level (f) cis-eQTLs from the ENCODE project. A cumulative distribution function 

tracks the fraction of SNPs as a function of phred-based P-values for evidence of open 

chromatin. DRG eQTLs (red) are contrasted against 10 discrete SNPsnap background 

distributions (grey), and their combined averaged background (black). In inset, a box-and-

whisker plot shows the distributions of the phred-based scores for DRG (red) and averaged 
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background (grey). U-test P-value between these distributions is also shown (upper left). A 

star * indicates Bonferroni-corrected statistical significance. (g) SNP’s deleterious index for 

gene-level or (h) exon-level cis-eQTLs. A cumulative distribution function tracks the 

fraction of SNPs as a function of phred-based CADD scores. Deleteriousness is estimated to 

be proportional to phred-based CADD scores. The background distribution is the same as in 

e or f, respectively.
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Figure 3. 
Characterization of eGenes in DRGs. (a) Classes of genes associated at gene-level or (b) 
exon-level. Pie charts track the relative counts per category. sQTL refers to splicing eQTL; 

total sQTLs genes classes (left) are compared with the sQTLs classes resulting from the 

removal of those that are also eQTLs (right). (c) Gene class enrichment for gene-level 

associations. Horizontal barplots represent enrichment of log-ratios of observed counts to 

expected counts. (d) Exon class enrichment for exon-level associations. Classes are 5′UTR, 

3′UTR, coding sequence (CDS) beginning (CDS beg) and ending (CDS end), intron, 

transcription start site (TSS), pre-TSS, and non-coding. (e) Expression levels for all genes 
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versus eGenes at gene-level or (f) exon-level. Shown insets are box-and-whisker plots for all 

genes (grey) or eGenes (red). U-test P-value between the two distributions is shown. (g) 
Relationship between expression level and cis-eQTL effect size (beta) for gene-level or (h) 
exon-level associations. Histograms show the distribution of scattered points along the two 

main axes. Lines show correlations between expression levels and beta (positive beta, green; 

negative beta, red). Pearson’s correlation coefficient values are indicated at the top. In all 

panels, a star * indicates statistical significance after Bonferroni correction for gene classes 

following a binomial test for enrichment of observed over expected.
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Figure 4. 
Contribution of DRG eQTLs to human diseases. Manhattan plots show association for cis-

acting DRG eQTLs at gene- and exon-level. SNPs from the NHGRI catalog reported to be 

associated with human diseases are highlighted. Strips of alternative yellow/blue colors 

bring out chromosome loci, while white strips emphasize the Human Leukocyte Antigen 

locus (HLA; 10x magnification). (a) NHGRI SNPs overlapping with DRG eQTLs are 

highlighted in red. (b–d) NHGRI SNPs overlapping with shared eQTLs between DRG and 

other tissues are highlighted in green where eQTLs are shared by (b) DRG and brain, (c) 
DRG and blood, (d) DRG, brain and blood. (e) Non-overlapping eQTLs unique to DRG in 

blue. See also Table S4.
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Figure 5. 
Contribution of DRG eQTLs to gene-candidates association results with pain phenotypes. 

(a) Manhattan plot of DRG eQTLs in the GBP genes cluster. The minor allele for SNP 

rs7911 has been previously associated with increased risk for FM. The same SNP is also an 

eQTL at gene-level for GBP3 (magenta), and at exon-level for GBP1 (blue). Color-coded 

insets show gene and exon expression level change as a function of minor allele count. A 

star (*) indicates statistical significance for reported P-values. (b) Cumulative distribution 

function of cis-eQTL P-values for all genes (grey) is compared with that of reported pain 

genes (red) at gene-level or (c) at exon-level. Box-and-whisker plots show difference in P-

value distributions. See also Tables S5 and S6.
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Figure 6. 
Contribution of DRG eQTLs to GWAS results with pain phenotypes. QQ plots (left) depict 

that DRG eQTLs (red) show significant enrichment for SNPs associated with pain 

phenotypes relative to all SNPs (gray). Barplots (right, QQ) depict relative contributions of 

tissue-specific eQTLs to associated phenotype. Tissue contribution is measured as the sum 

of log2 of QQ plot’s observed to expected ratio for the best 50 eQTLs in that tissue. Curves 

(right, GWAS) depict enrichment of tissue-specific eQTLs found in the top-ranking GWAS 

hits. The enrichment is the log2 of observed q/n ratio to the expected Q/N ratio, where q is 

the observed number of tissue-specific eQTLs in the top n GWAS hits, out of a total Q 

tissue-specific eQTLs in the total N GWAS hits. Horizontal grey line show no enrichment 

threshold (i.e. O ~ E, or log2(1)=0). The tested phenotypes are: (a) Low Back Pain; (b) 
Temporomandibular Disorders; (c) pressure pain threshold; (d) mechanical pain threshold; 

(e) heat pain threshold; (f) heat pain tolerance.
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Figure 7. 
Associations of HLA gene locus for DRG eQTLs and pain phenotypes, and role in a mouse 

inflammatory pain model. Dot plots track strength of the association of each SNP along the 

HLA locus in chromosome 6, with higher scores show stronger association with selected 

phenotype. Horizontal lines mark the genome-wide statistical threshold of significance at 

FDR 1%. (a) HLA genes, with arrows indicating the direction of transcription for each gene 

(forward, yellow; reverse, blue). Footprints of HLA genes are also underlined in other 

panels. (b) DRG eQTLs. (c–h) pain phenotypes: (c) LBP; (d) TMD; (e) pressure pain 

threshold in epicondyle; (f) mechanical pain threshold; (g) heat pain threshold; (h) heat pain 

tolerance. (i) Replication in the UK BioBank cohort for (I) back pain; and (II) facial pain. 

Plots show cumulative percentage of SNPs as a function of increasing replicative P-values, 

for SNPs whose eQTL/GWAS OPPERA discovery score is above statistical significance 

(FDR 1%; pink) and those below (grey). Kolmogorov-Smirnov test between the two curves; 

*** P < 2e-16. (j) Prolongation of mechanical allodynia in MHCII−/− mice in the CFA 

inflammatory pain model. Mechanical threshold was measured as 50% withdrawal threshold 

with von Frey filaments at baseline (BL) before, and 3, 7, 10, 14 and 21 days after CFA 

injection (dashed line) in the hindpaw of wild type (WT, blue) and MHCII−/− (red) mice. 

Data are presented as mean +/− s.e.m. * P ≤ 0.05; ** P ≤ 0.01 compared with WT mice. See 

also Table S7.
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