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Abstract

Immune checkpoint inhibitors (ICI) have shown great promise in a wide spectrum of adult solid 

and hematological malignancies, achieving objective tumor responses and prolonging survival. 

However, there is limited clinical success amongst pediatric patients. In this review, we summarize 

the current understanding of ICI and present an up-to-date overview of recent and ongoing clinical 

trials of ICI in pediatric malignancies. In addition, we will discuss immunologic and clinical 

difficulties in this young population, as well as future prospects for combination of ICI with other 

immune-based and conventional treatments.
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Introduction

Remarkable advances in cancer immunotherapy in recent years have led to paradigm shifts 

in oncology. The most noticeable results have been with T-cell-based therapies including 

immune checkpoint inhibitors (ICI), genetically engineered T-cells and bispecific antibodies 

(BsAb). T-cells represent a major class of cellular drugs in immunosurveillance and tumor 

eradication with exquisite specificity and long-term memory. However, during tumor 

equilibrium or progression, T-cells become exhausted or tolerized to tumor cells [1,2]. A 

cardinal feature of T-cell exhaustion is the overexpression of inhibitory receptors, including 

programmed death receptor-1 (PD-1, CD279), cytotoxic T lymphocyte antigen-4 (CTLA-4, 

CD152), lymphocyte-activation gene-3 (LAG-3), T-cell immunoglobulin domain and mucin 

domain-3 (TIM-3), IL-10 receptor, killer immunoglobulin receptors, among others. Some of 

these checkpoint molecules exert their immunosuppressive effects by down-regulating the 

normal T-cell response and increasing FoxP3+ regulatory T-cells (Tregs) numbers and 

activity [3,4]. Monoclonal antibody (mAb) based therapies to counteract these checkpoint 

molecules can remove the brake that restrains tumor-infiltrating T-cells, thereby achieving 
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significant clinical benefits in different malignancies including advanced melanoma, non-

small cell lung cancer (NSCLC), and renal cell carcinoma (RCC) [5–8]. However, most of 

the studies to date are focused on adult cancers and little is known about the role of these ICI 

in pediatric malignancies. Here, we review the clinical use of these ICI and their limitations 

regarding toxicity and efficacy in the context of pediatric malignancy. Furthermore, we will 

discuss the potential for combining ICI with other proven and investigational therapies in 

children.

Immune checkpoint inhibitors and clinical trials

CTLA-4 antibodies

CTLA-4, type I transmembrane glycoprotein that belongs to Ig superfamily, is constitutively 

expressed on memory T-cells and Tregs, which is critical in preventing self-reactive T-cells 

from inducing autoimmunity [9]. It is homologous to CD28 and shares the same B7 ligands, 

B7-1 (CD80) and B7-2 (CD86), but it has a negative effect on T-cell activation. Several 

suppressive mechanisms for T-cell functions have been attributed to CTLA-4 (Fig. 1). 

Ipilimumab (IgG4 isotype) was the first CTLA-4 inhibitor to demonstrate overall survival 

benefit in metastatic melanoma [6,10]. Another CTLA-4 inhibitor, tremelimumab (IgG2 

isotype), has also been proven successful in metastatic melanoma and other malignancies 

[11]. Although the pediatric experience is very limited, a substantial number of clinical trials 

have extended the age eligibility to patients <=18 years of age (Table 1). In the first report of 

ipilimumab for advanced solid tumors in pediatric patients, although no major response was 

noted, some tumor regression was noted to be durable [12]. A comparison of ipilimumab to 

high-dose interferon (IFN) α-2b among pediatric patients with high-risk melanoma is 

ongoing, and the combination with IL-2, vaccine, or CD19-chimeric antigen receptor (CAR) 

expressing T-cell therapy are being tested in patients with metastatic melanoma and 

advanced malignancies.

PD-1/PD-L1 antibodies

PD-1 is expressed on T-cells following T-cell receptor (TCR) engagement and it declines 

after resolution of acute inflammation. However, under chronic antigen exposure, PD-1 

remains high on chronically activated T-cells that become exhausted [13,14]. Several 

Inhibitory mechanisms for T-cell functions have been ascribed to PD-1 (Fig. 2). Two PD-1 

ligands, PD-L1 (B7-H1, CD274) and PD-L2 (B7-DC, CD273), can engage PD-1 to render 

T-cell dysfunctional, and to maintain the exhausted T-cell phenotype [15]. While PD-L2 is 

exclusively expressed on activated dendritic cells and macrophages, PD-L1 has a broad 

tissue distribution including tumor cells and is rapidly induced by inflammatory mediators 

(e.g. IFN-γ, lipopolysaccharides, GM-CSF, IL-4 and IL-10). PD-L1 is expressed in many 

pediatric cancers including leukemia (42–100%), lymphomas (27–80%), glioma (75–100%), 

Wilms tumor (14%), soft tissue sarcomas (STS) (58%), and metastatic osteosarcoma (75%) 

[16,17], and upregulation of PD-L1 was consistently associated with poor clinical outcomes 

[17–25].

PD-1/PD-L1 inhibitors enhance anti-tumor immune response by restoring T-cell cytotoxic 

function, resulting in anti-tumor effect, while facilitating the generation of memory T-cells 
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to provide long term anti-tumor response [26–28]. Nivolumab, a fully human IgG4 mAb, 

induced objective response in melanoma, NSCLC, and RCC patients (18% to 28%), and 

most responses were durable for more than 1 year [8,16]. Pembrolizumab, another 

humanized monoclonal IgG4 anti-PD-1 antibody, also showed high clinical response rates 

that were durable (37% with median of 11 months) in patients with advanced melanoma 

[29]. In addition, pidilizumab (CT-011), a humanized IgG1 monoclonal anti-PD-1 antibody, 

has mainly been investigated in advanced hematologic malignancies [30–32]. Other anti-PD-

L1 antibodies (e.g. atezolizumab (MPDL32890A), durvalumab (MEDI4736), and avelumab 

(MSB0010718C)), inhibit binding of PD-L1 to PD-1 and CD80, without blocking the 

interaction between PD-L2 and PD-1. They have demonstrated clinical activity with 

acceptable toxicities, not only against immunogenic cancers, such as melanoma and RCC, 

but also against less immunogenic epithelial cancers such as NSCLC, colorectal, gastric, and 

cervical and bladder cancers [33–35]. Most notable was the substantially milder toxicity 

profile of PD-1/PD-L1 blockades, when compared to anti-CTLA-4-mediated immune 

related adverse events (irAEs) [36–38].

In contrast to the enthusiasm for the PD-1/PD-L1 inhibitors in adult cancers, few studies 

have been carried out in pediatric cancers. Blumenthal et al. reported their experience of 

pembrolizumab in patients with recurrent brain tumors including 5 pediatric patients, but 

they failed to show a benefit on overall survival [39]. The obvious exceptions are pediatric 

patients with refractory Hodgkin lymphoma (HL) which have shown durable responses to 

pembrolizumab [40,41]. Recently, pembrolizumab was approved by FDA for HL in adult 

and pediatric patients, and this is a first approval of PD-1 inhibitor for pediatric use. 

Children’s Oncology Group (COG) is conducting a phase I/II study of nivolumab alone or in 

combination with ipilimumab for relapsed or refractory solid tumors (NCT02304458) and 

phase I/II study of pembrolizumab for advanced melanoma or PD-L1 positive advanced 

solid tumors or lymphoma (NCT02332668).

Anti-LAG-3 antibody

Lymphocyte-activation gene-3 (LAG-3, CD223) is another vital immune checkpoint that 

may have a synergistic interaction with PD-1/PD-L1 [42,43]. LAG-3 is a member of the Ig 

superfamily and exerts a wide variety of biologic impacts on T-cell function via binding to 

major histocompatibility complex (MHC) class II with high affinity [44]. It is expressed on 

activated T-cells, Tregs, NK cells, B-cells, tumor-infiltrating lymphocytes (TILs), and 

dendritic cells [45–49]. The LAG-3/MHC class II molecule interaction inhibits CD4+ T-cell 

proliferation and cytokine secretion. Co-expression of LAG-3 and PD-1 correlates with 

greater T-cell exhaustion, accompanied by impairment of CD8+ effector T-cell function, best 

demonstrated in chronic viral infection [48,50–52]. They synergistically regulate T-cell 

function, blunt anti-tumor immune response, and promote tumoral immune escape [43,52].

Although anti-LAG-3 antibody (Immutep, IMP321) failed to demonstrate objective 

responses, this agent was well tolerated and appeared to correlate with development of 

CD8+ T-cell effectors [53–55]. When combined with paclitaxel, outcome in breast cancer 

was improved [56,57]. Although there has been no open clinical trials for pediatric patients 

so far, and most clinical trials have not yet extended the age eligibility to patients <=18 years 
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of age, clinical trials combining with PD-1 inhibitors are actively recruiting patients with 

advanced solid tumors (NCT0196819) and recurrent glioblastoma (NCT02658981) to assess 

the safety, tolerability and efficacy.

Anti-B7-H3 antibody

Human B7-H3 (CD276) is another member of the B7/CD28 Ig superfamily with activating 

as well as inhibitory roles that regulate T-cell function [2,58,59]. While the receptor for B7-

H3 has yet to be discovered, structural studies in the mouse suggested a receptor 

engagement on T-cell involving the particular segment (FG loop) of the B7-H3 [60,61]. B7-

H3 preferentially down-regulates type I helper T-cells (TH1)-mediated immune response and 

inhibits T-cell proliferation and cytokine production [62–64]. B7-H3 protein showed broad 

mRNA expression on many tissues and cell types with proven functions on cellular 

responses, including proliferation, apoptosis, adhesion, and metastasis [65–67]. While its 

protein expression is restricted in normal tissues, much higher levels are found in human 

malignancies [68–75], and because of its association with highly aggressive tumor behavior 

and poor clinical outcome, B7-H3 has utility as a tumor-associated antigen as well 

[71,74,76].

Anti-B7-H3 antibodies block the inhibitory effects of B7-H3 on T-cells and enhance the 

efficacy of autologous T-cells against tumors [77,78]. Anti-B7-H3 murine mAb 8H9 has 

shown promise as a radioimmunoconjugate in xenograft models, and clinically, intrathecal 

or intra-Ommaya131I-8H9 has demonstrated efficacy in controlling CNS metastasis of 

neuroblastoma [79]. Currently, intraperitoneal 131I-8H9 is also being tested among 

adolescent and young adults with desmoplastic small round cells tumor (DSRT), while intra-

pontine 124I-8H9 using convention enhanced delivery is applied to diffuse intrinsic pontine 

glioma (DIPG), with minimal toxicity and encouraging results (Table 1). The humanized and 

affinity matured forms of 8H9 and its epitope dependence on the integrity of the FG loop 

were recently reported [75]. Another humanized mAb, enoblituzumab (MGA271) specific 

for B7-H3, has shown anti-tumor activity in preclinical models of RCC and bladder cancer 

[77]. Clinical trials of MGA271 as a single agent for refractory cancers that express B7-H3 

in pediatric patients (NCT02982941) and advanced prostate cancer in adults 

(NCT02381314), as well as in combination with ipilimumab (NCT02381314) or 

pembrolizumab for refractory cancer (NCT02475213) are in progress. Although clinical 

responses to the standard anti-B7-H3 IgG alone have not been encouraging, its combination 

with other ICI or even with conventional therapies could offer opportunities. Novel 

engineered forms such as B7-H3 × CD3 bispecific antibodies may be valuable alternatives 

[80]. When the receptor(s) and signaling pathways of B7-H3 become better defined, more 

effective anti-B7-H3 inhibitors could potentially be explored.

Limitations of immune checkpoint inhibitors

Safety in children

Despite the overall success of ICI in adults, safety data in children have been hard to come 

by. In adults, ipilimumab-related adverse events were often mild to moderate, but occurred 

in more than 70% of patients, and these toxicities correlated with its dosage [6,81]. Meta-
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analysis of 18 clinical trials showed that CTLA-4 inhibitors at higher doses (10 mg/kg) were 

associated with a higher risk of treatment-related mortality (TRM) [82]. Enterocolitis, 

hepatitis, and dermatitis were most commonly observed, and these irAEs were associated 

with tumor responses and favorable outcome [12,81,83–85]. Approximately 30–50% of 

patients experienced adverse skin reactions including rash and itching, one third 

enterocolitis, 2–9% hepatotoxicity (some life-threatening), 1.5% hypophysitis whose 

symptoms included fatigue, headaches, myalgia, loss of appetite, nausea and vomiting 

[6,81]. Hypophysitis with adrenal insufficiency is potentially fatal and requires urgent 

attention and treatment [86]. Neurologic toxicities were rare, but life-threatening 

neuropathies (e.g. Guillan-Barré syndrome, severe motor neuropathy, myasthenia gravis, 

aseptic meningitis) and optic neuritis have been reported, which required immediate 

stoppage of the ICI [85,87]. Most irAEs could be controlled with high-dose corticosteroids 

which did not seem to impair the antitumor effects of ipilimumab [88]. In children the 

incidence of grade 3 or 4 irAES was 27%, and the spectrum included pancreatitis, 

pneumonitis, colitis, and hepatitis, similar to those among adult studies [12].

The toxicity profile of PD-1/PD-L1 blockades was less severe than that of CTLA-4, with no 

significant increase in TRM in a meta-analysis [82], with an overall incidence of 7–14% 

grade 3 and 4 toxicities [8,89,90]. Most notably, PD-1/PD-L1 inhibitors showed a slightly 

different toxicity profile including organ-specific inflammatory conditions such as 

pneumonitis rather than colitis [91]. The most common adverse events were fatigue, with an 

incidence of 16%–37% with anti-PD-1 and 12–24% with anti-PD-L1, followed by fever, 

chills, and infusion reactions [91]. Dermatologic toxicities such as rash, pruritis, and vitiligo 

were frequently observed, and vitiligo was more common than with ipilimumab (10% vs. 

2%, respectively) [92]. Colitis, endocrine toxicities, and hepatic toxicities have been 

described, but most were less extensive than anti-CTLA-4 mAb [91,92]. While pneumonitis 

was rarely reported in the studies of anti-CTLA-4 mAb alone, up to 10% of patients 

receiving anti-PD-1/PD-L1 therapy developed this complication, leading to 3 TRM in the 

early phase of nivolumab [8]. In addition, among patients including children treated with 

anti-PD-1 mAbs, critical neurologic and endocrinologic adverse reactions have been 

reported, and some of them being irreversible [82,93–95]. These unpredictable off-target 

toxicities to critical organs, besides being life-threatening, are particularly concerning for 

children in whom the organs are less mature and potentially prone to life-long disabilities 

[91].

Efficacy in children

Another uncertainty in pediatric application of ICI is their uncertain benefit and the lack of 

appropriate predictive biomarkers. Although clinical trials have shown tumor responses in 

some patients, few are major responses and most have not been durable [12,39–41]. There is 

a need to better understand the mechanisms of action of PD-1/PD-L1 in these pediatric 

tumors, to determine if there is an underlying genetic resistance to ICIs [13,96]. While PD-

L1 expression in adult tumors has been proposed as a potential biomarker for response 

[8,37], PD-L1 expression is often heterogeneous within tumors, and can be even discordant 

between primary tumor and metastases [17,97]. Furthermore, PD-L1 negative tumors also 
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responded to PD-1 blockade or combination treatment with nivolumab and ipilimumab 

[38,98,99].

Recent whole genome and exome sequencing of tumors have identified the role of 

neoantigens and the importance of pre-existing T-cell clones and the mutational threshold 

for adequate response to ICI. High frequencies of nonsynonymous mutational burden and 

tumor neoantigens, as well as mutations in DNA repair pathways were strongly associated 

with therapeutic benefit following anti-CTLA-4 and anti-PD-1 antibodies [96,100]. 

Neoantigen-reactive CD8-T-cells are responsible for tumor regression after PD1 blockade, 

suggesting that ICI enhances neoantigen-specific T-cell reactivity [96]. However, given the 

heterogeneity of most human tumors, neoantigens, if not essential for tumorigenicity, could 

be downregulated or even lost, leading to tumor escape. An analysis of 27 cancer types 

showed that the median frequency of non-synonymous mutations varied by more than 1,000-

fold across the cancer types [101]. While melanoma and lung cancer exceeded 100/Mb, 

most pediatric cancers showed frequencies as low as 0.1/Mb (one mutation per exome). If 

each mutation creates a neoantigen capable to stimulate a T-cell clone, more mutations and 

more neoantigens should produce a more robust T-cell response. ICI are now known to be 

more effective in highly mutated cancers, with a mutational threshold estimated at 100 

mutations per exome (3.3 mutations/Mb) [100,102], an unfavorable prerequisite for most 

pediatric solid tumors. The highest mutation frequencies are attributable to extensive 

exposure to carcinogens, such as UV light in melanoma and tobacco smoking in lung 

cancers [101], not generally associated with pediatric cancers. Although pediatric tumors 

express PD-L1, ICI alone may have less or even no effect in pediatric cancers when 

compared to melanoma and NSCLC [103,104]. However, somatic mutation frequencies can 

vary widely across patients within a cancer type and even across sites within the same 

patient [101,105,106]. As present, the role of ICI is being tested for hypermutated 

malignancies in children with biallelic mismatch repair deficiency (NCT02992964).

Another consideration is the tumor microenvironment as a major component of resistance to 

immunotherapy. In this context, adult cancers are thought to be preceded by a long-term 

chronic inflammatory phase such as infections (hepatitis B or C, human papillomavirus, 

Epstein-Barr virus (EBV), Helicobacter pylori) or repeated exposures to irritants or 

carcinogens [107]. In contrast, the preneoplastic period in pediatric cancer is much shorter, 

often only weeks or months, and except in the case of EBV-induced Burkitt lymphoma, an 

association between preceding inflammation and typical pediatric cancers (i.e., small round 

blue cell tumors) is not clear. Whereas TILs, a heterogeneous population of lymphocytes 

growing within a tumor [108], in adult cancers are peritumoral, forming focal inflammatory 

cell aggregates of diverse cell types, including T-cells and NK cells among macrophages and 

dendritic cells (DC), TILs in pediatric tumors are scarce and scattered among macrophages. 

Moreover, these macrophages are commonly CD163/CD68+, the phenotype of M2 tumor-

associated macrophage (TAM), which often comprise 60% to 70% of the cellular infiltrate 

[109]. While M1 TAMs are highly inflammatory and effective killers for microorganisms 

and tumor cells, M2 TAMs are generally anti-inflammatory, by secreting IL-10 and TGF-β 
while failing to secrete other proinflammatory cytokines, as well as immunosuppressive, 

protecting tumor cells from NK cells and T-cells during tumor progression [110–114].
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TILs, particularly those anti-tumor type I T-cells, were associated with better patient survival 

and seemed to play a critical role in response to ICIs in many adult cancers [115–117]. A 

general consensus is the absence of clinical response if TILs are absent or insufficient [118]. 

Clinical scientists have coined the descriptor ‘hot’ for tumors that have high numbers of 

TILs (T-cell-inflamed) e.g. melanoma, and the opposite end of the spectrum as ‘cold’ (not T-

cell-inflamed) e.g. prostate cancer and most pediatric cancers (Fig. 3) [119]. The potential 

mechanisms for immune evasion in the T-cell-inflamed or ‘hot’ tumors include inhibition by 

upregulation of ICI (PD-1/PD-L1 and CTLA-4), expression of indoleamine-2,3-dioxygenase 

(IDO), recruitment of Tregs, loss of antigen expression, and T-cell intrinsic anergy. Increased 

IDO expression by APCs induces tryptophan depletion, resulting in antigen-specific T-cell 

anergy, and Tregs recruitment and activation, resulting in T-cell dysfunction. On the other 

hand, in non-T-cell-inflamed or ‘cold’ tumors, immune escape mechanisms include a lack of 

innate immune recognition, infiltration by M2 TAMs, paucity of dendritic cell infiltration, 

lack of chemokines for effective T-cell trafficking, dense sessile stroma with high density of 

fibroblasts, and a hostile extracellular matrix restricting T-cell access. In addition, altered 

oncogene pathways could also cause immune escape, e.g. p53 mutation results in decrease 

of innate immune activation and a lack of T-cell infiltration, inactivation of phosphatase and 

tension homolog (PTEN) can enhance tumor cell survival and proliferation through 

increased AKT activity, and activated signal transducer and activator of transcription 3 

(STAT3) signaling reduces recruitment of both DC and T-cells and plays inhibitory roles in 

anti-tumor immunity [119–122]. While hot tumors have a chance to benefit from ICI, cold 

tumors may require additional strategies to promote T-cell homing into and function within 

these tumors [121].

Other relevant considerations regarding anti-tumor T-cell immunity in children include: (1) 

most pediatric solid tumors exhibit low or absence of MHC, which presents antigens on 

tumor cells and could be critical for both the afferent and the efferent arm of the T-cell 

response, potentially compromising the prospects of an effective T-cell immunity to any 

neoantigen, (2) immature immune system in young children, (3) dose-intensive 

chemotherapy in children and hence profound lymphopenia and immunosuppression, (4) 

immature or altered gut microbiome that could also affect the response to ICI [123–128]. 

The potential impact of gut microbiome on tumor microenvironment and effectiveness of 

chemotherapy viewed in the context of drastic changes of gut flora with age and antibiotics 

is just emerging [129–131]. For these reasons, ICI alone is likely to be insufficient to control 

pediatric tumors. However, as BsAb or CAR T-cells can retarget polyclonal T-cells to tumor, 

their combination with ICI may offer novel potentials for some pediatric malignancies (See 

below) [132,133].

Future directions

The clinical success of ICI in adults has paved the way for evidence-based combinations 

with conventional therapeutics or additional ICI, with the goal of both additive and 

synergistic effects to improve the survival of patients.
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Combination with other ICI

The combination of ipilimumab and nivolumab was initially studied in advanced melanoma 

and demonstrated a 40% objective response rate, with 30% of patients exhibiting >80% 

tumor reduction [134]. Phase II/III trials of this combination also showed impressive 

response rates (61%) and significantly improved outcomes in melanoma, and even in PD-

L1-negative tumors [98,99]. This combination has also been studied in metastatic RCC with 

acceptable safety and high response rates of 39% (NCT01472081) and in recurrent 

glioblastoma after standard therapy with surgery, RT, and temozolomide in a phase III trial 

(NCT02017717). Phase I/II clinical trial for recurrent or refractory solid tumors in children 

are also recruiting patients (NCT02304458). Similar combinations, pembrolizumab plus 

ipilimumab, or durvalumab plus tremelimumab are ongoing in prior-treated NSCLC, 

advanced melanoma and refractory or advanced stage rare tumors. Several other 

combinations using ICI targeting LAG-3, B7-H3, and TIM3 have shown encouraging results 

in the pre-clinical models and are currently in clinical trials.

Combination with chemotherapy

Recent studies have also shown that combinations of various chemotherapies with ICI can 

have synergistic effects. The combination of ipilimumab and dacarbazine has improved the 

overall survival of patients with metastatic melanoma when compared to dacarbazine 

monotherapy [10]. Nivolumab in combination with platinum-based chemotherapy for 

advanced NSCLC also showed an encouraging outcome with a 2-year OS rate of 62%. 

Although irAEs were greater than those expected with nivolumab monotherapy, most 

toxicity was manageable [135]. A number of phase I studies are currently underway in 

NSCLC and other solid tumors including pediatric cancers, aimed at investigating the safety 

and tolerability of combining ICI with standard chemotherapies [135,136].

Combination with targeted agents

Another strategy is to combine with targeted agents including tyrosine kinase inhibitors 

(TKI), BRAF inhibitors and anti-angiogenic agents. Despite high response rates with these 

targeted therapies, most patients progress within 1 year because of acquired resistance 

through a number of mechanisms, including immune escape via the PD-1/PD-L1 and other 

immune checkpoint pathways [137,138]. The effective treatment of human gastrointestinal 

stromal tumors (GIST) with imatinib is associated with an increased intratumoral 

CD8+effector T-cells (CD8)/Tregs ratio [139]. Increased Tregs could compromise the 

immune response to tumors, as shown by imatinib-resistant tumors, where the lower CD8/

Treg ratios were correlated with increases in immune checkpoint molecules [139–141]. A 

phase I study of ipilimumab plus imatinib in advanced solid tumors (NCT01738139) and a 

phase I/II clinical trial of ipilimumab with dasatinib in GIST or STS are ongoing 

(NCT01643278). The combination of the anti-PD-L1 mAb, durvalumab, and the epidermal 

growth factor receptor (EGFR)-TKI gefitinib in NSCLC have shown promising clinical 

activities with mild treatment-related AEs [142].

BRAF inhibitors which target driver mutations in the tumor cells can promote adaptive 

immunity, but, can concurrently upregulate T-cell exhaustion markers including PD-1 and 

TIM-3 and PD-L1 on tumor cells, consistent with a potential immune resistance [143]. 
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Although a phase I study of vemurafenib with ipilimumab was terminated prematurely due 

to hepatotoxicity [144], BRAFV600 inhibitors plus ICI should produce synergy given the 

high response rates from BRAF inhibitors and the durable remissions induced by ICI 

[145,146]. Currently, there are several open or pending clinical trials in lymphoma, advanced 

melanoma, RCC and other refractory solid tumors studying ICI in combination with targeted 

agents (NCT02465060, NCT02224781, NCT02027961 and NCT02858921).

Anti-angiogenic mAbs against vascular endothelial growth factor (VEGF), such as 

bevacizumab, and multi-targeted TKIs, such as sunitinib and pazopanib, have also been 

tested in combination with anti-PD-1/PD-L1 mAbs. Blockade of VEGF produced 

immunomodulatory effects, which included promoting dendritic cell maturation and effector 

T-cell trafficking, while decreasing myeloid-derived suppressor cells (MDSCs), Tregs and 

suppressive cytokines at the tumor microenvironment [147–149]. Combination of 

bevacizumab and ipilimumab has been studied in glioblastoma and advanced melanoma, 

showing promising activity with manageable toxicity profile [150,151]. Bevacizumab with 

anti-PD-L1 inhibitor, atezolizumab, also showed clinical activity without exacerbation of 

irAEs, and phase III clinical trial of this combination is ongoing in advanced RCC 

(NCT02420821).

Combination with radiotherapy (RT)

Tumor irradiation has immunologic effects, such as increased tumor antigen presentation, 

increased chemokine release, and recruitment of effector T-cells to the tumor 

microenvironment, although potentially deleterious effects can also be induced, such as 

upregulation of PD-L1, secretion of TGF-β, and induction of Tregs [152–155]. Localized RT 

has an abscopal effect on nonirradiated tumor sites through immunostimulation, which could 

be exploited and combined with immunotherapy [156–158]. While radiation shapes the TCR 

repertoire of the expanded peripheral clones, anti-CTLA-4 mAb promotes expansion of T-

cells and contraction of Tregs; hence, their combination may have synergistic benefit [159–

162]. Studies in prostate cancer and melanoma combining RT with ipilimumab showed 

clinical antitumor activity and manageable irAEs [158,163]. Although another study in 

advanced melanoma failed to demonstrate significant benefits of anti-CTLA-4 inhibitor, it 

did show persistent T-cell exhaustion in melanoma with high PD-L1 could be reversed by 

PD-L1 blockade. The authors suggested that the combination of radiation, anti-CTLA-4 and 

anti-PD-L1 mAbs might promote more potent anti-tumor immune response [164]. Clinical 

studies to determine the safety and efficacy of RT with various ICI are currently underway to 

identify the optimal radiation dose, radiation fractionation, and dose and timing of ICI.

Combination with T-cell based therapies

Adoptive T-cell therapy using CAR T-cells or BsAb (blinatumomab) specific for CD19 has 

been major breakthroughs in the treatment of acute lymphoblastic leukemia (ALL) 

[165,166]. When non-clonal T-cells are gene-modified with CAR or armed with bispecific 

antibodies [132,167], they mediate potent anti-tumor cytotoxicity, leading to strong T-cell 

activation and production of proinflammatory cytokines. However, despite promising 

clinical responses (e.g. CD19-directed T-cell based immunotherapy), tumor recurrence was 

observed, partly because of genomic instability and the effects of cancer immune editing 
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[168]. Additional resistance mechanisms include downregulation or loss of target antigen 

expression, tumor-associated dendritic cell dysfunction, increased Tregs, 

immunosuppressive cytokines, activation of alternative signaling pathways, and anti-

antibody formation [66,93,168–170].

T-cells driven by CAR or BsAb can trigger tumor cells to develop various 

immunosuppressive strategies, resulting in the release of inhibitory factors and a hostile 

tumor microenvironment, leading to T-cell exhaustion and tumor escape [168]. Upregulation 

of checkpoint molecules has been suggested as one of the main mechanisms of adaptive 

resistance in adoptive T-cell therapies [171], and evidence has continued to accumulate to 

support a key role of the PD-1/PD-L1 axis in attenuating anti-tumor immune responses 

[172,173]. Although PD-1/PD-L1 expression may not be robust at the time of diagnosis, 

they can be rapidly induced following blinatumomab treatment and is associated with 

disease relapse and resistance [174,175]. Cytokine-release syndrome (CRS), one of the 

major side effects of both CAR T-cells and BsAbs, results from massive cytokine secretion 

(IFN-γ, IL-6 and IL-10) associated with T-cell engagement and proliferation [176], leading 

to upregulation of PD-1/PD-L1 expression and immune resistance [174,177]. Blockade of 

PD-1/PD-L1 signaling could significantly increase anti-tumor cytotoxicity and T-cell 

proliferation and activity [171]. Given the significant acute (CRS) and chronic (B cell 

aplasia) toxicities from CD19-directed immune therapies, addition of ICI could intensify 

these side effects.

Combination of blinatumomab and pembrolizumab was administered in a pediatric patient 

with ALL. She was refractory to blinatumomab, and her blasts showed high PD-L1 

expression. She was treated with blinatumomab and pembrolizumab after transplant and 

attained a remission without significant toxicities or exacerbation of CRS [174]. A phase I 

study of blinatumomab in combination with nivolumab or both nivolumab and ipilimumab 

in patients with relapsed or refractory CD19+ precursor B-acute leukemia has started 

(NCT02879695). Combined treatment with BsAbs [178–180] and various ICI including 

anti-PD-L1, anti-CTLA-4, anti-LAG-3, and anti-B7-H3 could be alternative therapeutic 

strategies in refractory or relapsed cancers in children, although toxicities could become 

prohibitive.

CAR T-cell therapy is another highly promising immunotherapy for children and adults with 

B-cell leukemia. However, the clinical results in solid tumors have not been encouraging. 

For optimal tumor eradication, CAR T-cells must have proper target antigen selection, co-

stimulatory signaling, and the ability to move into the tumor, as well as persistence or 

proliferation, while avoiding T-cell exhaustion and T-cell death, now believed to be a major 

limiting factor [181]. Recent clinical trials have shown that tumor burden and chemotherapy 

conditioning before CAR T-cell therapy are critical, and it is likely that CAR T-cell therapy 

alone will be insufficient for cure [182]. Combination with ICI could be a future direction. 

Blocking PD-1/PD-L1 can unleash the cytotoxic functions of adoptively transferred T-cells, 

and potentially promote the development of endogenous T-cells that target neoantigens 

[168,183].
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The antitumor effect of combinational therapy with CAR T-cells and PD-1 inhibitor was 

investigated preclinically using transgenic Her2 mice treated with Her2-specific CAR T-

cells. Tumor Her2 antigen triggered PD-1 upregulation in CAR T-cells, and PD-1 blockade 

enhanced Her2-specific T-cell functions and decreased MDSC in the tumor 

microenvironment, leading to enhanced anti-tumor effect [36]. A clinical trial to study the 

combination of CD19-CAR T-cells and ipilimumab in patients with B-cell lymphoid 

malignancies including pediatric patients has been initiated (NCT00586391).

Conclusion

Although overall survival rates for pediatric malignancies approached upwards of 80% 

[184], further improvements have slowed down in the past decades, despite the use of dose-

intensive genotoxic therapies approaching their toxicity limits. New approaches in pediatric 

patients with advanced stage, relapsed or refractory cancers are desperately needed. Several 

novel therapeutic agents including small molecular targeted agents, monoclonal antibodies, 

and T-cell based immunotherapies have shown promise. To fully exploit these powerful 

modalities against tumors with low mutational load and weak TIL content (‘cold’ tumors), 

emphasis should be placed on proven and novel strategies to drive T-cells selectively and 

quantitatively into cold tumors, to activate them to proliferate inside a hostile tumor 

microenvironment, and to avoid exhaustion or activation induced cell death. Once T-cells 

can infiltrate, persist, proliferate and survive, the addition of ICI should vastly enhance their 

potential in any of these pediatric malignancies. However, there remain significant hurdles 

with regard to both acute and late toxicities. A concerted effort should be made not to run 

redundant studies, but to systematically confront these limitations for a more streamlined 

pediatric integration. Combination treatment should be the framework and no single 

approach, whether cell therapy or antibody will likely be curative.
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Highlights

1. Immune checkpoint inhibitors (ICI) have achieved a great success in adult 

cancers.

2. There is growing interest in ICI for pediatric malignancies.

3. There are significant barriers for successful pediatric integration of ICI.

4. Combination with other treatment modalities could be a promising option.
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Fig. 1. 
Resting T-cells rarely express CTLA-4, which is retained inside the secretory granules, but 

after TCR activation, CTLA-4 is up-regulated and emerges to the plasma membrane of T-

cells and binds to B7 ligands (CD80 and CD86) on antigen presenting cells (APCs) with 10–

100-fold higher avidity than CD28, resulting in reduced T-cell proliferation and lessened 

cytokine secretion [185,186]. CTLA-4 exerts TCR inhibitory signal through serine/threonine 

protein phosphatase 2 (PP2A) and Src-homology 2 domain-containing phosphatase 2 

(SHP2), and induces inhibition of serine/threonine kinase AKT on the downstream of 

phosphatidylinositol-3-kinase (PI3K), resulting altered T-cell metabolism and decreased T-

cell proliferation and activity [187,188]. Besides, CTLA-4 shortens the duration of immune 

synapses as a result of signal attenuation and integrin deactivation and increases the T-cell 

activation threshold by producing inhibitory signals in the early phase of tumorigenesis.
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Fig. 2. 
PD-1 is also expressed on T-cells following TCR engagement and activation. PD-1 and PD-

L1 ligation exerts inhibitory signals for lymphocyte activation. PD-1 modulates T-cell 

function through (a) direct antagonism of TCR signaling by recruiting Src-homology 2 

domain-containing phosphatase (SHP)-1 and SHP-2 to tyrosine-based inhibitory motifs 

(ITM; immunoreceptor tyrosine-based motifs) in the PD-1 tail, (b) inhibition of PI3K/AKT/

mechanistic target of rapamycin (mTOR) pathway, implicating the role of PD-1 in 

metabolism, nutrient sensing, survival, and cell growth to cell cycle, (c) modulation of Ras 

pathway, linking PD-1 to cell cycle and reducing T-cell proliferation, (d) increased 

expression of basic leucin zipper transcription factor, activating transcription factor (ATF)-

like transcription factor (BATF), which can repress expression of effector gene transcription 

[14,189,190]. Further, these signaling events impair T-cell motility and stability leading to 

unproductive immune synapses with APCs [170,191].
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Fig. 3. 
Mechanisms of tumor immune escape. ‘Hot’ tumors (A) may escape through up-regulation 

of immune checkpoint molecules and Tregs, secretion of immunosuppressive factors, 

indoleamine-2,3-dioxygenase (IDO), or T-cell anergy. (B) Tumor intrinsic mechanism of 

escape in “cold tumors” by downregulation of MHC molecules, attraction of M2 tumor-

associated macrophages (TAMs), alteration of the tumor microenvironment, discouraging T-

cell homing either by subduing inflammation, or suppressing release of T-cell chemokines, 

or releasing inhibitory cytokines to impair the recruitment of immune cells to the tumor 

microenvironment, or by dysregulating oncogene pathways including PI3 kinase/PTEN/

AKT, p53 and STAT3 signaling.
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