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It is increasingly recognized that microbiota affect host health and physi-

ology. However, it is unclear what factors shape microbiome community

assembly in nature, and how microbiome assembly can be manipulated to

improve host health. All plant leaves host foliar endophytic fungi, which

make up a diverse, environmentally acquired fungal microbiota. Here, we

experimentally manipulated assembly of the cacao tree (Theobroma cacao)

fungal microbiome in nature and tested the effect of assembly outcome on

host health. Using next-generation sequencing, as well as culture-based

methods coupled with Sanger sequencing, we found that manipulating

leaf litter exposure and location within the forest canopy significantly altered

microbiome composition in cacao. Exposing cacao seedlings to leaf litter

from healthy conspecific adults enriched the seedling microbiome with

Colletotrichum tropicale, a fungal endophyte known to enhance pathogen

resistance of cacao seedlings by upregulating host defensive pathways. As

a result, seedlings exposed to healthy conspecific litter experienced reduced

pathogen damage. Our results link processes that affect the assembly and com-

position of microbiome communities to their functional consequences for host

success, and have broad implications for understanding plant–microbe inter-

actions. Deliberate manipulation of the plant–fungal microbiome also has

potentially important applications for cacao production and other agricultural

systems in general.
1. Background
Exploring the incredible diversity and effects of host-associated microorganisms

is a cornerstone of modern biology. We now know that macroorganisms are

colonized by diverse microbial communities that play an integral role in their

host’s biology. These discoveries have been catalysed by recent advances in

sequencing technologies, which, coupled with traditional culture-based

approaches, are now allowing us to move beyond simple description of the

microbiome to understand its role in host health and physiology. Plant

leaves, for example, are colonized by a remarkably diverse fungal microbiome.

These cryptic symbionts, known as foliar endophytic fungi (FEF), share strong

similarities with other microbiota, such as bacteria, in their ecological organiz-

ation and functional importance [1]. FEF communities can exhibit complex

dynamics, including host specificity [2], priority effects [3], and temporal and

spatial variability [4], and component FEF species can fulfil various symbiotic

functions for their host, including increasing plant vigour [5], drought resist-

ance [6], and enemy defence [7–10]. A growing body of literature suggests

that many FEF are modifiers of host plant disease severity [11], and multiple

mechanisms of disease suppression by certain endophyte species have been

identified, including by secreting antimicrobial substances [12], out-competing
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pathogens [13], or increasing expression of host defences [14].

Although artificial inoculation studies have revealed the

functional roles of some component members of the micro-

biome, the connections between natural FEF community

assembly and their effects on host health have not been

investigated previously.

Like other diverse microbiota, FEF are primarily horizon-

tally transmitted by spores that land on compatible leaf

surfaces, germinate, and penetrate to form localized infec-

tions [1]. This transmission mode allows the fungal

microbiome to be easily manipulated. For instance, FEF-free

plants can be grown in growth chambers and greenhouses

[14] and inoculated with particular fungal species [7,15].

FEF-free seedlings can also be transplanted into the field to

examine how FEF communities form in nature. For instance,

a previous study placed FEF-free cacao tree (Theobroma cacao)

seedlings in a forest where the presence and abundance of

leaf litter within approximately 20 m of the seedlings had

been manipulated [16]. Exposure to leaf litter increased FEF

colonization of tree seedlings, suggesting that FEF recolonize

living tissues of the host or its neighbours from nearby

senesced leaves [16,17]. If local leaf litter is an important

source of FEF colonization, litter identity (i.e. the host species

and its associated microbiota) is also likely to affect FEF com-

munity structure. Moreover, while local leaf litter may be an

important source of FEF near the forest floor, vertical changes

in abiotic conditions potentially filter which microbes suc-

cessfully colonize host tissues at different microsites within

the canopy [17,18], as fungal spore densities are influenced

by abiotic conditions such as humidity, temperature, wind,

light, and canopy drip [19]. However, even if local environ-

mental factors alter FEF community composition, it is

unclear whether such changes affect host health or if differen-

tial outcomes of community assembly are functionally

redundant.

Here, we investigated whether variation in local leaf

litter and canopy microsite altered the outcome of micro-

biome assembly in cacao (T. cacao). Specifically, we used

endophyte-free T. cacao seedlings as sentinels for FEF coloni-

zation to assess differences in FEF community assembly. We

then tested whether changes in microbiome composition

affected host resistance to the pathogenic oomycete, Phy-
tophthora palmivora, which can infect all cacao tissues and

causes black pod, cacao’s most economically important and

widespread disease [20]. We found that manipulating leaf

litter exposure and location within the forest canopy signifi-

cantly altered microbiome composition in cacao, and that

seedlings exposed to the leaf litter of healthy adults exhibited

reduced pathogen damage. These results are similar to results

from other microbiome systems [21] and suggest that there are

opposing forces (e.g. pathogens and mutualists) acting syn-

chronously within the predictions of the Janzen–Connell

framework for distance-dependent seedling performance in

tropical forests [22].
2. Material and methods
(a) Generation of endophyte-free seedlings
Endophyte-free T. cacao seedlings were generated at the Smith-

sonian Tropical Research Institute in Gamboa, Panama, as

previously described [7,14]. Seeds were collected from T. cacao
trees accession UF12, which were grown in a plantation in
Charagre, Bocas del Toro province, Panama. Cacao seeds were

surface sterilized by submerging them in 0.5% sodium hypo-

chlorite for 3 min, rinsed with sterile water and then placed in

plastic trays of sterilized soil (2 : 1 mixture of clay-rich soil from

Barro Colorado Island, Panama, and rinsed river sand), and ger-

minated in growth chambers. After one month, seedlings were

transplanted into individual 600 ml pots containing the same

soil mixture and returned to growth chambers. Both seed germi-

nation and seedling growth took place in Percival growth

chambers (model I35LL, 115 volts, 1/4Hp, series: 8503122.16,

Percival Scientific, Inc., Perry, IA) with a 12 L : 12 D photoperiod

and temperatures of 308C and 268C, respectively. Germination

in growth chambers has been shown to prevent endophytic

colonization of plant tissue [14]. Prior to experimental manipu-

lation, leaves were tested for FEF colonization. Only 2% of the

4 mm2 leaf fragments tested positively for FEF colonization,

confirming that seedlings were essentially endophyte-free,

consistent with previous studies. Theobroma cacao hosts no

known seed-transmitted fungi.

(b) Experimental treatments and field placement
Potted seedlings were transported in sterile plastic containers to

Barro Colorado Island, Panama, for experimental manipulation.

Seedlings (n ¼ 54) received one of three litter treatments: mixed

species litter (n ¼ 18), T. cacao litter (n ¼ 18), or no litter as a con-

trol (n ¼ 18). Mixed litter was collected from a previously

established long-term ‘litter addition’ experiment on the nearby

peninsula of Gigante. These plots receive bulk compilations of

litter from other experimental plots on the peninsula, and are

relatively well mixed and contain no T. cacao plant material.

Theobroma cacao litter was collected from a healthy, disease-free,

isolated T. cacao tree in Gamboa, Panama. As a result of high neo-

tropical pathogen pressure, we only had access to one healthy

cacao tree growing in nature, as opposed to a highly managed

plantation. ‘No litter’ plants did not receive a litter treatment.

All pots were covered with clean plastic mesh screening at the

base of the plant stem in order to secure the litter treatment (if

present) and to exclude foreign litter and other debris from

the pot.

In May 2014, seedlings were placed in the secondary forest of

Barro Colorado Island, Panama, at three heights within the

canopy: 0 m (ground level), 2 m (low understorey), and 30 m

(upper canopy). Six plants from each litter treatment were

placed at each height, representing a full factorial experimental

design. Vertical stratification was achieved by securing pots to

Lutz Tower, a 48 m canopy tower that sits on a concrete base

within the forest. All litter and debris present at each of the

three heights was cleared away before seedling placement, and

cleared daily during the duration of the experiment. Plants

remained in the field for two weeks and were watered daily at

soil level to avoid artificially wetting the foliage. It did rain reg-

ularly over the course of the experiment, typical of lowland moist

tropical forests in the rainy season. After two weeks, seedlings

were collected and placed in a covered greenhouse for a

pathogen challenge experiment and endophyte community

analysis.

(c) Pathogen challenge
To test whether litter exposure and canopy microsite affected

host pathogen resistance, a subset of leaves from experimental

plants and FEF-free control plants (n ¼ 40 leaves distributed

across 30 seedlings, including nine FEF-free control leaves dis-

tributed across seven control seedlings) were inoculated with a

strain of P. palmivora previously isolated from symptomatic

T. cacao in Panama. To control for possible effects of leaf age

and development, we only experimentally infected leaves at cer-

tain stages (specifically stages B, C, or D [23]), which are
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intermediate stages of development, and have been shown to be

most receptive to experimental infection by P. palmivora [23]. To

infect leaves, agar plugs of P. palmivora with mycelia from the

margin of the culture were placed on leaves, which were pricked

with a sterile needle and received an application of 10 ml of sterile

water to facilitate infection. After inoculation, plants were

enclosed in a plastic chamber with wet paper towels to create a

humid environment promoting colonization. After 21 days,

pathogen damage was measured by photographing leaves (elec-

tronic supplementary material, figure S1) and then measuring

the damaged area using IMAGEJ.

(d) Endophyte isolation
To determine whether FEF community composition explained

differences in pathogen damage, one mature leaf per seedling

was harvested for microbiome characterization following the

two-week field exposure. A fully expanded leaf was removed

from each seedling, rinsed under tap water, and processed

within 12 h of collection. Thirty-two 4 mm2 tissue fragments

were obtained haphazardly from each leaf and surface sterilized

as follows: tissue fragments were submerged in 70% ethanol for

3 min, 0.525% sodium hypochlorite for 2 min, and then sterile

water for 1 min. Sixteen tissue fragments were stored at 2208C
until used for culture-independent analysis of fungal commu-

nities. The other 16 pieces of tissue were immediately placed in

a grid in 10 cm diameter Petri plates containing 2% malt extract

agar. Plates were sealed with Parafilm and incubated in a growth

chamber with 12 L : 12 D cycle at a constant temperature of 228C.

Plates were monitored daily for fungal growth. Emergent hyphae

were subcultured to new plates and allowed to grow until the

colony covered the agar plate. Vouchers of living mycelia were

suspended in sterile water and stored in the laboratory building

at Barro Colorado Island.

(e) Molecular identification: culture-independent
methods

Total genomic DNA was extracted directly from sterilized plant

tissue using a QIAGEN DNeasy Plant Mini Kit. Primers NSA3

and NLC2 were used to amplify an approximately 1 000 bp

region surrounding the entire internal transcribed spacer (ITS)

region of fungal DNA [24]. Each 25 ml PCR reaction included:

13.38 ml Milli-Q water, 5 ml 5X Green GoTaqw Reaction Buffer,

3 ml MgCl2 (25 mM), 0.5 ml dNTPs (0.2 mM each dNTP), 1 ml

each primer (5 mM), 0.125 ml GoTaqw DNA Polymerase, and

1 ml template. The amplification was run in an MJ Research

Tetrad PTC-225 Thermal Cycler (2.5 min at 958C, followed by

25 cycles (30 s at 958C, 30 s at 60.28C, 45 s at 728C), 5 min at

728C). PCR products were cleaned using an Omega Bio-Tek

MicroElutew Cycle-Pure Kit, and sent to the Biosciences Division

(BIO) Environmental Sample Preparation and Sequencing Facil-

ity (ESPSF) at Argonne National Laboratory for sequencing on

the Illumina MiSeq platform. At Argonne National Laboratory,

genomic DNA was amplified using modified versions of primers

ITS1F and ITS2 [25]. The reverse amplification primer also con-

tained a 12 base barcode sequence that supports pooling of up

to 2 167 different samples in each lane [26,27]. Each 25 ml PCR

reaction consisted of 9.5 ml of MO BIO PCR Water (Certified

DNA-Free), 12.5 ml of QuantaBio AccuStart II PCR ToughMix

(2� concentration, 1� final), 1 ml Golay barcode tagged Forward

Primer (5 mM concentration, 200 pM final), 1 ml Reverse Primer

(5 mM concentration, 200 pM final), and 1 ml of template DNA.

Amplification was performed as follows: 3 min at 948C, followed

by 35 cycles (45 s at 948C, 60 s at 508C, 90 s at 728C), 10 min at

728C. Amplicons were quantified using PicoGreen (Invitrogen)

and a plate reader. Once quantified, products were pooled into

a single tube at equal concentration. The pool was cleaned up
using AMPure XP Beads (Beckman Coulter), and then quantified

using a fluorometer (Qubit, Invitrogen). After quantification, the

molarity of the pool was determined and diluted to 2 nM,

denatured, and then diluted to a final concentration of 6.75 pM

with a 10% PhiX spike for paired 251-nucleotide read sequencing

on the Illumina MiSeq platform. Reads were demultiplexed, chi-

maeras were removed, and reads were clustered at 97% sequence

identity. Three samples had a very low number of reads and

were removed prior to clustering. Identification of consensus

sequences was performed using the Ribosomal Database Project

(RDP) Bayesian Classifier with the Warcup ITS training set [28],

and archived at GenBank under accession numbers MF148556–

MF148849.

( f ) Molecular identification: culture-dependent
methods

Total genomic DNA was extracted directly from fungal mycelia

of each fungal isolate using a QIAGEN DNeasy Plant Mini Kit.

Primers ITS5 and ITS4 were used to amplify the ITS region of

fungal DNA. PCR amplifications were achieved using a

Thermo Scientific Phire Plant Direct PCR Kit. Each 20 ml PCR

reaction included: 7.1 ml Milli-Q water, 10 ml 2� Phire Plant

PCR Buffer (which included dNTPs and MgCl2), 1 ml each

primer (5 mM), 0.4 ml Phire Hot Start II DNA Polymerase, and

0.5 ml template DNA. The amplification was run in an MJ

Research Tetrad PTC-225 Thermal Cycler (30 s at 988C, followed

by 30 cycles (5 s at 988C, 5 s at 628C, 20 s at 728C), 1 min at 728C).

Gel electrophoresis using SYBR Safe produced single bands for

all products, and no bands in negative controls. PCR products

were cleaned using an Omega Bio-Tek MicroElutew Cycle-Pure

Kit and Sanger sequenced for both forward and reverse reads

(primers ITS5 and ITS4, respectively) on an ABI3730 at the

Indiana Molecular Biology Institute.

Of the 335 isolates, 313 high-quality ITS sequences were

obtained. CodonCode Aligner v. 5.0.1 (CodonCode Aligner

Company) was used to make base calls, perform quality assess-

ments, and assemble consensus sequences according to 97% ITS

sequence similarity, with a minimum of 40% overlap [2]. Identi-

fication of consensus sequences was performed using the RDP

Bayesian Classifier with the Warcup ITS training set [28], and

archived at GenBank under accession numbers MF148497–

MF148555.

(g) Statistical analyses
The area of pathogen damage (cm2) experienced by each treat-

ment group was compared with baseline pathogen damage in

endophyte-free plants using ANOVA, with litter treatment,

height treatment, and leaf stage as fixed effects. Height was not

significant, nor was there a significant litter � height interaction,

so height was removed from the model. Analysis of pathogen

damage was performed using R v. 3.1.2 [29].

For both the culture-independent and culture-dependent

datasets, operational taxonomic units (OTUs), designated by

the ITS region, were used for ecological analyses. Species

accumulation curves and estimates of total richness were inferred

using EstimateS 9.0.1 [30]. Rarefaction curves were scaled by the

number of accumulated samples (i.e. number of host plants

sampled) to depict species density for culture-independent

(electronic supplementary material, figure S2a) and culture-

dependent (electronic supplementary material, figure S2b)

methods [31].

All other community analyses were performed using R

v. 3.1.2 [29]. ANOVA was used to compare culture-based

isolation frequency across height and litter treatments. Assump-

tions of normality and homogeneity of variance were tested and

met. To examine the effects of experimental treatments on FEF
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community composition, permutational multivariate analysis

of variance (PERMANOVA), using distance matrices was

used with the Bray–Curtis dissimilarity index (VEGAN

Package, function adonis). For the culture-dependent dataset,

PERMANOVA was performed on all non-singleton OTUs, and

for the culture-independent dataset, data were Hellinger-

transformed prior to ordination and diversity analyses. The

ordination goodness-of-fit was measured by the stress value

[32]. Non-metric multidimensional scaling (NMDS) ordinations

were created in VEGAN to visualize community similarities

across height and litter treatments [33]. The Shannon diversity

index was calculated for both the culture-dependent and cul-

ture-independent datasets using the VEGAN Package. Patterns

of co-occurrence of endophytes were analysed within individual

plants in both datasets using C-score analysis, which indicates if

species co-occur more or less often than predicted by a null

model (VEGAN Package, function oecosimu). A structured

community (i.e. significant C-score statistic) implies ecological

mechanisms of community assembly as opposed to purely

random processes. Indicator species analysis was performed on

the culture-independent dataset (INDICSPECIES Package, func-

tion multipatt). For the culture-independent dataset, the number

of reads of the dominant OTU (best hit: Colletotrichum tropicale)

was compared across litter treatments using ANOVA. Height

and total number of reads were included as fixed effects. The

model was also run combining read counts for all OTUs that

had a best match of C. tropicale, but this did not affect the signifi-

cance of the model. Thus, we report results from the model that

included read counts for only the dominant OTU as the response

variable, in order to maintain a conservative estimate of how this

one OTU affected disease outcomes. For the culture-dependent

dataset, the percentage of isolates of the dominant OTU (best

hit: C. tropicale) was compared across litter treatments using

ANOVA. Height treatment was included as a fixed effect.

Additionally, for the culture-independent dataset, a regression

analysis was performed on log-transformed data to test if the

number of reads of the dominant OTU correlated with pathogen

damage across treatments with plant individual as a random

effect. The R2 value for the mixed effects model was calculated

using the MuMIn Package (function r.squaredGLMM).
3. Results and discussion
Three weeks after infection by P. palmivora, we measured leaf

necrosis (electronic supplementary material, figure S1), which

differed significantly among litter treatments (d.f. ¼ 3, F ¼
3.133, p ¼ 0.038; figure 1). Plants exposed to cacao litter

experienced significantly less pathogen damage than

FEF-free controls ( p ¼ 0.027). By contrast, damage was not

significantly reduced in the no litter, ( p ¼ 0.947) and mixed

litter ( p ¼ 0.071) treatments. Further, exposure to conspecific

litter reduced pathogen damage to approximately 50% of the

damage on seedlings exposed to mixed litter (figure 1). The

ANOVA included leaf development stage as a fixed effect

(see Material and methods), which was significant (d.f. ¼ 2,

F ¼ 6.720, p ¼ 0.003). Phytophthora palmivora has a wide

range of dispersal mechanisms, and can be transmitted

through rain, soil, or insects to infect pod, leaf, or seedling

tissues [20]. While it is feasible that pathogen pressure from

P. palmivora may vary throughout the canopy, canopy micro-

site did not significantly affect plant response to pathogen

damage (d.f. ¼ 2, F ¼ 2.101, p ¼ 0.139) and was removed

from the full model.

To determine whether FEF community composition

explained differences in pathogen damage, we used next-
generation sequencing (NGS) on the Illumina platform, as

well as a culture-based approach coupled with Sanger

sequencing. FEF provide an excellent opportunity to compare

culture-independent and culture-dependent methods, allow-

ing for a more detailed perspective of the plant microbiome.

Most FEF are culturable, so culture-based approaches can

inform abundance and proportion of different FEF species in

tissue, while culture-independent approaches also improve

sequencing depth [1]. Both of these methods are subject to

inherent biases: in culture based-approaches, stronger compe-

titors may emerge from tissue first, to the exclusion of weaker

competitors. In culture-independent approaches, PCR bias

may skew the representation of certain OTUs in the species

pool. Given that we used nested PCR, the high number of

amplification rounds is a potential source of bias. Using

both culture-based and culture-independent methods helps

counterbalance biases inherent to each individual method.

Following culturing, we obtained 335 isolates represent-

ing 59 OTUs (based on Sanger sequencing) from 864 tissue

fragments, with at least one isolate recovered from 51 of 54

leaves (electronic supplementary material, table S1). Iso-

lation frequency differed significantly among litter

treatments (d.f. ¼ 2, F ¼ 3.841, p ¼ 0.028), with more isolates

obtained from no litter plants compared with plants

exposed to cacao litter ( p ¼ 0.025) (figure 2a). Isolation fre-

quency also varied among microsites (d.f. ¼ 2, F ¼ 6.164,

p ¼ 0.004), with fewer total isolates obtained from seed-

lings placed high in the canopy compared with low in

the canopy ( p ¼ 0.036) or at ground level ( p ¼ 0.004;

figure 2b). The most abundant OTU in the culture-based

dataset comprised 35% of isolates (116/335), and its best

taxonomic match was C. tropicale. Colletotrichum tropicale is

the dominant species of FEF found in healthy T. cacao
leaves in Panama, and has been previously reported to

enhance pathogen resistance when inoculated as a pure

culture into cacao hosts [15,23].

Independently, using NGS, we obtained 2 127 572 reads

from the other 864 tissue fragments. This method identified

five times more OTUs (294) than the culture-based method

using the same amount of leaf tissue (electronic supplemen-

tary material, table S2). NGS was particularly useful for

identifying rare members of the microbiome, and revealed a

greater total number of OTUs. There was substantial
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taxonomic overlap between the datasets, with only 5% of iso-

lates identified by Sanger sequencing unrepresented at the

genus level in the NGS approach. Consistent with culture-

based identification, the most abundant OTU produced by

NGS again corresponded to C. tropicale (22% of reads).

Statistical analyses of FEF communities from both the

NGS and culture-based approaches were qualitatively

similar. Litter treatment, microsite, and their interaction sig-

nificantly predicted FEF community composition in the

NGS dataset (PERMANOVA; Litter: F2,50 ¼ 1.888, R2 ¼

0.063, p ¼ 0.003; Height: F2,50 ¼ 4.359, R2 ¼ 0.146, p ¼ 0.001;

Interaction: F4,50 ¼ 1.313, R2 ¼ 0.088, p ¼ 0.033; figure 3a–c).

Differences among microsites were qualitatively similar for

the culture-based dataset for non-singleton OTUs (PERMA-

NOVA; Height: F2,48 ¼ 2.715, R2 ¼ 0.106, p ¼ 0.003),

although the litter treatment (F2,48 ¼ 0.982, R2 ¼ 0.038, p ¼
0.447) and the height � litter interaction (F2,48 ¼ 1.007, R2 ¼

0.078, p ¼ 0.457) were not significant in the culture-based

dataset. FEF co-occurred non-randomly compared with a

null model (NGS: C-score ¼ 17.67, z ¼ 2161.87, p , 0.001;

Culture-based: C-score ¼ 5.71, z ¼ 234.06, p , 0.001),

suggesting that treatments affected FEF community assem-

bly. Shannon diversity also differed significantly among

litter treatments (NGS: d.f. ¼ 2, F ¼ 6.668, p ¼ 0.003; cul-

ture-based: d.f. ¼ 2, F ¼ 6.231, p ¼ 0.004; figure 2c) and

microsites (NGS: d.f. ¼ 2, F ¼ 21.342, p , 0.001); not signifi-

cant for the culture-based dataset (d.f. ¼ 2, F ¼ 1.704, p ¼
0.192; figure 2d ). Specifically, in the NGS dataset, plants in

the no litter treatment harboured more diverse FEF
communities than mixed ( p ¼ 0.019) and cacao ( p ¼ 0.007)

litter treatments, and plants in the canopy had less diverse

FEF communities than those in the understorey ( p ¼ 0.002)

or at ground level ( p , 0.001). There was a significant inter-

action between litter and microsite that affected FEF

diversity in the culture-independent dataset (d.f. ¼ 4, F ¼
5.013, p ¼ 0.002). Specifically, FEF communities of no litter

plants maintained high levels of diversity at 30 m, whereas

plants exposed to cacao or mixed litter experienced a signifi-

cant drop in FEF diversity at this height (electronic

supplementary material, figure S3). This interaction was
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Figure 4. The abundance of C. tropicale correlates with both litter treatment
and pathogen damage. (a) Seedlings exposed to cacao litter were more
strongly dominated by C. tropicale. There were significant differences in
the number of reads of OTU1 (best match C. tropicale) across litter treatments
( plotted in black: number of reads in the NGS dataset). For the culture-based
dataset, this trend was qualitatively the same ( plotted in grey: percentage of
isolates identified as OTU1, for leaves with more than one isolate). Error bars
represent standard error of the mean. (b) Across all treatments in the NGS
dataset, the number of reads of OTU1 (best match C. tropicale) negatively
correlated with pathogen damage.
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not significant for the culture-dependent dataset (d.f. ¼ 4,

F ¼ 0.394, p ¼ 0.812).

Few studies have analysed vertical distribution of FEF in

forests [34], but our results are consistent with a recent study

reporting lower FEF abundance and richness in the canopy of

European Ash [17]. The negative relationship between height

and FEF density and diversity observed here is likely caused

by hotter, drier, and brighter canopy conditions that con-

strain which FEF colonize and grow, despite the presence

of litter in some treatments [19]. While previous work inves-

tigating vertical stratification of FEF communities has focused

on surveying established FEF communities in adult canopy

trees [35], it is not feasible to experimentally manipulate the

endophyte status of individual leaves on adult trees. Instead,

we placed FEF-free seedlings at varying heights in the canopy

as sentinels for FEF colonization. This approach allowed us to

standardize leaf material and control for potential physiologi-

cal differences that could influence de novo endophyte

colonization and pathogen resistance, while also testing the

effect of abiotic conditions on the assembly of FEF commu-

nities. Moreover, P. palmivora infects cacao pods and leaves

throughout a tree [36], so controlling for leaf age and develop-

ment allowed us to test the hypothesis that microbiomes that

assemble at different heights may be more or less effective at

defending plants from pathogens. Our results suggest that

position within the canopy had no effect on seedling pathogen

damage, despite large changes in microbiome composition.

However, the effect of height may have been obscured in

litter-treated plants given that litter was added to pots.

It was unexpected that plants not exposed to litter were

colonized by more abundant and diverse FEF than litter-

treated seedlings, as this contrasts with previous studies

[16], but may reflect differences in the spatial scale of litter

manipulation. While previous work compared FEF coloniza-

tion rates following litter manipulation across large forest

plots, we manipulated litter at the extremely local scale of a

single pot. Our results suggest that when local leaf litter is

present, FEF from the litter quickly colonize nearby host

plants and exert an inhibitory priority effect on later coloni-

zers. Conversely, without local litter inocula as a source of

FEF common to healthy adults, seedlings were colonized

by a greater density and diversity of weedy, highly dispersi-

ble species. This was supported by indicator species analysis,

which revealed more unique taxa associated with no litter

seedlings and seedlings at 30 m (electronic supplementary

material, table S3). Despite strong effects of vertical stratifica-

tion on FEF, differences in pathogen damage were only

attributable to litter treatment. Exposure to litter could have

affected host pathogen response in several ways, including

changing soil nutrient content or leaf chemistry. However,

we found that exposure to conspecific litter significantly

changed the relative abundance of component FEF species,

which significantly correlated with host pathogen resistance.

Colletotrichum tropicale was the most common OTU in

both of our datasets, and has previously been identified as

the most common fungal component of the healthy T. cacao
microbiome in Panama [37]. FEF communities in seedlings

exposed to cacao litter were characterized by increased dom-

inance of C. tropicale (measured in the NGS dataset by the

number of reads of OTU1; d.f. ¼ 2, F ¼ 3.674, p ¼ 0.034;

figure 4a), despite lower overall FEF density and diversity

(figure 2a,c). Microsite and total number of reads were

included in the ANOVA as fixed effects, and were both
significant (Height: d.f. ¼ 2, F ¼ 11.405, p , 0.001; Total

Number of Reads: d.f. ¼ 1, F ¼ 4.235, p ¼ 0.046). For the

culture-based dataset, this trend was qualitatively the same.

Moreover, the number of reads of C. tropicale was negatively

correlated with pathogen damage across all treatments (d.f.¼ 1,

x2 ¼ 3.740, R2 ¼ 0.11, p ¼ 0.053; figure 4b). Taken together,

these results suggest that C. tropicale was acting as a pathogen

inhibitor, and that this effect was the largest in seedlings

exposed to cacao litter, where C. tropicale abundance was

the highest.

We did not experimentally test the specific role of C. tropicale
or other taxa as part of these experiments. However, previous

work has repeatedly shown that artificial inoculations of

C. tropicale reduced severity of P. palmivora damage in leaf

[7] and fruit [15] tissues in cacao, due to upregulation of defen-

sive pathways in cacao [14]. While infection by P. palmivora
triggers an innate plant immune response by upregulating

pathogenesis-related proteins [38], inoculation by C. tropicale
enhances that immune response by inducing the upregulation
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of hundreds of cacao genes, including those related to defence

[14]. Ultimately, this FEF-induced genetic response results in

less severe Phytophthora damage than that of FEF-free plants

[14]. Our results build upon the extensive previous research

on the genetic pathways of T. cacao, and how they are affected

by C. tropicale and P. palmivora, to link multiple levels of bio-

logical organization. Specifically, by identifying how the

component members of the microbiome differentially affect

host gene expression, we may be able to predict the functional

outcomes of microbial community assembly in nature.

While there are other important members of the foliar

microbiome besides fungi, the existing literature has not yet

pointed to a comparable role of these microorganisms in

plant leaves relative to the many well-documented studies

of FEF that demonstrate their important functional roles for

hosts [1]. Based on the results presented here, we suggest

that future studies conduct similar experiments in other

plant systems and with other phyllosphere components,

such as bacteria, viruses, and microbiota with an epiphytic

habit. Additionally, the ecological patterns found in this

study are consistent with other more disparate systems. For

example, our results suggest that litter from healthy con-

specifics triggers priority effects during FEF community

assembly, promoting colonization by species such as

C. tropicale that are effective at inhibiting further microbial

colonization, including infection by pathogens. Priority

effects have been documented for seed-infecting fungal endo-

phytes in some plant species (though not in T. cacao), which

may host one endophyte per seed as a result of strong exclu-

sionary interactions among endophytes [39]. Our results also

directly parallel human microbiome research, which has

demonstrated that vaginally delivered infants are colonized

by a maternal, Lactobacillus-dominated microbiome, while

infants delivered via C-section are more broadly colonized

by the surrounding environment. These differences in coloni-

zation result in greater susceptibility to methicillin-resistant

Staphylococcus aureus infections in C-section newborns [21].

Our results demonstrating increased pathogen resistance in

seedlings following exposure to healthy conspecific litter

appear to run counter to the predictions of the Janzen–Connell

hypothesis. The Janzen–Connell hypothesis proposes that a

tree’s offspring have higher fitness when they are dispersed

farther from the parent, due to localized accumulation of

host-specific enemies [22,40]. Although cacao seedlings near

conspecific adults may experience greater enemy pressure

[41], we found that local FEF communities derived from

healthy conspecific adults can also promote pathogen resist-

ance in conspecific seedlings, potentially by mobilizing plant

defences [14]. Similar patterns are also emerging in below-

ground studies of other plant systems. For instance, the
rhizosphere microbiome can suppress soil-borne pathogens

[42], and recent work showed that arbuscular mycorrhizal

fungi (AMF) can neutralize the Janzen–Connell effect by med-

iating pathogen damage on seedlings [43]. Conversely, another

recent study demonstrated that tree species associated with

AMF have reduced conspecific seedling establishment because

AMF associated with conspecific adults are not as effective at

preventing pathogens compared with ectomycorrhizal hosts

that inhibit pathogen damage to seedlings [44]. Thus, it is

becoming increasingly clear that there are opposing forces

(e.g. pathogens and mutualists) acting synchronously within

the general Janzen–Connell framework. Moreover, while co-

infections by mutualists and pathogens may occur commonly

in nature, such interactions are an underappreciated nuance

of the existing theoretical framework. These considerations

may help to explain why the strength of Janzen–Connell effects

varies across host species or geographical regions [22,41]. Our

results demonstrate that the aboveground plant microbiome

must also be considered when predicting how plant–microbe

interactions affect host health and community interactions

[7,14,16]. Thus, our results have far-reaching implications for

host–microbe interactions, and provide strong impetus for

future ecological research. Our results also suggest that the

application of litter from healthy hosts could be an effective

agricultural strategy to reduce crop losses with smaller

economic and environmental costs than current practices [45].
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