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Abstract

Gastric cancer is a leading cause of cancer-related deaths worldwide. The Tff1 knockout (KO) 

mouse model develops gastric lesions that include low-grade dysplasia (LGD), high-grade 

dysplasia (HGD), and adenocarcinomas. In this study, we used Affymetrix microarrays gene 

expression platforms for analysis of molecular signatures in the mouse stomach (Tff1-KO (LGD) 

and Tff1 wild-type (normal)) and human gastric cancer tissues and their adjacent normal tissue 

samples. Combined integrated bioinformatics analysis of mouse and human datasets indicated that 

172 genes were consistently deregulated in both human gastric cancer samples and Tff1-KO LGD 

lesions (P<0.05). Using Ingenuity pathway analysis, these genes mapped to important 

transcription networks that include MYC, STAT3, β-catenin, RELA, NFATC2, HIF1A, and ETS1 

in both human and mouse. Further analysis demonstrated activation of FOXM1 and inhibition of 
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TP53 transcription networks in human gastric cancers but not in Tff1-KO LGD lesions. Using 

real-time RT-PCR, we validated the deregulated expression of several genes (VCAM1, BGN, 
CLDN2, COL1A1, COL1A2, COL3A1, EpCAM, IFITM1, MMP9, MMP12, MMP14, PDGFRB, 
PLAU, and TIMP1) that map to altered transcription networks in both mouse and human gastric 

neoplasia. Our study demonstrates significant similarities in deregulated transcription networks in 

human gastric cancer and gastric tumorigenesis in the Tff1-KO mouse model. The data also 

suggest that activation of MYC, STAT3, RELA, and β-catenin transcription networks could be an 

early molecular step in gastric carcinogenesis.
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Introduction

Gastric cancer is the third leading cause of cancer mortality globally, responsible for 

723,000 deaths, 8.8% of the total cancer-related deaths worldwide 1. Diagnosis of gastric 

cancer is usually made at advanced stages of the disease due to lack of symptoms in early 

stages of gastric tumorigenesis. Therefore, most gastric cancer patients have poor 

prognosis 2. Comprehensive understanding of molecular alterations in gastric cancer is 

necessary for early detection, treatment, and prevention. Trefoil factor 1 (TFF1) is a small-

secreted peptide that is predominantly expressed in human normal gastric mucosa and its 

silencing and reduced expression level are observed in a majority of human gastric 

cancers 3–6. Of note, our previous studies demonstrated that knockout of trefoil factor 1 

(Tff1) gene expression in mouse successfully induced a cascade of gastric lesions that 

include low-grade dysplasia (LGD), high-grade dysplasia (HGD), and gastric 

adenocarcinoma 7. Genetically engineered mouse models provide an excellent platform to 

study human diseases including cancer 8. Although several molecular studies of gastric 

cancer have been reported 9, there is a crucial need for molecular characterization of mouse 

models of this disease to assess their similarity to human gastric cancer and suitability for in 
vivo studies. Studies of animal models can provide a better understanding of early changes 

in gastric tumorigenesis that can possibly improve our current diagnostic, prognostic, and 

possibly therapeutic approaches in gastric cancer.

Activation of WNT/β-catenin, MYC, and STAT transcription factors plays an important role 

in initiation and progression of several cancers 10–13. The role of β-catenin activation and 

cancer is best exemplified in the cascade of colon carcinogenesis 14,15. The aberrant 

activation of the Wnt/β-catenin signaling pathway has been described in 30% to 60% of 

gastric cancer tissues and in gastric cancer cell lines 1611,17–19. The conserved Wnt/β-

Catenin pathway regulates stem cell pluripotency and cell fate decisions during 

development 11. A recent study has suggested that Wnt/β-catenin signaling may be involved 

in the self-renewal of gastric cancer stem cells (GCSC) 12. The oncogenic MYC family 

encodes N-myc, c-myc, and L-myc transcription factors’ proteins 20. MYC plays a 

fundamental role in several cellular functions, including regulation of cell growth, 

proliferation, metabolism, differentiation, apoptosis, and angiogenesis 21,22. MYC activation 
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has been reported in different types of cancers that include gastric cancer 10,23,24. Similar to 

MYC, the signal transducer and activator of transcription protein 3 (STAT3) participates in a 

series of tumorigenic processes including cell proliferation, cell survival, anti-apoptosis, 

angiogenesis, drug resistance, immune evasion, and inflammation 25,26. STAT3 is 

constitutively activated in several human cancers including thyroid, lung, ovarian, breast, 

colon, and gastric cancer 27,28. Inhibition of STAT3 has anti-tumor effects in several human 

cancer models 26,29,30.

In this study, we investigated the aberrant gene expression signature and transcription 

networks in early dysplastic gastric lesions from mouse and human gastric cancer tissue 

samples. Using integrated bioinformatics analysis approaches, we identified similar 

molecular signatures and transcription networks in mouse and human neoplastic lesions. The 

observed similarities suggest that activation of these pathways could be an early step in 

initiation of gastric tumorigenesis. The results also denote that the Tff1 KO mouse is an 

excellent model for in vivo studies of molecular mechanisms in gastric tumorigenesis.

Materials and Methods

Mouse and human gastric tissue samples

In this study, we used gastric tissue samples from Tff1 knockout (KO) and wild-type (WT) 

C57BL/6J/129/Svj mice. Tissue samples from the glandular antrum region of the stomach 

were collected from 4 Tff1 KO and 6 Tff1 WT mice of similar background and matching 

ages (Supplementary Table S1). All vertebrate animal studies were approved by the 

Institutional Animal Care and Use Committee at Vanderbilt University. Following 

euthanasia, animals were dissected through midline incision of the abdomen. Stomachs were 

removed, cut along the greater curvature, washed with ice cold PBS, and opened to lie flat. 

The stomachs were examined visually for abnormalities and for number and size of 

individual gastric tumors and photographed. The stomach was cut into symmetrical halves. 

One half was submerged in 10% buffered formalin solution, embedded in paraffin, and 

processed for standard H&E staining for histopathology evaluation. The remaining half of 

the stomach was snap-frozen and stored at −80°C for further use. Based on histological 

evaluation, we selected tissue samples that showed low-grade dysplasia (LGD) from the Tff1 

KO mice. Tissue samples from the Tff1 WT mice showed normal gastric mucosa histology. 

The histology and age are included in Supplementary Table S1. Eighteen de-identified 

human tissue samples from gastric cancers and their matching histologically normal non-

tumor tissue samples were collected from the National Cancer Institute Cooperative Human 

Tissue Network (CHTN) and the pathology archives at Vanderbilt University Medical Center 

(Nashville, TN). All tissue samples were obtained coded and de-identified in accordance 

with the Vanderbilt University Institutional Review Board-approved protocols.

Gene expression microarray analysis

RNeasy mini kit (Qiagen, Germantown, MD) was used to isolate total RNAs from antrum 

region of gastric mucosa of 10 Tff1 KO (LGD) and Tff1 WT (normal) mice and 9 human 

gastric cancer and 9 adjacent histologically normal tissues (Table 1). RNA quality was 

evaluated by a 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). RNA samples 
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with an RNA integrity number greater than 7 were reverse transcribed and amplified using a 

WT-Ovation Pico RNA amplification kit and labeled with FL-Ovation cDNA Biotin module 

v2 (NuGen, San Carlos, CA). Amplified products from mice were hybridized to Affymetrix 

Mouse 430 2.0 microarrays (Affymetrix, Santa Clara, CA). RNAs from 18 human gastric 

tissues (Table 1) were analyzed using Affymetrix GeneTitan WT Human Gene 1.0 ST 

arrays, following the manufactures’ recommendations, by the Vanderbilt Functional 

Genomics Shared Resource. Gene expression was compared between Tff1 KO mice (n=4) 

and Tff1 WT mice (n=6) or between human gastric cancer samples (n=9) and human normal 

gastric tissues (n=9). The raw gene expression data (.cel files) were preprocessed and 

normalized by using the robust multiarray average (RMA) expression measure, with RMA 

function in Bioconductor affy package (http://www.bioconductor.org/packages/release/bioc/

html/affy.html) 31. The expression values were in log2 format after RMA 31. Bioconductor 

limma package was used for array data analysis (http://www.bioconductor.org/packages/

release/bioc/html/limma.html) 32. A linear model was fitted to the expression data for each 

probe. Moderated t statistics were computed by empirical Bayes shrinkage of the standard 

errors toward a common value. The P values corresponded to the moderated t statistics. We 

used both P values as well as fold change to determine candidate probe list by requiring at 

least 1.5-fold change and P≤0.05, using R software version 2.10.0 (https://cran.r-

roject.org/bin/windows/base/old/2.10.0/). Last, the data sets of normalized expression values 

plus their associated gene identifiers were uploaded into IPA software (Ingenuity Systems) 

to generate biological networks. Gene expression data were analysed using Ingenuity® 

Pathway Analysis (IPA®, QIAGEN, Redwood City, CA www.qiagen.com/ingenuity) tools 

to predict signaling pathways and upstream transcription networks that explain the observed 

gene expression changes in our dataset.

Quantitative Real-time RT-PCR validation of downstream target genes in mice and human 
gastric tissues

This analysis was performed using independent tissue samples from mice and human. 

Mouse glandular stomach tissue samples included 10 Tff1 WT, 10 Tff1 KO with LGD, and 

9 Tff1 KO with high-grade dysplasia. The histology and age information are provided in 

Supplementary Table S1. De-identified human stomach tissue samples included 19 with 

normal histology and 22 showing gastric cancer (Supplementary Table S2). Total RNA was 

purified using the RNeasy mini kit (Qiagen). Total RNA (1 μg) was reverse transcribed by an 

iScript cDNA synthesis kit (Bio-Rad, Hercules, CA). The quantitative real-time PCR (qRT-

PCR) was performed using a Bio-Rad CFX Connect Real-time System with the threshold 

cycle number determined by Bio-Rad CFX manager software version 3.0. Primers that 

detect mouse and human genes were ordered from Integrated DNA Technologies (IDT, 

Coralville, IA). The genes and sequences of qRT-PCR primers are given in Supplementary 

Table S3. Results of target genes were normalized to mouse Hprt1 or human HPRT1. 

Expression fold changes were calculated by using the formula; 2 (Rt–Et)/2 (Rn–En), as 

previously described 33,34.

Statistical analyses

Data were demonstrated as mean ± standard deviation of 3 independent experiments. 

Statistical significance of the studies was analyzed by a Student’s t test, One way ANOVA, 
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analysis of variance, and Mann-Whitney U test. Differences with P values ≤0.05 were 

considered significant.

Results

Significant alterations in gene expression are detectable in low-grade dysplasia

Analysis of gene expression data from mouse gastric LGD lesions, as compared to normal 

tissues, demonstrated significant deregulation of 395 genes, using cutoffs of ratio change 

≥1.5 or ≤0.75 and P≤.01 (Supplementary Table S4). Among 328 genes that were 

overexpressed, 13 genes exhibited a fold change greater than 10 in LGD lesions. These 

genes included matrix metallopeptidase 10 (Mmp10), Mmp13, Mmp3, chemokine (C-X-C 

motif) ligand 1 (Cxcl1), Cxcl2 inhibin beta-A (Inhba), and prostaglandin-endoperoxide 

synthase 2 (Ptgs2, also known as Cox2) (Table 2). On the other hand, 67 genes were down-

regulated in gastric LGD tissues. Notably, gastrin (Gast) and solute carrier family 5 (Slc5a5) 

were among the top down-regulated genes in LGD tissues. Of note, Tff1 expression was 

almost undetectable, as expected, in the Tff1 KO LGD lesions (Table 2). Supplementary 

Table S4 lists all deregulated genes in gastric LGD lesions, as compared to normal gastric 

mucosa.

Human gastric cancers demonstrate recurrent significant changes in gene expression

Analysis of human gastric cancer gene expression data demonstrated deregulation of 783 

genes; 469 genes were overexpressed while 314 genes were down-regulated, using cutoffs of 

ratio change ≥1.5 or ≤0.75 and P≤.01, (Supplementary Table S5). The top up-regulated 

genes included matrix metallopeptidase 7 (MMP7), MMP12, MMP9, and chemokine (C-X-

C motif) ligand 9 (CXCL9). The down-regulated genes included ATPase, H+/K+ 

exchanging, beta polypeptide (ATP4B), ATPase, H+/K+ exchanging, alpha polypeptide 

(ATP4A), chitinase acidic (CHIA), and carboxypeptidase A2 (CPA2). The top 30 

deregulated genes are listed in Table 3. Supplementary Table S5 lists significantly 

deregulated genes in human gastric cancer tissue samples.

Integrated analysis of mouse gastric LGD and human gastric cancer datasets identifies 
activation of common transcription networks

Our integrated bioinformatics analysis indicated that 172 genes were consistently and 

significantly deregulated in the same direction in both datasets (P≤0.05, FC ±1.5). Among 

the 172 differentially expressed genes, 122 genes were overexpressed, whereas 50 genes 

were down-regulated (Supplementary Table S6). The commonly deregulated genes included 

overexpression of phospholipase A2, group VII (PLA2G7), complement component 4 

binding protein, alpha (C4BPA), matrix metallopeptidase 12 (MMP12) and down-regulation 

of aquaporin 4 (AQP4), prostate stem cell antigen (PSCA), alcohol dehydrogenase 7 (class 

IV), mu or sigma polypeptide (ADH7).

We also determined signaling pathways that are likely to be early drivers of gastric 

carcinogenesis by performing network analysis of mouse LGD and human gastric cancer 

data sets using QIAGEN’s Ingenuity® Pathway Analysis (IPA®, QIAGEN, 

www.qiagen.com/ingenuity). Pathway Analysis of downstream targets demonstrated 
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activation of STAT3, RELA, CTNNB1, HIF1A, ETS1, and NFATC2 transcription networks 

in mouse LGD lesions (Table 4). Of note, analysis of human gastric cancer samples data 

predicated activation of the same pathways, suggesting that they are required for initiation 

and early steps of gastric tumorigenesis. In addition, human gastric cancers also 

demonstrated activation of FOXM1 and inhibition of TP53 transcription networks (Table 5 

and Supplementary Figure S1). A representative diagram showing co-activated networks that 

include MYC, STAT3 and β-catenin signaling pathways in mouse LGD and human gastric 

cancer is shown in Figure 1.

qPCR validation of representative transcription network target genes

To confirm the observed consistent changes in gene expression in mouse and human, we 

selected 14 differentially expressed genes based on their known functions in gastric 

tumorigenesis (Table 6). Using qRT-PCR, we validated several MYC, STAT3 and β-catenin 

downstream target genes in both mouse and human gastric tissue samples. Our results 

indicated that Timp1, Epcam, Cldn2, Vcam1, Mmp9, Mmp12, Pdgfrb, Bgn, and Plau were 

significantly overexpressed in both mouse LGD and HGD gastric tissue samples, as 

compared to normal gastric tissue samples (P<0.05, Figure 2). Notably, Mmp14 was 

significantly overexpressed only in mouse HGD tissues (P<0.01), while Iftm1 was up-

regulated exclusively in mouse LGD tissues (P<0.01). In addition, our data showed a non-

significant trend of overexpression of Col1a1, Col1a2 and Col3a1 in LGD or HGD gastric 

tissue samples, as compared to normal gastric tissue samples (Figure 2). On the other hand, 

our data indicated that all 14 genes that we tested were significantly overexpressed in human 

gastric cancer tissues, as compared to normal gastric samples (P<0.05, Figure 3). Of note, 

TFF1 mRNA expression level was significantly down-regulated in human gastric cancer 

tissue samples (Supplementary Figure S2). Collectively, our results validate the microarray 

data and suggest that these validated genes are possibly involved in early stages of gastric 

tumorigenesis and their deregulated expression persists in advanced stages of gastric cancer.

Discussion

Gastric cancer remains the third leading cause of cancer-associated death world-wide 35. 

Although the incidence of distal gastric cancer is declining 36, the incidence of proximal 

cancers that include gastric cardia and gastroesophageal junction continues to be on the rise. 

The late diagnosis of gastric cancer is a clinically challenging problem with low favorable 

response rates to current chemotherapeutics leading to poor prognosis and clinical 

outcome 1.

The use of genetic analysis of inbred mouse models of carcinogenesis has an important 

advantage of limited heterogeneity, therefore, allowing discovery of consistent genetic 

alterations that are related to the disease process. In addition, using mouse models offers an 

opportunity to overcome the difficulties associated with early diagnosis, procurement, and 

analysis of premalignant lesions in human.

In this study, we performed integrated bioinformatics analysis of mouse and human 

molecular signatures to determine genes that are likely early drivers of gastric 

carcinogenesis. Our previous studies indicated that the Tff1 KO mice exhibit histological 
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changes in the pyloric antrum of the stomach, progressing from gastritis to low-grade 

dysplasia, to high-grade dysplasia, and ultimately to malignant adenocarcinoma that are 

similar to human gastric tumorigenesis 7,19. Of note, loss of TFF1 expression is one of the 

most frequent molecular alterations in human gastric tumorigenesis due to epigenetic 

inactivation, loss of heterozygosity (LOH), or transcriptional regulation 3–6. Herein, we 

analyzed early premalignant LGD gastric lesions in the Tff1 KO mouse model and 

compared the results to human gastric cancer samples to eliminate the complex genetic and 

host heterogeneity factors that are present in human, and to overcome difficulties in 

acquiring human premalignant tissue samples. We postulated that if a gene is seen in mouse 

LGD lesions as well as in human gastric cancer samples, this gene is likely an early event 

and a driver of the disease process. Indeed, we have discovered several molecular 

similarities and validated several genes using mouse and human stomach tissues. For 

example, we have confirmed overexpression of MMP9, MMP12, MMP14, and EPCAM in 

both mouse and human. These genes play an important role in cellular invasion 37. We have 

also confirmed the overexpression of CLDN2 and PDGFRB, which are known to promote 

cellular transformation and survival 38,39. It is worth mentioning, our data have shown a 

progressive increase in expression level of several genes from LGD to HGD, and to 

adenocarcinoma. These observations provide confidence in our data and suggest their early 

roles in gastric tumorigenesis.

Our analysis of LGD lesions demonstrated deregulation of genes that mapped to key 

oncogenic transcription networks such as β-catenin, MYC, and STAT3. These transcription 

networks were similarly activated in human gastric cancer samples. Activation of WNT/β-

catenin signaling cascade is a key step in several gastrointestinal malignancies. Studies in 

colon cancer have shown that activation of β-catenin occurs as early as in adenoma stage due 

to frequent mutations of its negative regulators, such as APC 40,41. While mutations of APC 

and β-catenin are rare in gastric cancer 18, non-mutational activation of β-catenin/TCF 

transcription network is common in gastric cancer 42. β-catenin can also be activated by 

AKT signaling pathway, which is predominantly active in gastric cancer 43. Furthermore, we 

and others have shown that molecular factors that inhibit GSK3β and PP2A activities play a 

role in activation of β-catenin in gastric cancer 43,44. In addition, regulation of β-catenin by 

miRNAs has been described in gastric cancer 45. β-catenin is an essential transcription 

network that regulates a wide spectrum of transcription target genes that control important 

cellular functions such as adhesion, proliferation, angiogenesis, and invasion 16. It has also 

been suggested that β-catenin could play a role in regulating gastric cancer stem cells and 

progenitor stem cells capacity 12,46. It is, therefore, possible that loss of TFF1 and activation 

of WNT/β-catenin signaling in early stages of gastric tumorigenesis 19 may regulate 

progenitor cells of gastric cancer. Based on our mouse to human data, we suggest that 

activation of β-catenin transcription network is conceivably related to initiation of the gastric 

carcinogenesis cascade.

MYC is one of the most recognized transcription factors in biological processes that 

regulates numerous oncogenic functions in gastric cancer 22. Although MYC overexpression 

alone is incapable of inducing neoplastic transformation of normal human cells 47,48, it is 

recognized as a potent oncogene that promotes tumor development and progression 49. We 

have found activation of MYC transcription network in LGD of mouse and human gastric 
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cancer samples suggesting its importance in early stages of gastric tumorigenesis. This is 

particularly important given its known significant role in regulating cellular stemness, 

proliferation, and angiogenesis in cancer 22. Taken together, our findings suggest that 

activation of MYC transcription network is possibly another crucial early molecular event in 

gastric carcinogenesis.

Of note, we also detected activation of STAT3 transcription network in both mouse and 

human neoplastic gastric lesions. STAT3 is constitutively activated in several gastrointestinal 

malignancies that include colon cancer and gastric cancer 50,51. We have previously shown 

that STAT3 regulates angiogenesis, drug response, and cellular proliferation in gastric 

cancer 52,53. A number of studies have shown that STAT3 promotes stem-like properties and 

maintenance of cancer cells providing resistance to several chemotherapeutic drugs 13,54. It 

is worth mentioning that there is an overlap not only in the transcription targets of β-catenin, 

MYC, and STAT3, but also in their biological outcomes. Taken together, our finding of 

activation of β-catenin, MYC, and STAT3 networks suggests that together they can act in 

synergy and harmony to mediate oncogenic cellular functions in essential initiation and 

progression steps of gastric tumorigenesis.

Our data also suggested activation of NFATC2, HIF1A, and ETS1 in human gastric cancer 

and early stages of tumorigenesis in the Tff1 KO mice. NFATC2 plays an important role in 

regulating the development of cancer related inflammation, promoting colon cancer cell 

differentiation and proliferation 55. HIF1A is a master regulator of cell response to hypoxia 

by activating genes involved in angiogenesis, apoptosis, and energy metabolism 56–58. 

HIF1A expression has been recently reported in various human cancers including pancreatic 

cancer, esophageal cancer and breast cancer, promoting cancer angiogenesis, proliferation, 

and survival 58–60. Similarly, activation of ETS1, a member of the ETS family of 

transcription factors, is known to be involved in cancer progression in breast cancer, 

pancreatic cancer, prostate cancer, and gastric cancer 61–64. Recent studies suggested that 

ETS1 expression is linked to the cancers with higher invasive, angiogenic activity 61. The 

fact that we identified activation of these networks in LGD lesions of the Tff1 KO mouse 

imply that these transcription factors are not only involved in late stages of cancer but also 

possibly in early stages of initiation of gastric tumorigenesis.

We also detected transcription networks that were deregulated in human advanced gastric 

cancer but not in mouse LGD lesions. These included inactivation of TP53 and activation of 

FOXM1. Inactivation of p53 is caused by mutations in more than half of human cancers 65. 

Mutant p53 provides cancer cells gain-of-function properties, such as increased cell 

proliferation, metastasis and apoptosis resistance 65. Recent studies suggested that loss of 

p53 or the accumulation of mutant p53 were observed more in poorly-differentiated than in 

well-differentiated gastric carcinomas 66. The accumulation of p53 in immunohistochemical 

staining, an indicator of mutation of p53, was also significantly higher in large, advanced, 

and metastatic gastric cancers 67. On the other hand, FOXM1 plays a key role in tumor 

progression as noted in recent studies showing that cancer cell proliferation and tumor 

growth are significantly reduced when FOXM1 is deleted 68,69. In pancreatic cancer, matrix 

metalloproteinases (MMPs) were regulated by FOXM1, increasing cancer cell migration and 

invasion 69. Of note, FOXM1 expression in cancer cells can promote activation of DNA 
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damage repair networks and confer resistance to chemotherapeutics 70. Collectively, these 

findings from earlier reports can explain the lack of inactivation of p53 and activation of 

FOXM1 in early neoplastic gastric lesions in the Tff1 KO mouse model.

Although our analysis and interpretation have focused on consistent changes between mouse 

LGD and human cancer, there were also examples of genes that did not overlap. A possible 

explanation of this apparent discrepancy may be attributed to the conserved nature of gene 

expression among different species (mouse and human). Alternatively, it is also plausible 

that some of these changes could be related to advanced stages of gastric cancer rather than 

early stages of tumorigenesis.

In conclusion, our study provided a comprehensive integrated molecular analysis of 

transcription networks in human and mouse models of gastric cancer. Our pilot data 

demonstrate that this is a powerful approach to study the molecular events and identify 

striking similarities such as activation of β-catenin, MYC, and STAT3 transcription 

networks. We acknowledge the limitations in our study due to lack of human dysplastic 

lesions. Nevertheless, our findings highlight the important role of mouse models of gastric 

cancer that provide an opportunity to overcome some of the inherent limitations in human 

studies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Transcriptional network analysis demonstrates activation of MYC, STAT3 and β-
catenin
Pathway analysis of gene expression data using Ingenuity online tools indicated activation of 

MYC, STAT3 and β-catenin (CTNNB1) transcription networks in both Tff1 KO mice gastric 

LGD and human gastric cancer samples.
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Figure 2. Validation of representative MYC, STAT3 and β-catenin downstream target genes in 
gastric tissue samples from mice
qRT-PCR analysis of expression of targets genes, as shown, was performed in normal 

glandular stomach of 10 wild-type (WT), 10 Tff1 KO with low-grade dysplasia (LGD), and 

9 Tff1 KO with high-grade dysplasia (HGD). The horizontal line indicates the median. 

*P<0.05, **P<0.01, ***P<0.001, Mann-Whitney U test.
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Figure 3. Validation of representative MYC, STAT3 and β-catenin downstream target genes in 
human gastric tissue samples
qRT-PCR analysis of expression of target genes, as shown, in 19 human normal stomach 

(NG) and 22 gastric cancer (GC) tissue samples. The horizontal line indicates the median 

*P<0.05, **P<0.01, ***P<0.001, Mann-Whitney U test
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