Table 3.
Description of each of the growth models tested.
Growth model | Differential equation | General solution |
---|---|---|
Exponential | dV/dt = rV | V = V 0 exp(r(t − t 0)) |
Logistic | dV/dt = rV(1 − V/K) | V = K/[1 + (K/V 0 − 1) exp(−r(t − t 0))] |
Mendelsohn | dV/dt = rV b | V = ([1 − b] [r(t − t 0) + V 0 1−b/(1 − b)])1/(1−b) |
Gompertz | dV/dt = rV exp(−ρ(t − t 0)) | V = V 0 exp(r/ρ [1 − exp(−ρ(t − t 0))]) |
von Bertalanffy | dV/dt = αV 2/3 − βV | V = [α/β − (α/β − V 0 1/3) exp(−β(t − t 0)/3)]3 |
Parameters r and α represent the tumour growth rate (per day), K the carrying capacity of the tumour, b an exponent determining the shape of the growth curve, ρ the proportional rate of decrease in growth rate, and β the rate of loss due to cell death (see Gerlee 2013 for details).