Skip to main content
. 2017 Jul 24;7:6217. doi: 10.1038/s41598-017-06166-3

Table 3.

Description of each of the growth models tested.

Growth model Differential equation General solution
Exponential dV/dt = rV V = V 0 exp(r(t − t 0))
Logistic dV/dt = rV(1 − V/K) V = K/[1 + (K/V 0 − 1) exp(−r(t − t 0))]
Mendelsohn dV/dt = rV b V = ([1 − b] [r(t − t 0) + V 0 1−b/(1 − b)])1/(1−b)
Gompertz dV/dt = rV exp(−ρ(t − t 0)) V = V 0 exp(r/ρ [1 − exp(−ρ(t − t 0))])
von Bertalanffy dV/dt = αV 2/3 − βV V = [α/β − (α/β − V 0 1/3) exp(−β(t − t 0)/3)]3

Parameters r and α represent the tumour growth rate (per day), K the carrying capacity of the tumour, b an exponent determining the shape of the growth curve, ρ the proportional rate of decrease in growth rate, and β the rate of loss due to cell death (see Gerlee 2013 for details).