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Naturally spun silks generate fibres with unique properties, including strength, elasticity and
biocompatibility. Here we describe a microfluidics-based strategy to spin liquid native silk,
obtained directly from the silk gland of Bombyx mori silkworms, into micron-scale capsules
with controllable geometry and variable levels of intermolecular B-sheet content in their
protein shells. We demonstrate that such micrococoons can store internally the otherwise
highly unstable liquid native silk for several months and without apparent effect on its
functionality. We further demonstrate that these native silk micrococoons enable the effective
encapsulation, storage and release of other aggregation-prone proteins, such as functional
antibodies. These results show that native silk micrococoons are capable of preserving the full
activity of sensitive cargo proteins that can aggregate and lose function under conditions of
bulk storage, and thus represent an attractive class of materials for the storage and release of
active biomolecules.
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he control of protein denaturation and aggregation is the

cornerstone of successful silk production!. In silk glands of

arthropods, this control is achieved through a tightly
regulated phase transition of the component proteins from a
soluble, largely disordered random coil structure into a solid
fibrous form consisting of ordered intermolecular hydrogen
bonded PB-sheet rich aggregates®. Native silk produced by the
Bombyx mori silkworm consists mainly of two proteins, native
silk fibroin (NSF) and sericin, with NSF providing the structural
core of the silk fibers and sericin providing a coating layer!.
A detailed understanding of the phase transition process
that results in fiber formation is not only of great academic
interest, but also provides key information for any successful
attempt to mimic the exceptional material properties observed in
natural silk3~7. Many components of fibrillar silk can be
chemically re-solubilized; in particular reconstituted silk fibroin
(RSF)*%, obtained by dissolving spun cocoons, has been used in a
wide range of applications.>®%"1> The widespread use of
reconstituted silk feedstocks is largely enabled by the relative
ease in which this material can be prepared and stored!®. NSF
feedstocks can be obtained directly from the gland of the
silkworm where it is stored in a spatially distinct location from
sericin®. However, such feedstocks are renowned for their
extreme sensitivity to shear and high propensity to aggregate
once isolated!”, in marked contrast to RSF, which is significantly
more stable in solution™!7~1%, Indeed, the inherent difficulties in
handling NSF feedstocks significantly limit the potential of this
material for use in biotechnological applications.

To address the fundamental challenges in processing NSF, we
have explored a microfluidic platform that enables the investiga-
tion of the artificial spinning of native silk as well as providing
routes towards its long-term storage in an active state ready for a
range of possible uses. We report the generation of a wide range
of micron-scale shapes, herein referred to as micrococoons or
micron-scale capsules?®?!, and demonstrate that morphological
diversity can be generated through fine tuning of the shear
conditions, and through variation in the flow rates used, and by
modulating the surface tension and viscosity of the feedstock.
Importantly for potential applications, we find that micrococoons
exhibit a distinct core-shell structure with an internal
environment apparently ideal for the storage of sensitive and
aggregation-prone materials.

Results

Micron scale silk capsule synthesis. We have applied a micro-
fluidic strategy to control the level of shear applied to an NSF
solution®>23 to induce the transition of NSF from its initial,
native state, into highly aggregated B-sheet-rich silk
microstructures formed as monodispersed microemulsions?*
(Fig. 1a). NSF micrococoons were synthesized at a T-junction
in a microfluidic device (Fig. 1b,c) by co-flowing an immiscible
fluorinated oil phase from both sides of a stream of NSF in the
central microchannel (see Methods). The instability of
the aqueous stream towards breaking up into droplets leads to
the generation of a highly monodisperse silk-in-oil emulsion at
the T-junction. Moreover, the shear experienced during the
co-flow leads to the formation of gelled material as the NSF
converts into its aggregated state at the aqueous/oil interface
where the shear is greatest (see Methods and Supplementary
Fig. 1a,b). By controlling the viscosity of the NSF feedstock and
the shear rate (Fig. 1e and Supplementary Fig. 1a) we were able to
form a variety of different micron-scale morphologies, including
spherical and cylindrical structures as well as continuous fibres
(Fig. 1d,e). We also discovered that the range of morphologies
could be further increased by introducing a second T-junction in
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series with the first one on the same microfluidic chip. In this
manner, the NSF micrococoons produced at the first T-junction
could be encapsulated by a second layer of NSF to form double
shell structures leading to more intricate forms of structure
(Supplementary Fig. 1c,d).

The final shape of the micron-scale NSF capsules was found to
be determined by a combination of the concentration and
viscosity of the NSF feedstock and the relative flow rates of the
aqueous and the oil phases (Fig. le). The viscosity of NSF
solutions increased with increasing protein concentration'4, and
elongated micrococoons were observed to be the dominant
structure formed at concentrations above 5 mgml ~ L. By contrast,
when the NSF concentration was lowered to below 2mgml 1,
spherical microdroplets were the major species formed. These
observations suggest a dominant effect on the morphology of
surface tension at low concentrations and viscosities, favouring a
minimal interface area and hence a spherical shape, and of shear
forces at high concentrations and viscosities (Supplementary
Fig. 1a,b), leading to structures with high aspect-ratios such as
cylinders and fibres.

The efficiency of the conversion of NSF into micron-scale
capsules (Fig. 2a—e) was studied by using UV spectroscopy and
colorimetric methods (see Methods) to establish the concentration
of unconverted NSF remaining in solution after isolation of the
micrococoons. For all micrococoon shapes, the observed conver-
sion efficiency was very high, reaching values of 871 3%.
Moreover, the loss of 13+ 3% of NSF protein can be attributed
simply to the partial disassembly of a small fraction of micron-
scale capsules during the washing steps used to transfer the
micrococoons from the continuous oil phase, used in the
emulsification process, to an aqueous environment (see Methods).

Micrococoon morphology. The dependence of the surface mor-
phology on the different micrococoon shapes was studied by
atomic force (AFM; Supplementary Fig. 2a-e) and confocal
microscopy (Fig. 2j-m). The spherical micrococoons exhibited
smooth surfaces (Supplementary Fig. 2a), while the elongated
structures were observed to contain aligned nano-scale wrinkles
(Supplementary Fig. 2b-e). For the cylindrical structures, these
surface features were oriented parallel to the long axis of the
micrococoons (Supplementary Fig. 2b), while for the fibril-like
structures they were oriented perpendicular to the fibre axis,
an observation likely to originate from mechanical stresses
acting on the gelled outer shell (Supplementary Fig. 2c—e) under
the compressive stresses present in the microfluidic channel.

We also monitored the alignment of the silk nanofibrils in the
micrococoon shapes by probing their interaction with linearly
polarized light. We observed that NSF in solution does not alter
the polarization of light, and such samples remained dark when
placed between crossed polarizers (Supplementary Fig. 2f). By
contrast, fibers spun naturally by silkworms, which consist of
aligned fibroin fibrils coated with sericin, exhibit birefrigent
behaviour, with the optical axis aligned along the axis of the
fibril, as shown in Supplementary Fig. 2g, and consistent with
previous literature reports*>~2’. We then proceeded to probe in
this manner the microcapsules generated in this work. The
birefrigence images shown in Fig. 2f-i reveal a high level
of alignment, in particular within the shells of the spherical
micrococoons, and along the length of the more elongated
capsule structures. The multitude of colours observed in Fig. 2f-h
may originate from variations in the thickness of the NSF fibrillar
layer, and a non-uniform distribution of soluble and fibrillar NSF
in the micrococoons, as well as to a wavelength-dependence of
the refractive index?8, and to a lesser degree the absorption
coefficient.
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Figure 1 | Micrococoon synthesis. (a) Schematic representation of the microfluidic processing of NSF into micrococoons. (b) Optical microscopy images
of the NSF micrococoons formed at a single T-junction in the microfluidic device. Micrographs of a variety of NSF micrococoon shapes are shown in the
lower panels: (i) sphere, (ii) cylinder, (iii) short fibre, (iv) thin fibre, (v) thick fibre. Scale bar, 20 um. (¢) Micrographs of NSF micrococoon formation

acquired at three different time points T1, T2 and T3: (i) sphere; TI=0ms, T2=10ms, T3 =13 ms, (ii) cylinder; TI=0ms, T2=13ms and T3 =34 ms and
(v) thick fibre; TI=0ms, T2=59ms, T3 =68ms. Scale bar, 20 um. (d) S schematic representations showing the characteristic dimensions of the NSF
micrococoons generated in this study. (e) Different micrococoon shapes generated as a function of the protein concentration and of the ratio of the flow

rates of the aqueous to oil phases.

Structural changes during microcapsule formation. The trans-
formation of NSF from its initial disordered structure to highly
ordered B-sheet-rich aggregates was also followed by monitorinég
the changes in fluorescence that accompany this transition®’.
The maximum emission intensity of the intrinsic blue fluore-
scence signal for the NSF aggregates was in the range of 425 to
450nm, with a small variation attributed to the biological
diversity of the silkworms from which the silk was obtained.
This characteristic spectral shift allowed aggregated NSF to be
detected and localized spatially through confocal microscopy. The
results shown in Fig. 2j-m reveal an accumulation of aggregated

NSF on the outside of the micron-scale capsules where the shear
forces during formation were largest.

The structural changes in NSF during conversion into
micrococoon shapes were also examined using Fourier transform
infrared (FTIR) spectroscopy. The FTIR spectrum, in particular
in the region containing the characteristic protein amide I bands,
is highly sensitive to the secondary and tertiary structure content
of proteins®*-3>. The results show that the soluble NSF is
predominantly disordered (Fig. 3a,b) with minor contributions
from a-helical, B-turn and random coil structures, in agreement
with literature reports on this material”>>3%37_ In some samples,
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Figure 2 | Micrococoon morphology. Bright field microscopy images of NSF micrococoons: (a) spheres, (b) cylinders, (¢) short fibres, (d) thin fibres and
(e) thick fibres. Scale bar, 5 um. Images of micrococoon structures placed between crossed polarizers: (f) sphere, (g) cylinder, (h) thick fibre, (i) thin fibre.
Scale bar, 10 pm. 3D reconstructions of confocal images are shown for: (j) a sphere, (k) a cylinder, (I) a thin fibre, (m) a thick fibre. The z-stack central cut

images are shown in the inserts. Scale bar, 10 pum.

we observed a small contribution also from inter-molecular
B-sheet structure; however, we cannot completely exclude the
possibility that a low level of inter-molecular B-sheet could be
formed during the sample preparation for FTIR analysis. The
aggregated state by contrast (Supplementary Fig. 3a) is rich in
intermolecular B-sheet structure with a high degree of order,
indicating the formation of a dense network of intermolecular
hydrogen bonds. The formation of these intermolecular contacts
further differentiates spectroscopically the aggregate state from
the native one that is dominated by intramolecular hydrogen
bonds within native intramolecular B-sheets. This difference is in
particular apparent in the shift of the amide band I towards
lower wavenumbers, characteristic of the formation of the
intermolecular hydrogen bonds.

The differences in the morphologies of the different types
of micrococoons were found to correlate with differences in
the relative abundances of native intra-molecular versus inter-
molecular B-sheet secondary structure indicative of the presence
of aggregated silk fibrils. In particular, the spherical morphologies
were found to have ~30% of native B-sheet structure, a value that
is similar to that of soluble NSF, while the filamentous micron-
scale capsules have ~60\% of inter-molecular B-sheet structure
(Fig. 3b; Supplementary Fig. 3b,c), largely absent from soluble
NSE. These results are in good agreement with polarized
microscopy observations (Fig. 2f-i) that indicate pronounced
formation of fibrils in the elongated forms of the micrococoons
as well as with confocal microscopy data (Fig. 2j-m), which
show that these structures possess a fully aggregated core.
The process of NSF micrococoon formation suggests an
explanation for these differences, as the spherical micron-scale
capsules are formed under conditions of low shear; the NSF
therefore gels only at the surfaces of the droplets, and in the
interior of the structures it remains in its soluble native form and
is encapsulated by a thin shell of aggregated NSF. With increasing
shear rates, the formation of fibrillar structure becomes more
extensive, resulting, in the case of the elongated capsules, in the
complete conversion of the NSF into its structurally ordered
aggregated form.

4

Micrococoon elastic properties. We next probed the Young’s
modulus of the NSF micron-scale capsules by means of AFM
nanoindentation and peak force quantitative nanomechanical
mapping (PF-QNM), both in air and in liquid®*®*. Figure 3c
and Supplementary Fig. 2h show representative DMT-modulus
AFM images with corresponding distributions of the DMT
modulus and three-dimensional (3D) topographic AFM
images with corresponding height profiles, of a spherical
micron-scale capsule in air and in liquid. The average
Young’s modulus of the shell was measured to be 4.6 GPa in air
and 3.8 GPa in liquid, respectively (Fig. 3c and Supplementary
Fig. 2h) values, which are consistent with [-sheet rich

materials?0-41,

Protein storage and release. We have shown how microfluidic
processing allows NSF to be transformed into micrococoons with
a degree of aggregation that can be tuned to give rise either to
shells containing soluble NSF or fully aggregated micrococoons.
We next explored the potential of the long-term encapsulation
within the formed structures of aggregation-prone NSF for
storage and subsequent controllable release. We synthesized a
macroscopic volume of spherical NSF micrococoons, each of
which consisted of a thin shell with a thickness of 1-2 um, as
shown in Fig. 4ab, with the rest of the volume of the
micrococoon consisting of soluble NSF accumulated within the
shell. Under bulk conditions, the soluble form of NSF is stable for
only a few hours at room temperature, but within the micron-
scale capsules, is was found to retain its native properties for at
least one month (Fig. 4b,d). Furthermore, even after storage for
this length of time, the majority of the liquid NSF could be
released from the micrococoons by rupturing the outer shells
by means of low temperatures or increased hydrostatic pressure
generated by centrifugation, Fig. 4b—d. We monitored this release
process by measuring the concentration of soluble protein by UV
absorption; the results revealed that 98% of the NSF could
be recovered from the micrococoons by snap freezing in
liquid nitrogen (Fig. 4c). Release by ultracentrifugation allowed
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Figure 3 | Ultrastructural properties of micrococoon. (a) FTIR spectra of spheres, cylinders and of, short, thin and thick fibres. AFM images of native
and aggregated NSF are shown at the right hand side of the FTIR spectra with scale bars of 400 nm. (b) Chart summarizing the structural changes of NSF
upon its conversion into its different forms, calculated from the amide | bands in the FTIR spectra (Supplementary Fig. 3a). (¢) AFM DMT modulus
(Derjaguin-Muller-Toporov model of elastic contact) images in air and in liquid (right) with the corresponding distribution of the DMT modulus (left).

Scale bar, 3,000 nm.

~80% of the protein to be recovered, with ~20% being lost
through aggregation during the release process as a consequence
of the mechanical shear encountered during the centrifugation
step. The soluble NSF stored for 1 month was found by FTIR
(Fig. 4b,d) to be extremely similar in structure to that observed
prior to storage. Indeed, the high level of protection offered by the
encapsulation of NSF within our micrococoons was shown by the
observation that the NSF released from such structures could in
turn be reconverted into micrococoon shells and stored again, a
process that was successfully repeated at least five times with the
same starting material.

To probe further the stabilizing effect confered on soluble NSF
within the micrococoons, we monitored the structural changes of
the silk protein solution in bulk and when stored in the gelled
micrococoons as a function of environmental parameters such as

mechanical shear, temperature and ionic strength. We first
exposed NSF samples in both bulk and encapsulated forms to
mechanical stress by continuous shaking, and followed the
conformational changes by FTIR spectroscopy (Supplementary
Fig. 4). The results show almost complete transformation of the
NSF into B-sheet-rich aggregates within only 20 s (Supplementary
Fig. 4a,b) under bulk conditions, while almost no changes were
observed in the secondary structure of the NSF encapsulated
inside micrococoons (Supplementary Fig. 4c,d) after 1h of
continuous shaking. We next exposed both systems to elevated
temperatures and high ionic strengths. The results are shown in
Supplementary Fig. 5a-d, and demonstrate that the soluble NSF
stored in bulk converted into its fibrous form within a few
seconds, as shown in Supplementary Fig. 6a—d, while NSF inside
the micrococoons remained unaffected. Taken together, these
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Figure 4 | NSF long-term storage and release. (a) Cryo-SEM micrographs showing the morphology of (from left to right) soluble NSF, NSF micrococoons,
released and aggregated NSF. Scale bars, 100 um; The corresponding images of NSF solutions are shown as inserts (left); (b) FTIR spectra of the
aggregation and release of NSF by snap-freezing in liquid nitrogen. Insert: schematic representation of the formation of spherical NSF micrococoons and
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secondary structure elements calculated from the amide | band in the FTIR spectra (b) after release from the microncapsules.

data demonstrate that the silk micrococoons protect the
encapsulated NSF from a range of factors promoting aggregation.

The ability of NSF micrococoons to provide long-term storage
for NSF itself suggested their potential use for the stabilization of
other aggregation sensitive protein species. Antibodies provide an
important example of proteins that often possess a high
propensity to aggregate, a factor that can limit significantly their
efficacy and shelf-life. We examined the encapsulation, stabiliza-
tion and release of several active antibody species, including a
single-chain Fv-binding domain specific for the protein hunting-
tin, C4scFv (ref. 42), and two single chain Fv domains specific for
a-synuclein, NbSyn86 and NbSyn87 (ref. 43). First, we tested the
encapsulation and release efficiencies by using C4scFv antibodies
labelled with AlexaFluor647 (See Methods). We achieved very
high loading efficiencies (>95%, Fig. 5a) as well as efficient and
rapid release kinetics (Fig. 5b), without any loss of binding
activity or solubility (Supplementary Fig. 9). Next, we probed the
effect of the NSF micrococoons on the stability of one of the
domains, NbSyn86, which had previously been shown to have
relatively low thermal stability in bulk solution** (Fig. 5c, ii) and a
high propensity to self-aggregate resulting in a significant
reduction of its binding activity. The results, shown in Fig. 5
and Supplementary Fig. 9, demonstrate that the binding activity
of C4scFv, NbSyn86 and NbSyn87 before and after encapsulation
and release was identical. Moreover, the micrococoons
demonstrated their ability to enhance markedly the stability of
the aggregation-prone single chain Fv domain (See Fig. 5¢, iii-iv);
in bulk solution, NbSyn86 rapidly aggregated when heated to
65 °C, while identical heat treatment of the domain encapsulated

6

in silk micrococoons led to no measurable loss of activity
(Fig. 5¢,d). These results suggest a route towards the development
of effective stabilization systems for storage of highly sensitive
functional macromolecular species.

In addition, we investigated the potential of the micrococoons
to serve as transporters of small molecules (Supplementary
Fig. 7a), a possibility that is particularly interesting for drug
delivery in view of the biocompatibility of silk (Supplementary
Fig. 8) in biomedical applications”4>46, We found that the NSF
micrococoons have an outstanding ability to encapsulate, store
and release in a controlled manner small molecules, including
glucose and the antibiotic tetracycline, under physiological
conditions, as we show in the Supporting Information
(Supplementary Fig. 7). Moreover, the micrococoons were
found to be non-toxic to human cells (Supplementary Fig. 8)
and, therefore, are likely to have the potential as novel safe
delivery vehicles for external as well as for internal use.

Discussion

In conclusion, the complex rheology of NSF and its tendency to
aggregate presents a significant challenge for the storage and
processing of this potentially highly functional material. Our
results, however, show that multiphase flow of NSF in microfluidic
systems can be used to overcome these limitations through the
flexible processing of NSF into a wide range of micron-scale
capsules. We have found that such NSF micrococoons have the
ability to provide a practical solution for the long-term storage and
control of NSF feedstocks, with an increase in stable storage time of
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Figure 5 | Antibodies stabilization by encapsulation. (a) Encapsulation efficiency studies for the C4scFv single chain Fv domain in spheres, cylinders,
short, thin and thick fibres. The indicated error bars are the s.d. of the average of three different repeats, each one measure 10 times. Insert: schematic
representation of the encapsulation and release of antibiody domains by NSF micrococoons: step (1) encapsulation, step (2) release. (b) Release kinetics
for C4scFv from different NSF micrococoon shapes. The indicated error bars are the s.d. of the average of three different repeats, each one measure 10
times. (¢) Biacore sensorgrams of the binding of NbSyn86 to immobilized a-synuclein: (i) a control sample of monomeric NbSyn86, (ii) NbSyn86 after
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samples. The indicated error bars are the s.d. of the average of three different repeats, each one measure five times.

several orders of magnitude relative to conventional storage under
bulk conditions. In addition, we have demonstrated that NSF
micrococoons can be used to encapsulate other sensitive molecules,
such as functional antibodies, in a way that offers significant
protection against their aggregation and loss of function!2. Protein
molecules, including antibodies, are increasingly used in
therapeutic applications, but often posses a high tendency to
undergo unwanted aggregation processes and lose function. The
ability of silk micrococoons to control and curtail this behaviour
should, therefore be of considerable significance for the long-term
storage of proteins in functional states.

Methods

Micrococoon preparation. The following materials were used for preparation of
NSF micrococoons: freshly extracted NSF from the B. mori silkworm gland?,
fluorinert FC-70 (Sigma-Aldrich, UK) and N,N bis (n-propyl)polyethylene
oxide-bis(2-trifluoromethyl polyperfluoroethylene oxide) amide surfactant®”.

Droplet microfluidics. The single and double T-junction droplet makers were
fabricated from PDMS (polydimethylsiloxane, ca. 50,000 ~Mw, Sylgard 184,
Dow Corning, USA) as chips by using standard soft lithography methods*$->1.
The synthesis of the NSF micrococoons was performed on a specially designed
microfluidic system with 20 pm diameter channels. 1 ml of aqueous NSF at pH7
and 1 ml of fluorinert oil containing 2% w/v of N,N'bis(n-propyl)polyethylene
oxide-bis(2-trifluoromethyl polyperfluoroethylene oxide) amide surfactant, were
mixed at the T-junctions of microfluidic channels by using flow control through
syringe pumps. The initial concentration of NSF varied from 1 to 10 mgml ~ .. The
multi-shell micron-scale capsules were formed using a double T-junction device in
which the NSF and oil solutions were mixed at the first T-junction to form their
initial shape and then passed through the second T-junction with NSF dope as a
continuous phase. The capsules were then washed with doubly distilled water
(DDW) at pH7 to remove the surfactant and any unreacted protein.

Confocal and light microscopy. Samples were deposited as aqueous dispersions,
without further purification, onto a glass slide. The NSF micrococoons were

analysed by confocal microscopy (Laser Scan Confocal, Zeiss Microscope 5,100),
using a laser 405 nm at 25 mW for violet excitation. Because of the intrinsic native
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fluorescent signal emitted from the aggregated NSF protein, the NSF micrococoons
were analysed by confocal microscopy without labelling; the emission maxima, in
the blue region of the fluorescence spectrum, originated from the aggregated
component of the gelled NSF micrococoons, while for the single shell structures the
aggregated NSF content was detected at the interface of each micron-scale capsule.
The double shell structures exhibited blue emission from the internal as well as the
external shells of the NSF micrococoon shapes. 3D images were reconstructed
using the Tmaris’ image analysis program (on average 412 z-stack slices per each
protein shell).

Measurements of loading capacity and release kinetics. To calculate the
efficiency of the conversion of the NSF into micrococoons, the concentration of
unreacted NSF was measured (after washing) by UV absorption by using a
NanoDrop 2,000 UV spectrophotometer (Thermo Scientific, UK) and using a
bicinchoninic acid (BCA) protein detection kit (ThermoFisherScientific), following
absorption at 562 nm; in no case did the difference between the two approaches
exceed 3%. In addition, the loading efficiency and release profiles of the C4scFv
(ref. 52) antibody domain from NSF micrococoons were probed using an
AlexaFluor647 labelled domain®?. The loaded micrococoons were washed with PBS
at intervals of time from 10 min to 30 days, and the solutes after each washing were
analysed by UV and fluorescence spectroscopy.

Data availability. The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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