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a major mediator of tissue and cell injuries in various neuronal

conditions, including neurological emergencies and neurodegener�

ative diseases. Molecular hydrogen is well characterized as a

scavenger of hydroxyl radicals and peroxynitrite. Recently, the

neuroprotective effects of treatment with molecular hydrogen

have been reported in both basic and clinical settings. Here, we

review the effects of hydrogen therapy in acute neuronal condi�

tions and neurodegenerative diseases. Hydrogen therapy admin�

istered in drinking water may be useful for the prevention of

neurodegenerative diseases and for reducing the symptoms of

acute neuronal conditions.
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IntroductionOxidative stress caused by reactive oxygen species (ROS) is a
major mediator of tissue and cellular injuries in various

neuronal conditions, including neurological emergencies and
neurodegenerative diseases.(1–7) Control of oxidative stress is a
major therapeutic strategy for various neuronal conditions.(6,8,9)

There are many methods for controlling oxidative stress with the
use of free radical scavengers being the most common approach.(6,8)

Evidence from animal experiments support the notion that free
radical scavengers and antioxidants dramatically reduce cerebral
damage.(9) Edaravone (MCI-186), a novel free radical scavenger,
was developed to prevent lipid peroxidation in pathological neuro-
logical conditions.(8,9) Edaravone is currently the only antioxidant
drug approved for treating cerebral infarction that improves the
functional outcome of ischemic stroke.(8) Brain hypothermia
therapy (targeted temperature management) can also effectively
control oxidative stress. Brain hypothermia therapy is effective in
patients with various acute neuronal diseases.(6,10,11)

In 2007, Ohsawa et al.(12) reported that molecular hydrogen (H2)
can act as an antioxidant to prevent and treat middle cerebral
artery occlusion–reperfusion injury in rats. This effect has been
supported by additional reports. Recently, the beneficial effect of
H2 has been reported in many other organs, including the brain.(13–17)

The first major therapeutic effect of H2 was that of an antioxidant,
combining with hydroxyl ions to produce water.(12) Recently, other
biological mechanisms of H2 (anti-inflammatory, anti-apoptosis,
anti-cytokine, DNA expression, and energy metabolism) have
been proposed (Fig. 1 and 2).(18) Therefore, the biology of H2 is
not simple. In this review, we discuss the role of H2 in various
neuronal conditions.

Neurological Diseases

Ischemic brain injury. It has been reported that H2 prevents
ischemic brain damage in animal experiments.(12,19–21) Ohsawa et al.(12)

reported that inhalation of 2% H2 gas strongly suppressed infarct
volume after middle cerebral artery ischemia–reperfusion in rats.
In an electron spin resonance (ESR) study, they showed that H2

had hydroxyl radical scavenging activity. Hydroxynonenal (HNE)
and 8-hydroxy-2'-deoxyguanosine (8-OHdG) immunoreactivity
was suppressed in the damaged brain after treatment with 2% H2.
H2 inhalation reduced ischemic damage and hemorrhagic volume
after transient middle crebral artery occlusion (MCAO) ischemia.(19)

Free radical generation after ischemia induces matrix metallo-
proteinase (MMP) expression.(19,20) MMP-9 promotes hemorrhagic
infarction by disrupting cerebral vessels.(20) H2 inhalation has been
found to reduce MMP-9 expression in an MCAO rat model. H2

also has a neuroprotective effect against global ischemia. Ji et al.(21)

reported that H2-rich saline injection [5 ml/kg intra-peritoneal
(i.p.) administration] after global ischemia reduced neuronal cell
death in hippocampal Cornet d'Ammon 1 (CA1) lesions in rats.
Cerebral hypoxia–ischemia and neonatal asphyxia are major
causes of brain damage in neonates. H2 gas inhalation and H2-rich
saline injection provide early neuroprotection from neonatal
neurological damage.(22) Nagatani et al.(23) reported that that an H2-
enriched intravenous solution is safe for patients with acute cere-
bral infarction, including patients treated with tissue plasminogen
activator (t-PA) therapy.
Metabolic syndrome is a strong risk factor of stroke. It has been

reported that H2 therapy can improve metabolic syndrome in basic
and clinical settings.(24–27) H2 therapy may reduce stroke in patients
with metabolic syndrome involving diabetes mellitus.

Hemorrhagic stroke. Hemorrhagic stroke involving intra-
cerebral hemorrhage (ICH) and subarachnoid hemorrhage (SAH)
is a critical neuronal condition, and the mortality rate of hemor-
rhagic stroke is still high.(28–30) Manaenko et al.(28) reported a neuro-
protective effect of H2 gas inhalation using an experimental ICH
animal model. H2 gas inhalation suppresses redox stress and blood
brain barrier (BBB) disruption by reducing mast cell activation
and degranulation. Brain edema and neurological deficits were
also suppressed. In SAH, there are several studies demonstrating
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Fig. 1. Beneficial effects of molecular hydrogen in pathophysiology of various acute neuronal conditions. ATP, adenosine triphosphate; miR�200,
microRNA�200; ROS, reactive oxygen species.

Fig. 2. Effect of consumption of hydrogen�rich water as functional water in pathophysiology of neurodegenerative diseases. ATP, adenosine
triphosphate; miR�200, microRNA�200; ROS, reactive oxygen species.

Table 1. Clinical trials of molecular hydrogen in central nervous system (CNS) diseases

Disease Hydrogen administration Reference number

Subarachnoid hemorrhage Intravenous infusion (32)

Post cardiac arrest encephalopathy 2% H2 gas inhalation (none)

Parkinson’s disease water (49, 50)
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the neuroprotective effect of H2 treatment.(29–31) A clinical trial has
started in patients with SAH (Table 1).(32)

Traumatic brain injury (TBI). The efficacy of H2 for treating
TBI has been investigated in several studies.(18,33,34) Ji et al.(33)

reported that in a rat TBI model, H2 gas inhalation has been found
to protect BBB permeability and regulate posttraumatic brain
edema, thereby inhibiting brain damage. H2 gas inhalation also
inhibits the decrease in superoxide dismutase (SOD) activity and
catalase (CAT) activity. These are antioxidant enzymes in post-
traumatic brains that inhibit the production of malondialdehyde
(MDA) and 8-iso-prostaglandin F2α (8-iso-PGF2α). Eckermann
et al.

(34) reported that in a surgical trauma mouse model involving
right frontal lobectomy, H2 gas inhalation has been found to inhibit
postoperative brain edema and improve the postoperative neuro-
behavioral score. The same report also showed that lipid per-
oxidation and the production of oxidative stress substances were
not inhibited by H2 gas inhalation.

(34) The therapeutic effect of
H2-rich water following TBI and in posttraumatic onset of
Alzheimer’s disease (AD) was investigated by Dohi et al. in
2014,(18) who investigated whether the consumption of H2-rich
water 24 h prior to trauma can inhibit neuronal damage in a
controlled cortical injury model using mice. The authors found
that the expression of the phosphorylated tau proteins AT8 and
Alz50 in the hippocampus and cortex was blocked in mice that
consumed H2-rich water. Moreover, the activity of astrocytes and
microglia were inhibited in mice TBI model consuming H2-rich
water. The expression of genes induced by TBI, particularly
those that are involved in oxidation/carbohydrate metabolism,
cytokine release, leukocyte or cell migration, cytokine transport,
and adenosine triphosphate (ATP) and nucleotide binding, was
inhibited by consuming H2-rich water. Dohi et al.

(18) specifically
reviewed the role of H2-rich water in neuroinflammation following
brain trauma. The consumption of H2-rich water influenced the
production of cytokines and chemokines in the damaged brain and
inhibited the production of hypoxia inducible factor-1 (HIF-1),
MMP-9, and cyclophilin A. However, H2-rich water did not affect
the production of amyloid precursor protein (APP), Aβ-40, or Aβ-
42. They also investigated the relationship between H2 and ATP
production and reported that H2 increased basal respiration,
reserve capacity, and nonmitochondrial respiration but did not
increase aerobic ATP production. It has thus been demonstrated
that the inhibitory effects of H2 on nerve damage are not solely due
to its simple function as a free radical scavenger (Fig. 1 and 2).

Spinal cord injury. Chen et al.(35) reviewed the effects of H2-
rich saline administration (i.p.) in a rat traumatic spinal cord injury
model. They found that posttraumatic neurological symptoms
were improved by H2-rich saline treatment. Furthermore, H2-rich
saline treatment has been found to reduce inflammatory cell
infiltration, TdT-mediated dUTP nick and labeling (TUNEL)-
positive cells, and hemorrhage. In addition, oxidative stress was
inhibited and the expression of brain derived neurotrophic factor
(BDNF) was increased. The effects of H2 administration on spinal
cord ischemia have also been reported.(36,37) Huang et al.(36) investi-
gated the effects of H2 gas inhalation in a rabbit spinal cord
ischemia–reperfusion model. They reviewed the effects of H2

inhalation with different concentrations (1, 2, and 4%) and
reported that H2 gas inhalation at concentrations of 2% and 4%
inhibited neuronal death. However, they did not observe signifi-
cant differences between the two groups in terms of effects with
2% and 4% being equally effective.(36) It has been reported that
the inhalation of 2% H2 gas inhibits apoptosis following spinal
cord injury caused by ischemia–reperfusion. In addition, H2 gas
inhalation regulates caspase-3 activity, the production of inflam-
matory cytokines, oxidative stress, and the decrease in endo-
genous antioxidant substances. Zhou et al.(37) also reported that
H2-rich saline administration (i.p.) has beneficial effects on spinal
cord ischemia–reperfusion injury in rabbits.

Other acute neurological conditions. In recent years, re-
search has shown that there is a high incidence of comorbid central
nervous system symptoms in sepsis cases.(38) Using a mice cecal
ligation and puncture (CLP) model, Liu et al.(39) reported that H2

gas inhalation improves septic encephalopathy. They reported that
2% H2 gas inhalation inhibited post-CLP apoptosis, brain edema,
BBB permeability, cytokine production, and oxidative stress in the
CA1 hippocampus region as well as improves cognitive function.
Nakano et al.(40) reported that maternal administration of H2 has a
suppressive effect on fetal brain injury caused by intrauterine
inflammation with maternal intraperitoneal injection of lipopoly-
saccharide (LPS).
The treatment of carbon monoxide (CO) poisoning encephalo-

pathy, which is a common gas poisoning, is yet to be estab-
lished.(41,42) Sun et al.(42) and Shen et al.(41) investigated the effects
of H2-rich saline. They reported that in a CO poisoning model,
the administration of H2-rich saline decreased glial activation,
cytokine production, oxidative stress, and caspase 3 and 9 produc-
tion as well as inhibited nerve cell death.
It is known that stress causes nerve cell impairments.(43) The

consumption of H2-rich water inhibits oxidative stress and thereby
inhibits the onset of stress-induced brain damage.(43)

Hypoxic brain injury caused by asphyxiation, hypoxic ischemic
encephalopathy, neonatal asphyxia, and other similar hypoxia-
mediated event is a common clinical condition in medical emer-
gencies. H2 treatment has been found to inhibit cell death in an in
vitro hypoxia/reoxygenation model using immortalized mouse
hippocampal (HT-22) cells. H2 treatment increased phosphorylated
Akt (p-Akt) and B-cell leukemia/lymphoma-2 (BCL-2), while it
decreased Bax and cleaved caspase-3.(44) In recent years, it has
been found that the microRNA-200 (miR-200) family regulates
oxidative stress.(44) The inhibition of miR-200 suppresses H/R-
induced cell death, reducing ROS production and MMP. H2

treatment suppressed H/R-induced expression of miR-200. In
Japan, a double blind randomized controlled trial for post cardiac
arrest syndrome has started from 2017 (Table 1).

Neurodegenerative Diseases

Parkinson’s disease (PD). PD is a disorder that presents
with extrapyramidal symptoms caused by the degeneration and
loss of dopamine-producing cells in substantia nigra. Oxidative
stress is known to be involved in the clinical condition of PD.(7)

Moreover, the involvement of mitochondrial dysfunction in PD
has been reported.(45) The effects of H2 on PD have been reported
in animal models of PD as well as in clinical studies.(46–48) In 2009,
Fujita et al.(47) and Fu et al.(48) reported that consuming H2-rich
water inhibits oxidative stress on the nigrostriatal pathway and
prevents the loss of dopamine cells in a PD animal model. With
the consumption of H2-rich-water-drinking, oxidative stress in
the nigrostriatal pathway was inhibited and loss of dopamine cells
was decreased. These results suggest that consuming H2-rich
water could affect the onset of PD. In recent years, the results of a
clinical trial on the effects of consuming H2-rich water for PD
have been reported.(49) A randomized double-blind study showed
that consuming H2-rich water (1,000 ml/day) for 48 weeks
significantly improved the total Unified Parkinson’s Disease
Rating Scale (UPDRS) score of PD patients treated with levodopa.
A double-blind multi-center trial of H2 water is currently underway
(Table 1).(50)

Alzheimer’s disease (AD). AD, an age-related neurodegen-
erative disease, is the most common cause of dementia.(1,51) Patho-
logically, it is characterized by the deposition of Aβ protein
outside nerve cells and the accumulation of phosphorylated tau
protein inside nerve cells. There is also a marked loss of nervous
cells in the cerebral cortex.(52) In recent years, oxidative stress and
neuroinflammation have been reported to be involved in AD.(1,5)

To date, reports have centered on the involvement of oxidative
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stress in brain parenchyma.(1,51,53) The accumulation of Aβ protein
is strongly associated with the failure of Aβ clearance that is
closely related to the pathogenesis of AD.(5) It is known that low-
density lipoprotein receptor-related protein 1 (LRP1) is involved
in Aβ protein elimination. LRP dysfunction caused by oxidative
stress and neuroinflammation is involved in the onset of AD.(5)

The regulation of oxidative stress and neuroinflammation may
prevent the onset or progression of AD. A number of reports have
investigated the effects of H2 for the prevention of AD onset.

(51,53)

In a rat AD model, it has been reported that the administration
of H2-rich saline (5 ml/kg, i.p., daily) inhibited oxidative stress,
cytokine production, and nuclear factor-κB (NF-κB) production in
the hippocampus and cerebral cortex, and improved impaired
memory.(51,53) It has also been reported that consuming H2-rich
water inhibits age-related brain alterations and spatial memory
decline.(54)

Method and Route of Administration in H2 Therapy

As a small (2 Da), uncharged molecule H2, would be expected to
readily distribute throughout the body, including being able to
easily penetrate cell membranes, However we are unable to
determine the distribution of H2 among organs and its concentra-
tions in each organ and serum based on the administration
methods and dosage. This problem was investigated in 2014.(55) A
comparative review was conducted on the consumption of H2-rich
water, i.p. or intravenous administration of H2-rich saline, and
inhalation of H2 gas. The results showed that the highest concen-
trations are reached 1 min after intravenous administration and
5 min after oral administration. The highest concentration was
reached 30 min after the inhalation of H2 gas and was maintained
for some time. Although H2 concentrations in the brain tend to be
high after either intravenous administration or inhalation, no
significant differences have been observed in comparison with the
concentrations after the consumption of H2-rich water and i.p.
administration of H2-rich saline. Thus, although there have been
variations based on the administration method, all methods have
been found to result in the presence of H2 in the serum and brain
tissue. Liu et al.(39) measured H2 levels in the arteries, veins, and
brain tissues after the inhalation of 2% H2 gas. They found that
arterial H2 peaked at 30 min after administration, whereas venous
and brain tissue H2 peaked at 45 min after administration. They
reported that H2 levels were similar in arteries and brain tissues.
This demonstrated that H2 migrates to the brain tissue regardless
of the method of administration. These results suggest that the
consumption of H2-rich water prevents neurodegenerative disease
and that H2-rich drinking water could be used to treat acute brain

disorders (Fig. 1 and 2).

Conclusions

We have examined the effects of H2 treatment on acute central
nervous system diseases and on chronic neurodegenerative dis-
eases. We have also examined the various mechanism by which H2

exerts its neuroprotective effects H2 acts as a scavenger for OH
−

and ONOO−, affects neuroinflammation, preserves mitochondrial
energy production, and possesses neuroprotective properties.
Unlike more conventional drugs, H2 treatment, particularly the
consumption of H2-rich water, has no known serious side effects
and is effective for preventing the onset of neurodegenerative
disease and aggravation of acute neuronal conditions.
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