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Abstract

The aortic wall is always loaded in vivo, which makes it challenging to estimate the material 

parameters of its nonlinear, anisotropic constitutive equation from in vivo image data. Previous 

approaches largely relied on either computationally expensive finite element models or 

simplifications of the geometry or material models. In this study, we investigated a new inverse 

method based on aortic wall stress computation. This approach consists of the following two steps: 

(1) computing an “almost true” stress field from the in vivo geometries and loading conditions, (2) 

building an objective function based on the “almost true” stress fields, constitutive equations and 

deformation relations, and estimating the material parameters by minimizing the objective 

function. The method was validated through numerical experiments by using the in vivo data from 

four ascending aortic aneurysm (AsAA) patients. The results demonstrated that the method is 

computationally efficient. This novel approach may facilitate the personalized biomechanical 

analysis of aortic tissues in clinical applications, such as in the rupture risk analysis of ascending 

aortic aneurysms.
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1. Introduction

Advances in imaging techniques and numerical methods have made it possible to investigate 

the in vivo biomechanics of the cardiovascular system on a patient-specific level. For the 

three key components in a mechanical analysis (geometries, loading and boundary 

conditions, and material properties), patient-specific geometries (e.g., anatomic structures of 

the aorta) and physiological loading conditions (i.e., diastolic and systolic pressures) can be 
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obtained at a high level of spatial and temporal resolutions from clinical diagnostic imaging 

tools, such as CT scans, and hemodynamic measurements, respectively [1]. However, even 

though tremendous efforts have been devoted to the development of techniques for the 

accurate estimation of in vivo tissue material properties, the results are far from satisfactory.

Numerical estimation of the material properties of a particular material often employs 

inverse techniques. In such methods [2, 3], the estimation of constitutive parameters of the 

material is often obtained based on boundary conditions and displacement/strain fields, 

measured experimentally. An inverse approach, known as the virtual field method [4], has 

been developed for extracting homogenous [5] and heterogeneous constitutive parameters 

from in vitro full-field measurement data [6] of blood vessels whose reference 

configurations are unloaded. However, the configuration of in vivo imaging data is always 

loaded, which makes estimating the constitutive parameters from in vivo loaded geometries 

challenging.

In vivo material properties are typically characterized by: (1) recovering or estimating the 

unpressurized geometry, (2) deforming the geometry in finite element (FE) simulations with 

in vivo loading and boundary conditions with the estimated constitutive parameters, and (3) 

by using certain optimization methods, the estimated constitutive parameters will be 

adjusted, and optimal parameters will be identified such that some physical measurements 

(e.g. strain/displacement) are matched between the simulated, deformed configuration and 

the in vivo loaded configuration. Using such strategies, Wittek et al. [7, 8] developed two 

methods to determine patient-specific material parameters of the human aorta from in vivo 
strain measurements. The Holzapfel–Gasser–Ogden (HGO) model [9] was used in Wittek’s 

study. Zeinali-Davarani et al. [10] evaluated local wall thickness and material anisotropy of 

the human aorta, while other constitutive parameters were determined through biaxial tests. 

Using similar strategies, Liu et al. [11], Zhang et al. [12] and Franquet et al. [13] identified 

linear elastic material parameters from in vivo images.

Despite the differences in constitutive models and optimization objective functions, all of the 

abovementioned studies used nonlinear optimization algorithms to find the optimal material 

parameters in an iterative manner, and FE simulations were performed in each iteration. 

Since a large number of iterations are needed to reach the optimal solution, these methods 

are very time consuming. For example, in the study reported in [7, 8], it took about 2 weeks 

to find the optimal material parameters. Such high computing cost prevents the practical use 

of these methods, particularly in a clinical setting requiring fast feedback to clinicians. To 

avoid costly FE simulations, some forms of simplifications and assumptions were made in 

several studies. By assuming an perfectly cylindrical shape of the aorta, Astrand et al. [14] 

and Smoljki´c et al. [15] estimated the HGO model parameters. Trabelsi et al. [16] proposed 

a multiple linear regression-based method to estimate the constitutive parameters by 

assuming a linear relation between the volume of the aorta and the constitutive parameters of 

the Demiray model.

In this study, we proposed a new inverse approach based on stress computation for the in 
vivo nonlinear material parameter estimation of the aortic wall. This method is less 

computationally expensive. Firstly, we leveraged the fact that the in vivo aortic wall stress is 
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approximately statically determinate, which means, for given geometries and loading and 

boundary conditions under a known blood pressure, different material parameters and 

constitutive models will give nearly the same stress field. Therefore, the “almost-true” in 
vivo stress field at any cardiac phase can be obtained by using an infinitesimal linear elastic 

model with sufficiently stiff material parameters. Secondly, given a constitutive model with 

an initial guess of the material parameters, by using the constitutive equations and 

deformation relation between the two loading states (e.g., diastolic and systolic pressures), 

we applied optimization algorithms to find the “true” material parameters such that the 

difference between the estimated and the “almost-true” stress fields is minimized. Since FE 

simulation is not used iteratively in this optimization process, our approach is much faster 

than the other methods [7, 8] that require numerous iterations of FE simulations. The 

proposed approach may facilitate the subject-specific biomechanics analysis of aortic wall 

stresses in clinical applications, such as in the rupture risk analysis of ascending aortic 

aneurysm [17].

2. Methods

2.1 Prerequisites and Assumptions

Our method was formulated based on the following assumptions: (1) In vivo loaded 

geometries of the aorta and blood pressure levels are known at 2 phases, e.g., at diastole and 

systole; (2) Finite element meshes of the geometries at the two phases can be constructed 

with mesh correspondence, i.e., the displacement field from systole to diastole is obtainable, 

similar to the full field measurement [6]; (3) the thickness of the aortic wall can be either 

directly inferred from the clinical images or can be reasonably assumed; and (4) by 

assuming the aorta is statically determinate, the circumferential and longitudinal residual 

stresses are ignored. The mesh correspondence condition may be satisfied by using 4D (3D

+t) ultrasound image data processed with speckle tracking algorithms [18], or 4D CT image 

data processed with surface tracking algorithms [19]; the heterogeneous thickness of the 

aortic wall may be extracted by using CT [20–22], MR[23] and ultrasound [24, 25] imaging 

techniques.

In this paper, we only considered the homogeneous (average) constitutive behavior of the 

aortic segment and across the wall thickness. However, our approach can be extended to 

heterogeneous tissues since it is not based on the assumption of homogeneity.

2.2 Constitutive Model

The fiber reinforced HGO hyperelastic material model from Gasser et al. [9] was used to 

model the constitutive response of aortic wall tissue. In this model, tissues are assumed to be 

composed of a matrix material with two families of embedded fibers, each of which has a 

preferred direction. The fiber directions can be mathematically described using two unit 

vectors. The strain energy function can be expressed by

(1)
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where C10 is material parameter to describe the matrix material. k1 is a positive material 

parameter that has the same dimension of stress, while k2 is a dimensionless parameter. The 

deviatoric strain invariant Ī1 is used to characterize the matrix material; and the deviatoric 

strain invariant Ī4i is used to characterize the fiber families. Ī4i is equal to squares of the 

stretches in the fiber directions. k is used as a dispersion parameter describing the 

distribution of fiber orientation. When k = 0, the fibers are perfectly aligned. When k = 0.33, 

the fibers are randomly distributed, and the material becomes isotropic. D is a parameter that 

controls material incompressibility and is fixed to 10−4. during all computations. A 

parameter θ defines the angle between mean local fiber direction and the circumferential 

axis of the local coordinate system. Thus, five material parameters are included in this model 

as denoted by C10, k1, k2, k, θ.

2.3 The Method for Constitutive Parameter Estimation

The work flow of our material parameter estimation process is shown in Figure 1. This 

approach leverages the fact that the “almost-true” stress field of the aortic wall can be 

approximately determined by the geometry and blood pressure load, and only weakly 

depends on material properties. This fact has been theoretically justified by Miller and Lu 

[26] and numerically verified by Lu et al. [27] and Joldes et al.[28]. Therefore, given the 

deformed configurations at the two cardiac phases, xa at the diastole phase and xb at the 

systole phase, the “almost-true” stress of each element m of the aortic wall at the two phases, 

 and , respectively, can be calculated by using an infinitesimal finite element method 

(see Section 2.4). In this paper, we use subscript a and b to denote the diastole and systole 

respectively, but generally they can represent any two loaded phases as long as the pressure 

levels and geometries are known. The relative deformation gradient  from the diastolic 

configuration to the systolic configuration can be calculated using the relative displacement 

field uab between the two configurations. As a result, the systolic stress of each element can 

be estimated by using the constitutive model with the candidate parameters and relative 

deformation gradient. The estimated systolic stress, , which depends on the 

constitutive parameters (C10, k1, k2, k, θ), can be compared with the “almost-true” systolic 

stress , and any discrepancy will indicate that the set of candidate parameters are different 

from the optimal “true” parameters and hence need to be adjusted by a nonlinear 

optimization algorithm.

This optimization process can be formulated as follows: the objective is to find a set of 

constitutive parameters (C10, k1, k2, k, θ) that minimize the difference between the “almost-

true” systolic tress  and the estimated systolic tress  for every integration point of 

each element m, which is defined as

(2)
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where N is the number of elements used in the optimization, i is the component index of the 

stress tensor in Voigt notation. At element m,  is the component of the estimated 

systolic stress given a set of candidate constitutive parameters (C10, k1, k2, k, θ). For a type 

of element that has more than one integration point such as C3D8 in the ABAQUS (Simulia, 

RI), we calculated the squared stress-errors at all integration points and sum them together 

as the value of the objective function of Eq. (2).

The details of each step in the approach are presented in the following sections. The 

infinitesimal finite element method that was used for calculating  and  is described in 

Section 2.4. The method for estimating  is described in Section 2.5. The optimization 

process and the entire work flow are described in Section 2.6. To verify the approach, 

numerical experiments were carried out on the data from four ascending aortic aneurysm 

patients in Section 3.3.

2.4 Computation of the “Almost-true” Stress using Infinitesimal FE

Generally, the stress of a deformable body depends not only on its geometry, load and 

boundary conditions, but also on the mechanical properties of the material. However, in 

statically determinate problems [26], the stress in a deformed configuration is insensitive to 

the material properties. For example, the stress of a thin cylindrical wall can be directly 

obtained using Laplace’s law, which has been used extensively in studies of aneurysms [29]. 

The pressurized aneurysms have been shown to be approximately “statically determinate” 

[28].

Therefore, if we specify a very stiff material on the aortic wall, the deformation should be 

infinitesimal and the stress can be computed by directly applying physiological pressure to 

the loaded geometry in a linear elastic finite element solver [28]. The computed stress is 

considered to be “almost-true”, i.e., very close to the true stress in the aortic wall. In this 

study, we selected a very stiff material (E = 2 × 104 GPa and ν = 0.49) for the aortic wall to 

obtain the wall Cauchy stress (Figure 1). This stress estimation method was numerically 

validated in Section 3.1.

2.5 Continuum Mechanics Framework for Systolic Stress Estimation

In this section, we presented a method using the corotational coordinate frame to estimate 

the systolic stress ( ) given the candidate material parameters (C10, k1, k2, k, θ) of Eqn 

(1). Figure 2 illustrates the related variables in the unloaded configurations and the two 

deformed configurations. The diastolic deformation gradient Fa contains complete 

information about rotation and stretch that can be uniquely defined via polar decomposition

(3)

where Va is the left stretch tensor, Ua is the right stretch tensor, Ra is the rotation tensor. We 

defined two coordinate systems CSYSI and CSYSII, where CSYSI refers to a fixed 

Cartesian coordinate system, and CSYSII is the coordinate system corotated with the 
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diastolic rotation Ra. Let Ω0 be the unloaded configuration and  be the corotated unloaded 

configuration obtained by applying the diastolic rotation Ra on Ω0. Ωa and Ωb are the 

diastolic and systolic configurations respectively.

2.5.1 Calculation of Deformation Gradient Tensors—As shown in Figure 2, the 

diastolic deformation gradient Fa, the systolic deformation gradient FB and the relative 

deformation gradient Fab in CSYSI are defined through:

(4)

where X0, xa and xb are coordinate vectors of the unloaded, diastolic and systolic 

configurations respectively, which are defined in CSYSI. Similarly, the deformation tensors 

Ṽa, F̃ab, F̃b, are measured in CSYSII.

2.5.2 Obtaining the Diastolic Deformation Gradient using the Corotational 
Frame—Given the diastolic Cauchy stress, we need to first inversely compute the diastolic 

deformation gradient Fa in order to obtain the systolic deformation gradient. The main 

challenge came from the fact that the symmetric Cauchy stress tensor has only 6 

independent components, which makes it impossible to get a unique solution of the diastolic 

deformation gradient Fa that has 9 independent components. To solve this issue, taking 

advantage of the material objectivity [30, 31], we have the following restriction on the 

constitutive function h using the corotational frame

(5)

where σ̃a is the diastolic Cauchy stress observed in CSYSII. Instead of fully computing the 

deformation gradient Fa, knowing the σ̃a, the only quantity we need to explicitly derive is 

the left stretch tensor Ṽa in CSYSII (the value of Ṽa is equal to Ua in CSYSI, 

). According to the chain rule, we can arrive at the relation 

among the deformation gradients:

(6)

where F̃ab is known. As a result, the systolic Cauchy stress σ̃b can be correctly recovered in 

CSYSII.

2.5.3 Inverse Computation of Diastolic Left Stretch Tensor—On account of the 

nature of strain energy function Ψ(F), i.e. σ is always expressed in terms of deformation in a 

forward computation, given a deformation gradient, the Cauchy stress of a hyperelastic 

material can be calculated using [32]
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(7)

where σvol and σiso denotes the volumetric and isochoric contribution respectively, p is the 

hydrostatic pressure p = dΨvol(J)/dJ, I is identity. F̄ is the modified deformation gradient 

calculated by F̄ = J−1/3F. S̄ can be expressed by S̄ = 2∂Ψiso (C̄)/∂C̄ and Dev(■) = (■) 

− (1/3)[(■):C]C−1, where the modified right Cauchy-Green deformation tensor C̄ = J−2/3 C. 

For fixed constitutive parameters, the stress σ is essentially a function of F. If a deformation 

does not have rotation, we can also compute σ using the above formulations by substituting 

F with left stretch tensor V.

An inverse computation scheme was introduced to compute the diastolic left stretch tensor 

Ṽa in the CSYSII. Nonlinear least square optimization was used for the computation of Ṽa, 

with 6 unknowns and as many as the number of equations. The objective function was 

defined by

(8)

where the stress tensor is represented in Voigt notation.  represents the components of 

estimated diastolic stress computed using a guess of Ṽa. The trust region algorithm is used 

and gradients are estimated using finite differences. The optimization was implemented in 

MATLAB (Mathworks, MA), and a numerical validation was performed in Section 3.2.

2.6 Implementation of the Parameter Estimation

The finite element simulations were performed in ABAQUS/Standard 6.14 using the 3D 

brick element C3D8. Since the stress of each integration point in an element outputted from 

ABAQUS is in the local coordinate system associated with the element, the local coordinate 

system of the output diastolic stress σ̃a of the element is defined as CSYSII. The systolic 

stress of the same element output from ABAQUS was converted to σ̃b in CSYSII. Here, the 

infinitesimal finite element method was used to obtain σ̃a and σ̃b at the two phases. For 

convenience, displacement uab was applied as a boundary condition at every node in 

ABAQUS to obtain the relative deformation gradient, which is output and converted to F̃ab 

in CSYSII.

The work flow of the parameter estimation process is depicted in Figure 3. The inner loop is 

responsible for the inverse calculation of the left stretch tensor Ṽa at each element, the 

second loop is repeated for all of the elements, and the outer loop updates candidate material 

parameters in each iteration. The method was implemented in MATLAB. We used the finite 

difference and trust-region-reflective algorithm for the optimization, which is “lsqnonlin” in 

MATLAB.
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3. Numerical Validations

The approach was validated by numerical experiments. Clinical cardiac CT image data at the 

systolic phase (assuming 120mmHg systolic pressure) from four de-identified patients with 

ascending aortic aneurysms (AsAA) were chosen for the verification, whose “true” 

constitutive parameters were extracted from 7-protocol biaxial tensile tests in a previous 

study [33] by nonlinear regression. The “true” material parameters are within the upper and 

lower bounds, which are also comparable to other testing results [34–36]. The initial value, 

upper and lower bounds of the constitutive parameters are shown in Table 1.

The geometries of the aorta were reconstructed by using the semi-automatic method 

developed in our previous study [37]. For simplicity, the branches at the aortic arch were 

trimmed. We used the following methods to numerically obtain the “true” geometries and 

stress fields at the diastolic and systolic phases. We assigned experimentally derived material 

parameters [33] to the corresponding geometries. From CT image data, the unloaded 

geometries were recovered by the backward displacement method [38], and they were 

assumed to have a constant wall thickness of 2 mm [17]. The “true” diastolic and systolic 

geometries were obtained from FE simulations by applying diastolic (P=80mmHg) and 

systolic (P=120mmHg) pressures on the unloaded geometries. Thus, this only represents an 

idealized situation where the influence of residual stress is not present in the numerically 

generated data. Each finite element mesh consists of 10,000 nodes and 4950 elements. Mesh 

convergence analysis was performed in our previous work [17], and the number of elements 

is adequate for accurate stress predictions. Mesh correspondence at the two phases was 

automatically established because the two meshes at the two phases were deformed from the 

same mesh at the unloaded state.

In all FE simulations, constant pressures were applied uniformly to the inner surface of the 

FE models, and the boundary nodes of the models, i.e. the proximal and distal ends of the 

models, were constrained to only allow displacement in the radial direction in the local 

cylindrical coordinate system. The centerline of the aorta was estimated to define the 

longitudinal direction of the local coordinate system, and the radial direction was computed 

using the outward normal direction of the outer surface of the aorta. The local coordinate 

system followed the average rotation of the element [30], the stress of an element was 

outputted in the rotated coordinate system. In the parameter estimation procedure, five layers 

of elements adjacent to the mesh boundaries were excluded in order to avoid the boundary 

layer phenomenon [26]: the influence of material properties is pronounced only in a thin 

layer near the fixed edge; and the stress approaches asymptotically a static solution outside 

the boundary layer.

3.1 “Almost-true” Stress Computation

We compared the “true” stress field computed from nonlinear finite deformation FE with 

“true” material parameters, to the “almost-true” stress field computed from infinitesimal 

linear elastic FE with a stiff material (E = 2 × 104 GPa and ν = 0.49) under the same loading 

conditions. As shown in Figure 4, for each FE method, the scalar-valued Von Mises stress 

field was visualized at the pressure level of 120mmHg. Mean absolute percentage error 

(MAPE) was calculated for each patient (named as AsAA1, AsAA2, AsAA3, and AssAA4), 
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which is in the range of 6% ~ 10%. The results demonstrate that the simple linear elastic FE 

can produce the “almost-true” stress field within 10% of the “true” values.

3.2 Inverse Computation of Diastolic Left Stretch Tensor

The validation for the inverse computation of Ṽa was performed by using randomly 

generated Fa and the “true” material parameters of patient AsAA2 (see the Appendix for the 

method to randomly generate Fa). For the given set of constitutive parameters, the Cauchy 

stress σa = h(Fa) was computed and rotated to σ̃a in CSYSII (Figure 2). The “true” 

 was computed by using polar decomposition and coordinate transformation 

of Fa. Using the inverse computation scheme from Section 2.5.3, we estimated the Cauchy 

stress and left stretch tensor in CSYSII . The mean errors between the 

components of the estimated  and “true” Ṽa were calculated. The procedure was 

implemented in MATLAB, and it was repeated for numerous randomly generated Fa. As 

shown in Figure 5, the result demonstrated that the error of the estimated left stretch tensor 

was negligible, and the optimization algorithm worked well for the inverse computation.

3.3 Constitutive Parameters Estimation of Ascending Aortic Aneurysms

We applied the method to estimate the material parameters of the four patients (AsAA1, 

AsAA2, AsAA3, and AsAA4). To evaluate the estimation results, in MATLAB, we 

simulated biaxial tensile stretches of 3 protocols using the estimated parameters and the 

“true” parameters, and the stresses and stretches in the circumferential and longitudinal 

directions were compared. σ1 and λ1 denote the circumferential stress and stretch. σ2 and λ2 

denote the longitudinal stress and stretch. For each patient, we obtained σ1 and σ2 using the 

following 3 protocols: (1) in the circumferential strip biaxial tension, we fixed λ2 = 0 while 

increasing λ1; (2) in the equi-biaxial tension, we kept the ratio λ1/λ2 = 1 ; (3) in the 

longitudinal strip biaxial tension, we fixed λ1 = 0 while increasing λ2.

During the optimization process, the parameters were converged in iterations from the initial 

values toward the optimal values. An example from patient AsAA2 is shown in Figure 6. 

The optimization started from a set of initial parameters representing a very stiff material, 

and gradually the stretch-stress curves converged and approached to the “true” curve.

After running the parameter estimation procedure for each patient, the estimated material 

parameters were compared with the “true” parameters, and the result is shown in Table 2, 

which demonstrated that the estimated parameters have good agreement with the “true” 

values, except θ. To evaluate how the difference between the estimated and the “true” 

parameters affects stress and stretch, we plotted the stretch-stress curves from numerical 

experiments in Figure 7. The coefficient of determination was calculated to measure the 

discrepancy between the estimated and “true” curves for each patient, as shown in Table 3. 

The mean and standard deviation of the systolic stresses are shown in Figure 8. Close 

agreements can be clearly seen. In addition, it was observed that the stress in the 

circumferential direction was largest in all cases and approximately twice the longitudinal 

stress; the stress across the thickness and the shear stress were relatively small.
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The parameter estimation program was run on a desktop computer with quad-core CPU and 

32 GB RAM. Table 4 shows the computing time cost for each patient. All of the 

computations were done within 2 hours, much faster than other methods reported in the 

literature [7, 8].

4. Discussion

In this study, we presented a novel inverse method that can estimate the in vivo material 

properties of the aortic wall in a fast manner. The method utilized the fact that infinitesimal 

FE simulations can be used to estimate the in vivo stress distributions of the loaded aortic 

wall, provided the in vivo geometry and loading conditions of the aortic wall are known. We 

built an objective function (Eq.2) directly from the constitutive equations to iteratively 

search for the optimal material parameters. The accuracy of the method was validated by 

using four AsAA patient data. The constitutive parameters and the aortic wall material 

responses have been successfully recovered. The largest error can be observed in the 

constitutive parameter θ, describing the local fiber mean direction, which is possibly caused 

by the fact that the parameter κ derived from biaxial experiment is close to 1/3 (isotropic), 

and therefore θ does not affect the stress computation.

This approach is much less computationally expensive (1–2 hours) than the iterative FE 

simulation based approach [7, 8] (1–2 weeks), because It avoids solving finite element 

problems iteratively. We defined the objective ferr and gerr in terms of stress, and the 

analytical expression of the Jacobian (i.e. derivative of the objective function with respect to 

constitutive parameters) exists, which means the Jacobian can be well approximated by 

finite difference. This probably helps the optimization to converge in a relatively small 

number of iterations, e.g., 12 iterations for patient AsAA2.

In general, the constitutive parameter optimization problem is nonlinear, multivariate and 

non-convex; and such a problem may exhibit several local optima. Jacobian-based 

optimization methods (e.g. the method used in this approach) may not guarantee a global 

optimum as shown by the difference in parameters in Table 2. However, using the sub-

optimal parameters, we obtained very good material responses and wall stress distributions 

compared to the “true” values, and therefore the suboptimal parameters are indeed 

acceptable. Optimization using many initial guesses may improve the results, but it will lead 

to a much longer computing time.

The difference between the “true” stress field computed from nonlinear finite deformation 

FE and the “almost-true” stress field computed from infinitesimal linear elastic FE is clearly 

visible in Figures 4 and Figure 8. This discrepancy probably came from the boundary effects 

[26]. The restricted boundary nodes limited the longitudinal deformation of the aorta model. 

Although the “almost-true” stress alone can be used in many applications, such as using the 

stress-based rupture potential index as an aneurysm rupture risk predictor [39], different 

tissue damage and failure models exist such as accumulated energy [40, 41], stretch based 

criterion [42] and distensibility [43] which rely on the deformation and thus depend on 

patient-specific material properties. Previous works in our group [17] showed that the failure 

pressure of ascending aortic aneurysm was much higher than the measured systolic pressure, 
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and the failure behavior of the aorta were highly correlated with material properties. Thus, 

patient-specific material properties enable the analysis of the wall stress at various loading 

and deformation conditions that cannot be recorded by in vivo imaging.

Motion tracking using ultrasound images (known as speckle tracking) has been applied for 

left-ventricle (LV) motion analysis and strain measurement. The 2D+t (2-dimension plus 

time) speckle tracking was validated using a rabbit heart model and a simulated heart which 

shows an average strain error of 0.08% [44]. Automatic algorithms [45–50] for 3D+t LV 

segmentation and tracking using ultrasound images have been developed over the last eight 

years. As for ultrasound speckle tracking of vessel wall, Larsson, et al. [51] performed 

validation experiments, in which crystal markers were implanted on the artery wall in order 

to obtain the “ground truth” strain measurement. 3D+t ultrasound speckle tracking has been 

applied to study aortic wall strain of healthy and abdominal aortic aneurysms patients in 
vivo by Karatolios, et al. [52]. By using this method to obtain in vivo strain measurement, 

Wittek et al. [7, 8] developed the FE updating approach for in vivo material parameter 

estimation. For clinical applications, fully automatic segmentation and speckle tracking 

algorithms for the aortic wall are needed, which can be developed based on the algorithms 

for LV segmentation and tracking.

The unloaded configuration was assumed to be stress-free in this approach, and thus residual 

strain and stress was ignored, which is a limitation of this study. Several methods have been 

developed to incorporate residual stress into patient-specific modeling [53–55]. The 

circumferential residual stress mainly affects the hoop stress distribution, which 

homogenizes the hoop stress field (i.e., decreasing stress in the inner layer, and increasing 

stress in the outer layer). Our approach aims for the averaged (homogeneous) constitutive 

behavior across the thickness direction. To account for the residual stress, typically a three-

layer residual stress model [53] (intima, media, adventitia) should be used with layer-

specific material properties and geometrical parameters, which was not the setup for our 

study. Without taking into account of the circumferential residual stress, we may 

overestimate the inner layer stress and underestimate the outer layer stress. However, the 

assumption of static determinacy requires a thin wall structure, in which the stress is 

assumed to be nearly constant over the wall thickness. In addition, as suggested by Labrosse 

et al. [56], whether account for the residual stress or not did not appreciably affect the 

material constant estimation. For the FE studies of abdominal aorta, the longitudinal pre-

stretch is often prescribed as a boundary condition (BC) by an age- or gender- match as 

suggested by Horny et al [57]. For the abdominal aorta, the BC can be relatively easily 

applied to the “tubular” geometry. However, for the ascending aorta, there are limited data 

on the longitudinal pre-stretch of humans in the literature. For a mouse model study [58], the 

longitudinal pre-stretch is about 1.1~1.2 for the ascending and proximal thoracic aorta, 

compared to a high value of 1.6 in the abdominal aorta. Furthermore, as the geometry of the 

ascending aorta is actually a “curved tube”, the direction in which the force or displacement 

BC should be applied is unknown, and we have tried to apply such BCs (with random 

directions) but got severe FE convergence problems. Also, the pre-stretch would introduce 

another unknown, which will make the static determinacy of the aorta questionable. Due to 

these considerations and difficulties, we did not incorporate residual stress in the current 

approach.
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In clinical applications, the thickness of aortic wall is measurable. It has been reported that 

the wall thickness of the abdominal aorta could be measured by using CT [20–22], MR[23] 

and ultrasound [24, 25] imaging techniques. It is challenging to measure the thickness of the 

ascending aorta because of the surrounding tissue and partial volume effect. By combining 

CT and MR as did in [28], it is feasible to approximately measure the wall thickness of the 

ascending aorta. Our future work will test the approach in a real case which will incorporate 

the wall thickness measurement. Typically, in a forward analysis, a constant wall thickness 

of the unloaded state is assumed, whereas in our inverse approach, the wall thicknesses of 

the in vivo loaded states is needed. In our verification, a constant wall thickness of the 

unloaded configuration was assumed, and thus the numerically generated data contained the 

heterogeneous wall thickness. By assuming the aortic wall is statically determinant, even if 

the thickness is unknown, the wall tension can be reliably computed [28]. Thus, by assuming 

a constant wall thickness, the tension field is essentially the stress filed multiplied by a 

factor. Therefore, we hypothesize that it might be possible to build the optimization 

approach upon the tension field instead of the stress field in the objective function, which 

then does not need the wall thickness. Heterogeneous wall thickness may have a significant 

impact on the wall stress distribution, making it different from the wall tension field. Hence, 

verifications are needed to ensure the validity of constant wall thickness assumption, which 

will be our future work.

For the convenience of numerical validation, only the homogenous constitutive behavior was 

studied in this paper. The approach can be extended to heterogeneous thickness and 

constitutive parameters by slightly altering the work flow, i.e., evaluating one objective 

function gerr for one element or one group of elements at a time. In the numerical 

validations, the backward displacement method [38] was used to recover the unpressurised 

geometries for generating “true” diastolic and systolic geometries. The unpressurised 

geometries can also be obtained by using other approaches [59–62].

5. Conclusion

We proposed a fast and effective method for constitutive parameter estimation of the aortic 

wall by using the in vivo loaded geometries at 2 cardiac phases with known blood pressures. 

For each patient, the method only needs to run infinitesimal linear elastic FE simulations 

twice to obtain the stress fields at the 2 cardiac phases, and the rest of the computation can 

be run in MATLAB. The inverse computation is mainly dependent on solving nonlinear 

constitutive equations and optimization algorithms. Good agreement has been achieved 

between the estimated and “true” material parameters in the numerical verification. The 

method can be applied to estimate in vivo material properties of the aortic wall in 

applications, such as the AsAA rupture risk analysis.
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Appendix

The Method to Randomly Generate Deformation Gradient Fa

The following steps were used to generate a random Fa: 1) the in-plane principle stretches 

λ1 and λ2 were randomly sampled in the range [1, 1.6], 2) the out-of-plane principle stretch 

λ3 was randomly sampled in the range determined by the constraint that λ1λ2λ3 is in the 

range of [0.9, 1.1], 3) orthogonal basis Nk (k = 1,2,3) was also randomly generated, 4) Ua 

was assembled as , 5) An orthogonal rotation tenor Ra was randomly 

generated, and finally 6) we obtained a random Fa by using Fa = RaUa.
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Figure 1. 
The flowchart of the material parameter estimation process.
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Figure 2. 
Deformation measures that map the unloaded configuration Ω0, the corotated unloaded 

configuration , the diastolic configuration Ωa and the systolic configuration Ωb.
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Figure 3. 
Implementation of the constitutive parameter estimation.
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Figure 4. 
Comparison of Von Mises stress computed using nonlinear finite deformation FE (a), (c), (e) 

and (g) and that computed from infinitesimal linear elastic FE (b), (d), (f) and (h). Pressure = 

120mmHg. Mean absolute percentage error (MAPE) for patient geometry AsAA1 ((a)&(b)), 

AsAA2 ((c)&(d)), AsAA3 ((e)&(f)) and AsAA4 ((g)&(h)) is obtained by taking the 

nonlinear FE computed stress as “true” value.
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Figure 5. 
Validation of the inverse computation of left stretch tensor Ṽa using the constitutive 

parameters of patient AsAA2 (C10, k1, k2, k, θ) = (29.91, 512.56, 0.00, 0.3190, 90.00). The 

error is calculated by comparing the estimated  with “true” Ṽa, the error bars represent 

the standard deviations.
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Figure 6. 
Equi-biaxial stretch-stress curves show the convergence of the optimization for AsAA2. The 

solid black line is the “true” curve, and the dashed curves correspond to the estimated 

parameters in each iteration. Stress in the circumferential direction is plotted.
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Figure 7. 
Stretch-stress curves in 3-protocol numerical stretch-controlled tensile experiments for (1) 

strip biaxial tension in the circumferential direction (a), (d), (g) and (j); (2) equi-biaxial 

tension (b), (e), (h) and (k); (3) strip biaxial tension in the longitudinal direction (c) (f) (i) 

and (l). The comparison of “true” and estimated curves for one patient is in the same row, 

i.e., (a)(b)(c) for AsAA1, (d)(e)(f) for AsAA2, (g)(h)(i) for AsAA3, (j), (k)(l) for AsAA4.

Liu et al. Page 23

J Mech Behav Biomed Mater. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 8. 
Comparison of “true”, “almost-true” (i.e. computed from infinitesimal FE), and estimated 

systolic stress from optimization for patient (a) AsAA1, (b) AsAA2, (c) AsAA3 and (d) 

AsAA4. The error bars represent the standard deviation.
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Table 4

Time spent for the parameter estimation for each patient.

AsAA1 AsAA2 AsAA3 AsAA4

Time cost(min) 56 104 117 84
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