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Abstract

The extracellular matrix of articular cartilage is structurally specialized for efficient absorption of 

mechanical impact. In particular, giant aggregates of the large chondroitin sulfate proteoglycan, 

aggrecan, with the glycosaminoglycan, hyaluronan, allow cartilage to resist compressive load. 

Proteolysis of aggrecan by members of the proteinase family ADAMTS (A disintegrin-like and 

metalloproteinase domain with thrombospondin type 1 motif), was identified as an early step in 

the inexorable destruction of cartilage in osteoarthritis (OA). Of the investigated proteinases, 

ADAMTS5 has emerged as a principal mediator of aggrecan loss in OA, convincingly so in mouse 

models, and with high probability in humans. ADAMTS5 has a bipartite organization, comprising 

a proteinase domain and an ancillary domain containing exosites for interaction with aggrecan and 

other substrates. In a recent issue of this journal, Santamaria et al. characterized anti-ADAMTS5 

monoclonal antibodies isolated from a phage display library. By blocking the catalytic site of the 

ADAMTS5 immunogen with a synthetic inhibitor, the authors of the paper biased selection of 

antibodies to the ancillary domain. This work, together with other antibodies targeting 

ADAMTS5, offers diverse, high-affinity and, as far as can be determined, selective aggrecanase 

inhibitors. Mapping of their epitopes provided novel insights into ADAMTS5 interactions with 

aggrecan. These monoclonal antibodies deserve continued investigation for potential arthritis 

therapy, although their successful use will require a comprehensive understanding of the 

physiological roles of ADAMTS5, and its regulation, intrinsic properties and intermolecular 

interactions.
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Osteoarthritis (OA) is a common ‘degenerative’ disorder of synovial joints resulting from 

loss of articular cartilage, reactive changes in subchondral bone and varying degrees of 

synovial inflammation. Its manifestations are joint pain, joint stiffness and, periodically, 

joint swelling, which reduce mobility and adversely affect the quality of life. Although it can 

affect any synovial joint, OA of the hip, knee, spine and hands commands the most clinical 

attention. OA is a progressive, irreversible condition that is common in both sexes after the 
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fifth decade of life. Its incidence and severity within the population increase steadily 

thereafter, portending epidemic proportions as life expectancy improves globally. Current 

pharmacological treatment addresses the symptoms of OA without modifying the disease 

itself. Definitive resolution of OA is provided only by joint arthroplasties, which are major, 

expensive, surgical procedures requiring advanced medical facilities, unavailable in many 

parts of the world.

These imperatives, especially the prospect of a large ageing population, have driven 

investigation of OA mechanisms as a gateway to the development of disease-modifying 

therapy. The current view of OA pathobiology is that it is a disease of the entire joint, but 

arises from progressive loss of articular cartilage, with secondary effects on underlying bone 

and articular soft tissues. Articular cartilage comprises chondrocytes, present at a relatively 

low cell density, and an abundant extracellular matrix, the components and networks of 

which have evolved specifically to absorb mechanical impact. Aggrecan, a large sulfated 

proteoglycan that forms giant supramolecular aggregates with the glycosaminoglycan 

(GAG) hyaluronan (HA) [1,2], is a major cartilage constituent. Aggrecan core protein 

comprises three globular domains – G1, G2 and G3 – and the region between the G2 and G3 

domains is modified by attachment of the GAGs keratan sulfate (KS) and chondroitin sulfate 

(CS) [3] (Figure 1). Extensive sulfation of KS/CS and aggregation with HA generates a 

substantial fixed negative charge that renders the aggregates highly hydrated, and the 

resulting swelling pressure confers the desired viscoelastic properties to cartilage. HA is 

bound by the G1 domain in a ternary complex which includes a cartilage link protein, 

whereas the G3 domain interacts with several matrix molecules such as fibulin-1 and -2, 

fibrillin-1, and tenascin-C and -R [3]. Thus, aggrecan contributes unique intrinsic properties 

and is an indispensable component of a crucial network in cartilage matrix.

The swelling pressure exerted by HA–aggrecan is constrained by a network of collagen II-

rich fibrils, associated with small leucine-rich proteoglycans [4]. Through the compressive 

resilience provided by HA–aggrecan aggregates, and the resistance to shear and tension 

provided by the fibrils, cartilage efficiently absorbs multiaxial loads. Loss of aggrecan, an 

early hallmark of OA, results not from physical ‘wear and tear’, but from an active, protease-

mediated catabolic process, the instigating factors of which include joint trauma, joint 

malalignment or genetic variations that weaken cartilage extracellular matrix. Aggrecan 

depletion is believed to expose surface molecules on collagen fibrils and, subsequently, the 

collagen II fibrils themselves to proteolytic degradation [5,6], by which point the disease 

process is well nigh irreversible. Evidence also exists for feedback loops in which the 

products of cartilage catabolism potentiate joint damage [7–9]. For these reasons, aggrecan 

catabolism became a major focus of many academic and pharmaceutical laboratories.

The paper by Santamaria et al. [10] in the Biochemical Journal, as well as other recent 

successes in developing selective, high-affinity, inhibitory antibodies [11,12], is the 

culmination of almost three decades of intense research on mechanisms of aggrecan 

proteolysis. The sequence of discoveries tells a remarkable scientific story. The concept of 

‘aggrecanase’ as a catabolic entity distinct from known matrix-degrading proteinases, then 

chiefly the matrix metalloproteinases (MMPs), first arose in the early 1990s. Sandy et al. 

[13,14] noted that the bulk of aggrecan found in OA synovial fluid had the N-terminus 
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A374RGS (mature human/bovine aggrecan sequence enumeration), and attributed cleavage 

at the Glu373–Ala374 peptide bond in the ‘interglobular domain’ (IGD), i.e. between G1 and 

G2, to a putative novel proteinase (Figure 1). In contrast, cartilage matrix contained the 

remnant N-terminal, hyaluronan-binding region of aggrecan (Figure 1). The development of 

antibodies specifically detecting the new IGD N- and C-termini (neoepitope antibodies) 

[15], and other neoepitopes within the CS-bearing domain [16], was a major advance, 

enabling the discovery of aggrecanase. Anti-A374RGS neoepitope antibodies identified 

aggrecanase-derived cleavage products in OA synovial fluid and showed intense staining in 

OA cartilage. Staining was also evident in histologically normal cartilage, suggesting that 

OA could be incipient with a long latency, although the staining could also have arisen from 

physiological matrix turnover in the chondrocyte pericellular matrix [17]. The Glu373–

Ala374 cleavage was detectable in aggrecan fragments released from retinoic acid or 

interleukin-1-treated cartilage explants and chondrocytes, providing a system for in vitro 
manipulation, characterization and finally isolation of the putative aggrecanase(s) [18,19]. 

The identity of aggrecanase remained a mystery for a while, because cognate matrix-

degrading enzymes such as MMPs were unable to reproduce the activity efficiently, until 

Tortorella et al. [20] identified a disintegrin-like and metalloproteinase domain with 

thrombospondin type 1 motif 4 (ADAMTS4) as aggrecanase-1. Subsequently, ADAMTS5 

(redundantly numbered ADAMTS11), which was concurrently cloned in a search for novel 

metalloproteinases, was identified as aggrecanase-2 [21,22]. Joint protection in mice that 

had an aggrecan knock-in mutation to prevent cleavage of Glu373–Ala374 provided 

compelling justification for targeting ADAMTS-mediated aggrecanolysis [5]. The resistance 

of Adamts5- but not Adamts4-mutant mice to mechanical instability or inflammation-

induced cartilage aggrecan loss was a pivotal discovery that pointed to ADAMTS5 as the 

major aggrecanase in mice [23,24].

Similar to other ADAMTS proteinases, ADAMTS5 (see Figure 1) has a proteinase domain 

and a large non-catalytic (or ancillary) domain [22,25]. The proteinase domain comprises the 

propeptide, which needs to be excised by proprotein convertases to reveal proteolytic 

activity [26,27], the catalytic module and the disintegrin-like module (see Figure 1). The 

crystal structure of ADAMTS5 has shown that the catalytic and disintegrin-like modules 

both participate in substrate engagement [28,29]. ADAMTS5 comprising only the proteinase 

domain cleaved native aggrecan inefficiently, implying the requirement for additional 

contacts between the ancillary domain (termed ‘exosites’) and aggrecan [30,31]. This 

finding was consistent with the role of the ancillary domains of other ADAMTS proteinases 

in cleavage of native substrates, e.g. cleavage of von Willebrand factor by ADAMTS13 [32] 

and procollagen I processing by ADAMTS2 [33]. Santamaria et al. [10] postulated that 

exosites could be specific for different ADAMTS5 substrates; thus, antibodies or other 

molecules targeting ADAMTS5 exosites required for aggrecan cleavage may spare catalytic 

activity towards other substrates.

Santamaria et al. [10] used recombinant ADAMTS5 which included the spacer module, and 

they blocked the catalytic cleft with the peptidomimetic, broad-spectrum, zinc-chelating, 

active-site metalloproteinase inhibitor GM6001 to enhance isolation of ancillary domain 

antibodies from a phage antibody library. They used surface plasmon resonance, domain-

specific deletion constructs of ADAMTS5, spatial occlusion of the catalytic domain by the 
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endogenous inhibitor tissue inhibitor of metalloproteinases 3 (TIMP3) [34] and molecular 

modelling to define the epitopes for these antibodies [10]. The four selected antibodies 

showed inhibitory activity against ADAMTS5, but not against ADAMTS4 or a panel of 

selected metalloproteinases, and bound specifically to ADAMTS5 but not to ADAMTS4 in 

surface plasmon resonance assays. The antibodies 2D3 and 2D11 bound to distinct surfaces 

in the catalytic/disintegrin-like modules, the epitope for 2D5 was at the interface between 

the catalytic/disintegrin-like modules and TS type 1 module 1 (TSR1), and 2B9 bound to the 

ADAMTS5 spacer. Following their previous work [31], the paper by Santamaria et al. [10] 

shows that the spacer is crucial for cleavage of aggrecan, via interaction with the aggrecan 

core protein but not with the GAG chains, which bind to the ADAMTS5 cysteine-rich 

domain (see Figure 1). Interestingly, 2B9 did not inhibit aggrecan release from a 

chondrocyte monolayer because in this system the prevalent form of ADAMTS5 lacked the 

spacer, and hence the antibody’s epitope [10]. This leads to legitimate concerns about 

inhibitory antibodies to the ancillary domain, and the need for a detailed knowledge of 

truncated ADAMTS5 isoforms in OA.

Although Santamaria et al. [10] did not test their antibodies in animal models, two recent 

publications demonstrated the efficacy of aggrecanase inhibition in vivo using monoclonal 

antibodies. Chiusaroli et al. [11] identified CRB0017, a recombinant ADAMTS5 

monoclonal antibody of high affinity and selectivity against the spacer. Intra-articular 

injection of CRB0017 in STR/ort male mice, which spontaneously develop OA, resulted in 

significant chondroprotection [11]. Larkin et al. [12] developed selective high-affinity 

antibodies against ADAMTS4 and ADAMTS5. They demonstrated that the ADAMTS5 

antibody GSK2394002 was chondroprotective in both mice and cynomolgus monkeys, and 

could reduce pain-associated allodynia in mice [12]. GSK2394002 recognizes an epitope 

spanning the catalytic and disintegrin-like modules and appears to work by an ‘allosteric 

lock effect’ on ADAMTS5’s active site [12]. Molecular imaging demonstrated its successful 

targeting to cartilage after intraperitoneal injection. Although ADAMTS5 is unequivocally 

implicated as the chief aggrecanase in mice, the identity of the major human aggrecanase is 

somewhat controversial [35,36]. Larkin et al. [12] suggest that ADAMTS5 is the primary 

target for human OA as well, because anti-ADAMTS5 antibodies effectively suppressed 

release of the ARGS epitope from human knee cartilage explants.

By any measure, the story of aggrecanase leading up to its selective targeting is a notable 

success of modern biomedical research, and a fine example of academic–industrial 

collaboration and synergy. How does one build on this success while being mindful of the 

wisdom accrued from previous failure? The aggrecanase armamentarium available for 

prospective OA therapy also includes several small-molecule, active-site inhibitors 

(reviewed in Dancevic and McCulloch [37]). Small-molecule, active-site inhibitors are 

cheaper than antibody drugs and orally bioavailable, but often lack the exquisite specificity 

of well-characterized monoclonal antibodies, a lesson learned from failed attempts to treat 

cancer with MMP inhibitors [38]. In addition to the lack of fine specificity of active-site 

inhibitors, this failure revealed how little was known about the complex biology of 

proteinases in cancer and normal tissue turnover [38]. The human genome carries little dead 

weight, and ADAMTS5, which has evolved over millennia, is required for cardiovascular 

and limb development, widely expressed in adult mice, and potentially involved in wound 
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healing via processing of versican and/or other substrates [39–44]. All inhibitors have 

potential side effects. Santamaria et al. [10] suggest that exosite-specific antibodies could be 

one way of selectively inhibiting proteolysis of aggrecan, which is located primarily in 

cartilage, fibrocartilage of tendons and menisci, and the brain, which is protected by the 

blood–brain barrier. What is needed now is an in-depth understanding of the physiological 

roles of ADAMTS5, including comprehensive understanding of its substrate repertoire, 

which currently includes aggrecan, versican and brevican, located in the brain. The blockage 

of the turnover of versican, which is present in the cardiovascular system and elsewhere, is 

probably inadvisable and may lead to collateral damage. Consideration could be given to 

dosing or delivery methods that maximize the effect on cartilage, but spare other tissues. 

Some possibilities include intra-articular delivery, intermittent infrequent dosing and 

combinations of low-dose anti-ADAMTS5 with drugs targeting other OA pathways. The 

catabolic effect of cartilage breakdown products [7–9] makes a case for early treatment to 

interrupt a feed-forward cycle of joint destruction, an approach that could be facilitated by 

advances in OA biomarkers.

Acknowledgments

FUNDING

Work in S.S Apte’s laboratory is supported by the National Institutes of Health award [HL107147] from the 
NHLBI-supported Program of Excellence in Glycosciences.

Abbreviations

ADAMTS adamalysin-like metalloproteinases with TS motif

CS chondroitin sulfate

GAG glycosaminoglycan

HA hyaluronan

IGD interglobular domain

KS keratan sulfate

MMP matrix metalloproteinase

OA osteoarthritis

TS thrombospondin
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Figure 1. ADAMTS5 and aggrecan, the protagonists of this commentary
The schematic shows the domain structure of ADAMTS5 and aggrecan. The furin cleavage 

site in ADAMTS5 and the interglobular domain cleavage site for ADAMTS5 in aggrecan are 

shown. Dis, disintegrin-like module.
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