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Fast and accurate fault classification is essential to power system operations. In this paper, in order to classify electrical faults
in radial distribution systems, a particle swarm optimization (PSO) based support vector machine (SVM) classifier has been
proposed. The proposed PSO based SVM classifier is able to select appropriate input features and optimize SVM parameters
to increase classification accuracy. Further, a time-domain reflectometry (TDR) method with a pseudorandom binary sequence
(PRBS) stimulus has been used to generate a dataset for purposes of classification. The proposed technique has been tested on a
typical radial distribution network to identify ten different types of faults considering 12 given input features generated by using
Simulink software andMATLAB Toolbox.The success rate of the SVM classifier is over 97%, which demonstrates the effectiveness
and high efficiency of the developed method.

1. Introduction

Distribution networks deliver electrical energy from trans-
mission systems to consumers and are important and integral
part of all power systems. Once an electrical fault occurs in
any distribution feeder, immediate fault classification plays
an important role in postfault analysis and power supply
restoration.The accuracy of the fault type information assists
the fault diagnosis system not only to locate the electrical
faults promptly but also to ensure power quality as well as
reliability of the system [1, 2].

A variety of approaches have been developed to build
an effective fault classifier in electrical distribution feed-
ers. As the amount of power delivered by a distribution
system significantly increases, it is essential to focus on
fault classification schemes. The studies of fault classification
in distribution feeder can be divided into three separate
categories, as follows: (1) impedance based method [3, 4],
(2) travelling wave based method [5, 6], (3) and artificial

intelligence based method [7, 8]. The most common method
for fault classification in power systems is known as time-
domain reflectometry (TDR) [9–11].

TDR is rather simple to implement; however, it is not
a perfect fault-location method since any single pulse stim-
ulus injected into the electrical line is quickly attenuated
along that line, causing fault location and classification to
become inaccurate. To overcome this problem, an improved
TDRmethod using incident pseudorandom binary sequence
(PRBS) excitation is proposed to locate such faults in [12];
however, it should be noted that it is only applied for high-
power transmission lines. Actually, it is quite difficult to
apply the TDR method to find faults in distribution feeders
because of the various junctions and ends of branched
network involved. As a result, various reflected responsesmay
occur in the reflectometry trace [13].Therefore, an intelligent
algorithm is required to extract fault location information
on a multiple-branched network from the reflectometry
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trace provided. SVM has been used successfully to resolve
classification issues for a wide range of applications because
of its strongly regularized characteristic and rapid training
speed [14–16].

To build a SVM classifier, the aspect of feature subset
selection plays an important role in detecting relevant vari-
ables in classification spaces. Principal component analysis
(PCA) [17] and multidimensional scaling (MDS) [18] are two
traditional methods applied to remove redundant variables
in the original feature vectors. Authors in [19] proposed
a Hadoop scheme to extract feature in parallel, in which
hundreds of mappers are composed. In a recent paper [20],
Ma and Niu used the firework algorithm to select input
features by removing redundant influence in order to improve
the icing forecasting of high voltage transmission line.

In addition to feature subset selection, the optimal set
of SVM parameters also plays an important role in the
distribution of samples in a given search space. Vapnik
showed that the penalty parameter 𝐶 and kernel function
parameter such as gamma 𝛾 for the radial basis function
(RBF) significantly affect the performance of SVM [21].
Various researches have been proposed to select these two
parameters, but there is no general opinion for their settings
[22]. The grid search method (GSM) is investigated to deter-
mine optimal parameters by attempting different values and
selecting those values possessing the least amount of testing
error [23]. Because of the computational complexity involved
with GSM, genetic algorithm (GA) has been developed to
improve classification accuracy and reduce training time by
using a minimal number of features [24]. However, it takes
significant amounts of calculation time due to the complex
operational process, including inheritance, selection, recom-
bination, and mutation. To overcome this relative problem,
Kennedy and Eberhart proposed a population-based search
technique known as particle swarm optimization (PSO) [25].
The primary advantage of the PSO based encoding technique
is in its capacity to decrease trapped status in local optima
and increase the classification accuracy as well as the training
speed.

In this paper, a novelmethod based upon PSO techniques
is developed to simultaneously optimize input features and
SVM parameters in order to classify the fault types found in
the distribution network.These fault types can be divided into
ten classes, including single phase-to-ground faults (AG, BG,
andCG), line-to-line faults (AB, AC, and BC), double line-to-
ground faults (ABG, ACG, and BCG), and three-phase short-
circuit faults (ABC). Further, this PSO-SVM classifier uses
a dataset obtained from TDR analysis with PRBS excitation.
Not only is the proposed PSO based encoding technique easy
to use, but it also helps to significantly increase the success
rate of the SVM classifier.

The remainder of this paper is constructed as follows. In
Section 2, the theory of the proposed method is discussed,
including TDR, SVM, and PSO. Section 3 presents the
modeling of a typical two-branched distribution feeder. The
developed PSO based SVM fault diagnosis approach is given
in Section 4. In Section 5, experimental simulation results and
discussions are presented. Finally, a conclusion is presented in
Section 6.
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Figure 1: The classical model for a lumped section.

2. Basic Theory of the Proposed Method

2.1. Time-Domain Reflectometry. Time-domain reflectome-
try (TDR) is widely used for fault classification and location
of faults in electrical transmission and distribution lines. TDR
is based on a single pulse being injected into the given line or
cable to be examined. Afterwards, some of the pulse energy
is reflected back to source whenever it reaches the point of
any discontinuities, such as electrical faults, tee joints, or line
terminals. Since the propagation velocity is assumed to be
constant, the fault distance can be measured based on the
expected pulse transit time. Hence, the reflectometry trace
will not only display the desired information of the fault type,
but also determine the fault location.

Assume a distribution line is modeled by a lumped-
parameter equivalent circuit as shown in Figure 1 with a
distributed series inductance 𝐿, resistance 𝑅, capacitance 𝐶,
and conductance 𝐺.

A voltage introduced at the generator will require a cer-
tain amount of time to propagate along the line represented
in the following equation:

𝜕V (𝑥, 𝑡)𝜕𝑥 = −𝑅𝑖 (𝑥, 𝑡) − 𝐿𝜕𝑖 (𝑥, 𝑡)𝜕𝑡 ,
𝜕𝑖 (𝑥, 𝑡)𝜕𝑥 = −𝐺V (𝑥, 𝑡) − 𝐶𝜕V (𝑥, 𝑡)𝜕𝑡 ,

(1)

where V(𝑥, 𝑡) and 𝑖(𝑥, 𝑡) are the forward travelling voltage
and current waves, respectively. The amplitude of incident
pulse will be attenuated along the line and the phase of the
voltage travelling along the line will be distorted resulting
from varying frequency [26].The attenuation and phase shift
are determined by the propagation coefficient, as shown in

𝛾 = √(𝑅 + 𝑗𝜔𝐿) (𝐺 + 𝑗𝜔𝐶) = 𝛼 + 𝑗𝛽, (2)

where 𝛼 and 𝛽 are the attenuation coefficient and the phase
change coefficient, respectively. The velocity at which the
voltage moves down the line can be defined in

𝜐 = 𝜔𝛽 . (3)

From (1), using the Laplace transform and differential
equation, we can obtain

V (𝑥, 𝑡) = V+ (𝑡 − 𝑥𝜐) + V− (𝑡 + 𝑥𝜐) ,
𝑖 (𝑥, 𝑡) = 𝑖+ (𝑡 − 𝑥𝜐) + 𝑖− (𝑡 + 𝑥𝜐) ,

(4)
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where V+(𝑡 − 𝑥/𝜐) and 𝑖+(𝑡 − 𝑥/𝜐) are the forward travelling
voltage and current waves, respectively; V−(𝑡+𝑥/𝜐) and 𝑖−(𝑡+𝑥/𝜐) are the backward travelling voltage and current waves,
respectively. Equating the coefficients of 𝑒−𝑠𝑥/𝜐, (4) can be
rewritten as

𝐼 (𝑥, 𝑠) = 1𝑍𝐶 [𝑉
+ (𝑠) 𝑒−𝑠𝑥/𝜐 − 𝑉− (𝑠) 𝑒+𝑠𝑥/𝜐] ,

𝑍𝐶 = √ 𝐿𝐶,
(5)

where 𝑍𝐶 is called the characteristic impedance. When the
line is terminated with any load whose impedance value is
other than the characteristic impedance, a reflected wave will
occur at the load and then propagate back toward the source.
The voltage moving down the line in this case is given by
means of

𝑉 (𝑙, 𝑠) = 𝑍𝑅 (𝑠) ∗ 𝐼 (𝑙, 𝑠) , (6)

where 𝑍𝑅 is called the load impedance. This reflected wave is
related to the incident wave by representation in the following
equation:

𝑉− (𝑙, 𝑠) = Γ (𝑠) 𝑉+ (𝑠) 𝑒−2𝑠𝜏,
Γ = 𝑍𝑅 − 𝑍𝐶𝑍𝑅 + 𝑍𝐶 ,
𝜏 = 𝑙𝜐 ,

(7)

where Γ is called the receiving-end voltage reflection coeffi-
cient and 𝜏 is called the transit time.

TDR is quite simple to implement, but it is not a perfect
technique since the use of single pulse excitation that is
quickly attenuated along the line. In addition, the pulse
width is one of the factors that affect the accuracy rate
of the reflectometry method. TDR method, using incident
pseudorandom binary sequence (PRBS) excitation can solve
these problems by using cross-correlation (CCR) function
between the reflected wave and incident wave given by (8)
for fault diagnosis in distribution feeders:

𝐶𝑥𝑦 (𝑘) = 1𝐿
𝐿∑
𝑖=1

𝑥 (𝑖) 𝑦 (𝑖 + 𝑘) , (8)

where 𝐶𝑥𝑦 is the cross-correlation (CCR) function between
the reflected wave and incident wave; 𝑥𝑖 is the forward signal
and 𝑦𝑖 is the feedback signal.

As previously mentioned, a variety of different compo-
nents exist along electrical distribution lines like transform-
ers, capacitors, tap changers, phase splitters, and so forth
so it is not easy to extract fault locations from various
reflections observed in the reflectometry trace. In this study,
a multilayer SVM classifier is proposed as a supporting
technique for the TDR method to provide fault diagnosis in
multibranch distribution networks, including single phase-
to-ground faults (AG, BG, and CG), line-to-line faults (AB,
AC, and BC), double line-to-ground faults (ABG, ACG, and
BCG), and three-phase faults (ABC).

2.2. Support Vector Machine. A support vector machine
(SVM) was first mentioned by Vapnik in 1995, and it
has become one of the most optimal techniques for data
classification. It has a solid theoretical foundation based
on a combination between the structural risk minimization
principle and statistical machine learning theory (SLR). The
main advantages of SVM are the global optimization and
high generalization ability. Further, it overcomes overfitting
problems and provides sparse solutions in comparison to
existing methods such as artificial neuron network (ANN)
and refined genetic algorithm (RGA) in fault classification.

In standard linear classification problem, for example,
one should separate the set of training data, (𝑥𝑖, 𝑦𝑖), 𝑖 =1, 2, . . . , 𝑚,𝑚 is the number of given observations, where 𝑥𝑖 ∈𝑅𝑛 are feature vectors and 𝑦𝑖 ∈ (−1, +1) are label vectors. A
binary classification problem can be posed as an optimization
problem in the following way:

Min: 12 ‖𝑤‖22 + 𝐶 𝑚∑
𝑖=1

𝜉𝑖 (9)

Subjected to: 𝑦𝑖 (𝑤 × 𝑥𝑖) + 𝑏 ≥ 1 − 𝜉𝑖,
𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑚, (10)

where 𝐶 is the regularization parameter; 𝜉𝑖 the penalizing
relaxation variables. Equation (10) means

𝑤 × 𝜙 (𝑥𝑖) + 𝑏 ≥ +1 if 𝑦𝑖 = +1,
𝑤 × 𝜙 (𝑥𝑖) + 𝑏 ≥ −1 if 𝑦𝑖 = −1. (11)

It is to be noted that the nonlinear classifier may be
denoted in the input space as

𝑓 (𝑥) = sign( 𝑚∑
𝑖=1

𝛼𝑖∗ × 𝑦𝑖 × 𝐾 (𝑥𝑖, 𝑦𝑖) + 𝑏∗) , (12)

where 𝑓(𝑥) is the decision function and the bias 𝑏∗ is
calculated by the Karush-Kuhn-Tucker (KKT) conditions;𝐾(𝑥𝑖, 𝑦𝑖) is the kernel function that produces the inner
product for this feature space. In this paper, the following
radial basis function (RBF) is used:

𝐾(𝑥, 𝑦) = exp (−𝛾 󵄩󵄩󵄩󵄩𝑥 − 𝑦󵄩󵄩󵄩󵄩2) , (13)

where 𝛾 is the kernel parameter.
To obtain optimum performance, some SVM parameters

need to be select property, including the regularization
parameter 𝐶 and the kernel parameter 𝛾. In this work,
PSO technique is applied to optimize these two parameters
accordingly.

2.3. Particle Swarm Optimization. Particle swarm optimiza-
tion (PSO) is inspired by the social and cooperative behavior
displayed by various species to fill their needs in the search
space.This algorithm is guided by personal experience𝑃𝑏𝑒𝑠𝑡,
overall experience 𝐺𝑏𝑒𝑠𝑡, and the present movement of the
particles to decide their next positions in the search space.
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Figure 2: The PSO search mechanism 𝑝th particle at 𝑘th iteration.

Further, the experiences are accelerated by two factors 𝑐1 and𝑐2, and two random numbers 𝑟1 and 𝑟2 generated between[0 1]; whereas, the present movement is multiplied by an
inertia factor 𝑤. Mathematically, updated positions of each
particle in the search space can be expressed using the two
equations discussed below.

The initial population (swarm) of size 𝑁 and dimension𝐷 is denoted as 𝑋 = [𝑋1, 𝑋2, . . . , 𝑋𝑁]𝑇, where 𝑇 denotes
the transpose operator. Each individual particle 𝑋𝑃 (𝑝 =1, 2, . . . , 𝑁) is given as 𝑋𝑃 = [𝑋𝑝,1, 𝑋𝑝,2, . . . , 𝑋𝑝,𝐷]𝑇. Also,
the initial velocity of the population is denoted as 𝑉 =[𝑉1, 𝑉2, 𝑉3]𝑇. Thus, the velocity of each particle 𝑋𝑃 (𝑝 =1, 2, . . . , 𝑁) is given as𝑉𝑝 = [𝑉𝑝,1, 𝑉𝑝,2, . . . , 𝑉𝑝,𝐷]. The index 𝑝
varies from 1 to𝑁 whereas the index 𝑞 varies from 1 to𝐷.

𝑉𝑘+1𝑝,𝑞 = 𝑤 × 𝑉𝑘𝑝,𝑞 + 𝑐1𝑟1 (𝑃𝑏𝑒𝑠𝑡𝑘𝑝,𝑞 − 𝑋𝑘𝑝,𝑞)
+ 𝑐2𝑟2 (𝐺𝑏𝑒𝑠𝑡𝑘𝑞 − 𝑋𝑘𝑝,𝑞) ,

(14)

𝑋𝑘+1𝑝,𝑞 = 𝑋𝑘𝑝,𝑞 + 𝑉𝑘+1𝑝,𝑞 . (15)

In (14), 𝑃𝑏𝑒𝑠𝑡𝑘𝑝,𝑞 represents personal best 𝑞th component
of 𝑝th individual, whereas 𝐺𝑏𝑒𝑠𝑡𝑘𝑞 represents 𝑞th component
of the best individual of population up to iteration 𝑘. Figure 2
shows the search mechanism of PSO in a multidimensional
search space.

The initial 𝑃𝑏𝑒𝑠𝑡 of each particle is their initial position,
whereas the initial 𝐺𝑏𝑒𝑠𝑡 is the initial best particle position
among randomly initialized population.The𝑃𝑏𝑒𝑠𝑡 and𝐺𝑏𝑒𝑠𝑡
of each particle are updated as follows.

At iteration 𝑘,
If 𝑓 (X𝑘+1𝑝 ) < 𝑓 (𝑃𝑏𝑒𝑠𝑡𝑘𝑝) then 𝑃𝑏𝑒𝑠𝑡𝑘+1𝑝

= X𝑘+1𝑝 else 𝑃𝑏𝑒𝑠𝑡𝑘+1𝑝 = 𝑃𝑏𝑒𝑠𝑡𝑘𝑝
If 𝑓 (X𝑘+1𝑝 ) < 𝑓 (𝐺𝑏𝑒𝑠𝑡𝑘) then 𝐺𝑏𝑒𝑠𝑡𝑘

= X𝑘+1𝑝 else 𝐺𝑏𝑒𝑠𝑡𝑘+1 = 𝐺𝑏𝑒𝑠𝑡𝑘,
(16)

where𝑓(𝑋) is the objective function subject tominimization.
The updating procedure should be repeated until a stop con-
dition is reached, such as a prespecified number of iterations

PRBS

SS
Main feeder

Figure 3: A two-branched distribution line diagram of the sample
system.

are met. Once terminated, the 𝐺𝑏𝑒𝑠𝑡𝑘 and 𝑓(𝐺𝑏𝑒𝑠𝑡𝑘) are
reported as the solution of PSO technique.More details about
the basic concept of PSO can be found in [27–30].

3. System Modeling

An equivalentmodel has to be constructed by using Simulink
software and MATLAB Toolbox to simulate a typical two-
branched distribution feeder shown in Figure 3, inwhich dots
represent the distribution transformers and their loads.

Two distribution transformers in the sample system are
used to reduce the voltage on the distribution line to the
level of customers that are distributed along a feeder. Their
parameters and connection phases are shown in Table 1 [31].
It is noted that these distribution transformers are operated
in a full-load condition with 0.8 lagging power factor; as
a result, the sample distribution system is operated with
unbalanced conditions in occurrence. The main feeder and
laterals are constructed by means of overhead lines whose
positive-sequence impedance is 0.131 + 𝑗0.364Ω/km [31].

4. Developed PSO Based SVM Fault
Diagnosis Approach

Since the TDR technique does not diagnose fault easily in
the distribution networks hence it requires to be supported
from other intelligent techniques in order to obtain the best
results. This paper proposes a PSO based SVM classifier
to improve the performance of the TDR method in fault
classification in electrical distribution feeders. The overall
structure of SVM short-circuit classifier is shown in Figure 4,
in which PSO is performed to optimize the feature subset
and SVM parameters. For this, the data acquisition for data
preprocessing is mentioned first.

4.1. Data Acquisition. To obtain a suitable dataset for clas-
sification process, PRBS disturbance is injected directly into
the secondary circuit of the current transformer (CT) 200/5A
which is placed at the beginning of the line under test. The
primary circuit of the CT is connected to the main feeder;
thus the amplified PRBS is propagated along the line to
diagnose any faults which may occur.

Once a fault occurs in the distribution feeder, it causes
producing a reflected signal that travels between the fault
location and the substation. Then, these reflected responses
are cross-correlated with the incident impulse by (8) in order
to reduce the impact of noise as well as surmount amplitude
attenuation. It is worth noting that, for each of the fault types
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Table 1: Parameters and connection phases of distribution transformers in the sample system.

Number Windings connection Phases Secondary voltages (V) Capacity (kVA) Impedance (𝑍%)
1 Delta-Wye-Gnd. A, B, C 220 500 1.89
2 Delta-Delta A, B, C 220 500 1.89

Testing 
dataset

Training 
dataset

Reflected data 
acquisition 

Selection of feature set 
and SVM
parameters using PSO

Optimum 
SVM

ABC
BCG
ACG
ABG
BC
AC
AB
CG
BG
AG

Figure 4: Block diagram of the proposed PSO based SVM classifier.

specified, the magnitudes of the feedback waves are different
at the shortage time; as a result, the peaks of the CCR are not
found to be the same.Hence, the reflected responses andCCR
between the reflected wave and the incident wave are used as
input feature vectors for the training phase.The total number
of feature vectors is 12, and they comprise a feature vector𝑉 = [V1, V2, . . . , V12]𝑇, in which V1–V6 are the reflected voltage
and current obtained at the substation and V7–V12 are the
peaks of CCR between the reflected and the incident waves.

4.2. Feature Extraction. For utilization of the reflectometry
method, various echo responses are collected, in which
some irrelevant data may be confusing to the SVM clas-
sifier and subsequently increase the training time. Feature
extraction is the best effective method to select appropriate
input features in order to improve the speed of training
as well as to ensure the success rate of classification. For
optimum feature selection in this work, PSO is employed
to improve the performance of the SVM classifier. To select
optimum features of the given dataset, a binary string has
been optimized using PSO where each bit represents a given
feature of the dataset. In the binary string, a “0” represents
an ignored feature, whereas a “1” represents a selected feature
of the dataset. The optimum features are those features taken
from the given dataset which correspond to the optimized
binary string having its bit as a “1.” For this, a given set
of predefined SVM parameters has been used while the
selection of features of the given dataset usingPSO ismade.At
the end of feature selection stage, the selected strings provide
the information regarding the features needed for optimizing
the SVM parameters.

4.3. Optimum SVM Parameters. The performance of SVM is
susceptible to kernel function parameter 𝛾 and the regular-
ization parameter 𝐶, so these parameters must be carefully

selected to increase the classification accuracy. In this paper,
PSO technique is used to select the parameters of the SVM
classifier. Performance is measured according to the classifi-
cation accuracy on unseen testing data. In the learning stage,
the PSO based encoding SVM model is trained based on
structural risk minimization to minimize the training error.
While training error improvement occurs, penalty parameter𝐶 and kernel function parameter 𝛾 are regulated by means
of PSO. The regulated parameters with minimal error are
reported as the most suitable parameters. As a result, the
optimal parameters (𝐶 and 𝛾) are to be obtained.

Once the optimized parameters of the SVM are obtained,
then it is used for the retraining of the SVM model. After
the training phase, the SVM classifier is ready to identify new
samples in the testing phase. The testing set is also chosen by
means of the above feature selection from the original dataset
obtained by theTDR trace.Then, testing patterns are inputted
to the trained multilayer SVM classifier which can identify
all the 10 types of faults, including single-phase-to-ground
faults (AG, BG, and CG), line-to-line faults (AB, AC, and
BC), double-line-to-ground faults (ABG, ACG, and BCG),
and three-phase faults (ABC).

Detailed experiment procedure for feature extraction
and SVM parameter selection using PSO algorithm can be
expressed using the following steps:

(1) Read complete data and set 𝑤, 𝑐1, and 𝑐2 parameters.
(2) Initialize positions X and velocitiesV of each particle

of population.
(3) Initialize sets of SVM parameters within its ranges as

particle position and velocity.
(4) Form SVM using training dataset and initialized

positions of each particle.
(5) Evaluate fitness of each particle 𝐹𝑝𝑘 = 𝑓(X𝑝𝑘), ∀𝑝,

and find the best particle index 𝑏.



6 Computational Intelligence and Neuroscience

Form SVM using training datasets and 
initialized position of each particle 

Initialize sets of SVM parameters within its 
ranges as particle positions and velocity 

Print optimum values of SVM 

Update velocity and position 
of each particle

Evaluate initial fitness of each particle 

Evaluate fitness of each particle 

No

Yes

Read complete datasets 
and set PSO parameters 

Testing datasetTraining dataset

Data acquisition

Trained SVM classifier with 
optimum feature and parameters

SVM Output

Various faults types

Set iteration count k = 1

k = k + 1

and update Pbest and Gbest

and select Pbest and Gbest

parameters as Gbest

If k ≤ Ｇ；Ｒ ＣＮ？

Figure 5: Flowchart of the proposed approach.

(6) Select 𝑃𝑏𝑒𝑠𝑡𝑝𝑘 = X𝑝𝑘, and 𝐺𝑏𝑒𝑠𝑡𝑘 = X𝑏𝑘.
(7) Set iteration count 𝑘 = 1.
(8) 𝑤 = 𝑤max − (𝑤max − 𝑤min) × ite/max ite.
(9) Update velocity and position of each particle using

(14) and (15).
(10) Evaluate updated fitness of each particle 𝐹𝑝𝑘+1 =

𝑓(X𝑝𝑘+1), ∀𝑝, and find the best particle index 𝑏1.
(11) Update 𝑃𝑏𝑒𝑠𝑡 of each particle ∀𝑝

If 𝐹𝑝𝑘+1 < 𝐹𝑝𝑘 then 𝑃𝑏𝑒𝑠𝑡𝑝𝑘+1 = 𝑋𝑝𝑘+1; else𝑃𝑏𝑒𝑠𝑡𝑝𝑘+1 = 𝑃𝑏𝑒𝑠𝑡𝑝𝑘.

(12) Update 𝐺𝑏𝑒𝑠𝑡 of population
If 𝐹𝑏1𝑘+1 < 𝐹𝑏𝑘 then 𝐺𝑏𝑒𝑠𝑡𝑘+1 < 𝑃𝑏𝑒𝑠𝑡𝑏1𝑘+1 and set𝑏 = 𝑏1; else 𝐺𝑏𝑒𝑠𝑡𝑘+1 < 𝐺𝑏𝑒𝑠𝑡𝑘.

(13) If 𝑘max ite then 𝑘 = 𝑘 + 1 and go to step (6); else go
to step (14).

(14) Optimum solution obtained: print the results of
optimum generation as 𝐺𝑏𝑒𝑠𝑡𝑘

(15) Retrain SVMwith optimum features and parameters;
then identify unknown samples on testing dataset.

The experiment procedure can be visualized in Figure 5.
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Table 2: Dataset of ten fault types located at distances of 3 km and 4 km from the substation.

Va Vb Vc 𝑖a 𝑖b 𝑖c cc-Va cc-Vb cc-Vc cc-𝑖a cc-𝑖b cc-𝑖c
AG 1.9197 −0.3071 0.1245 4.9815 −0.7968 0.3232 0.5941 −0.0950 0.0385 0.0502 −0.0080 0.0033

0.6990 −0.1118 0.0453 1.5998 −0.2559 0.1038 3.5687 −0.5708 0.2315 3.0765 −0.4921 0.1996

BG 1.4521 0.7277 0.5122 3.7681 1.8884 1.3290 0.4494 0.2252 0.1585 0.0380 0.0190 0.0134
0.5287 0.2650 0.1865 1.2101 0.6064 0.4268 2.6995 1.3528 0.9521 2.3271 1.1662 0.8208

CG 0.4648 4.5783 3.1718 0.0857 0.8445 0.5851 0.0275 0.2711 0.1878 0.0237 0.2331 0.1615
0.0880 0.8668 0.6005 0.2284 2.2492 1.5582 0.0272 0.2683 0.1858 0.0023 0.0227 0.0157

BCG −8.2016 9.6684 16.2648 −2.5267 2.9785 5.0107 −0.1137 0.1340 0.2254 −0.1137 0.1340 0.2254−4.1309 4.8697 8.1921 −0.7620 0.8983 1.5112 −0.2446 0.2884 0.4852 −0.2104 0.2480 0.4172

ACG −1.2835 2.5576 4.8025 −0.9796 1.9519 3.6650 −1.6907 3.3688 6.3257 −1.4240 2.8375 5.3279−1.4241 1.7834 3.8278 −1.0868 1.3610 2.9212 −1.8757 2.3491 5.0419 −1.5799 1.9786 4.2466

ABG −1.1327 0.0679 2.6912 −2.9393 0.1763 6.9832 −0.3506 0.0210 0.8329 −0.0296 0.0018 0.0704−2.0970 0.1258 4.9821 −1.6003 0.0960 3.8021 −2.7621 0.1657 6.5623 −2.3265 0.1395 5.5272

AB −7.4589 −4.8688 17.7206 −1.3759 −0.8981 3.2688 −0.4417 −0.2883 1.0495 −0.3798 −0.2479 0.9024−1.4121 −0.9218 3.3549 −3.6643 −2.3918 8.7055 −0.4370 −0.2853 1.0383 −0.0369 −0.0241 0.0877

AC −1.0143 −1.2113 7.8915 −0.7741 −0.9244 6.0225 −1.3360 −1.5955 10.3945 −1.1253 −1.3439 8.7550−1.5121 −7.9329 40.5259 −0.4658 −2.4439 12.4847 −0.0210 −0.1099 0.5616 −0.0210 −0.1099 0.5616

BC 2.0444 −4.2356 23.5915 0.3771 −0.7813 4.3518 0.1211 −0.2508 1.3972 0.1041 −0.2157 1.2013
0.1409 −0.2920 1.6262 0.3225 −0.6682 3.7220 0.7195 −1.4907 8.3028 0.6203 −1.2851 7.1576

ABC 0.3508 −0.3674 1.9940 0.8029 −0.8408 4.5638 1.7911 −1.8757 10.1807 1.5440 −1.6170 8.7765
1.7837 −1.8679 10.1386 1.3612 −1.4255 7.7374 2.3494 −2.4604 13.3543 1.9788 −2.0723 11.2480

AG, BG, and CG are single phase-to-ground faults; BCG, ACG, and ABG are double line-to-ground faults; AB, AC, and BC are line-to-line faults; ABC is three-
phase faults; Va, Vb, Vc, 𝑖a, 𝑖b, and 𝑖c are magnitudes of reflected voltages and currents, respectively; cc-Va, cc-Vb, cc-Vc, cc-𝑖a, cc-𝑖b, and cc-𝑖c are CCR between
reflected signal and incident signal.

Table 3: Results of SVM classification without and with considering PSO optimization techniques.

SVM classifier Number of features 𝐶 𝛾 Classification accuracy (%) Training time (s)
Without PSO 12 181.0193 1.1212 93.00 134.8
With PSO 8 15.0381 0.0334 97.15 83.54

5. Test Results and Discussion

In this paper, the fault types are considered by using a 127-
bit PRBS stimulus with frequency 𝑓 = 1MHz and a velocity
of 198,000 km/s propagated along the sample system given
in Figure 2. The dataset used in this study was obtained at
the substation end by TDR analysis, with the number of
features being 12, in which six features are considered to be
themagnitudes of reflected signals and six remaining features
are extracted from the peaks of CCR between the feedback
wave and the forward wave.This dataset is comprised of 5700
samples generated by creating each type of fault at different
locations on two laterals with varying fault impedance value.
Note that training and test sets are randomly divided from the
original dataset, in which 4500 and 1200 are used for training
and testing set, respectively. Table 2 only gives a few portions
of the dataset for purposes of brevity, which were created
by a simulation of the ten types of short-circuit fault on the
first lateral, located at distances of 3 km and 4 km from the
substation.

In this paper, PSO technique is used to select the features
and parameters of the SVM classifier. Preliminary experi-
ments also permit this study set population size as 10; inertia

weight has been taken into account as between 0.1 and 0.5
(considered randomly at each iteration); and acceleration
factors (𝑐1 and 𝑐2) have been taken as equal to 2 with a
maximum iteration set to 1000.

Table 3 gives the results of the classification accuracy for
the SVM algorithm using a dataset both with and without
PSO optimization. The optimum values of 𝐶 and 𝛾 of SVM
classifier are 181.0193 and 1.1212 without consideration of
PSO and are 15.0381 and 0.0334 with consideration of PSO.
From this table, it is observed that the classification accuracy
in the case of using the entire feature is 93%, whereas the
classification accuracy in the case of using a PSO based
encoding technique is found to be 97.15%. This demonstrates
the optimal efficiency of the proposed method in which
PSO optimization is applied. All 12 features are autoselected
from the corresponding input, and the testing success rate
has been improved significantly. The remaining features are
8, which are 1–7 and 9. Furthermore, Table 3 provides the
computational times for training SVM classifier. The overall
simulation time taken by the SVM classifier without PSO is
134.8 seconds, whereas with PSO it is 83.54 seconds. It should
be concluded that the PSO technique takes a relatively shorter
computational time for training.
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Figure 6: Convergence characteristic of the proposed PSO.

The convergence characteristic of the proposed PSO is
shown in Figure 6. From this figure, it is can be observed
that MSE beyond 15 iterations is nondecreasing; thus the
optimized SVM parameters can be obtained prior to the total
training time taken (83.54 sec).

6. Conclusions

In this paper, a multilayer support vector machine (SVM)
based on optimum parameters optimization and feature
selection approach has been developed to classify ten types
of faults in radial distribution feeders. Particle swarm opti-
mization (PSO) has been used as an optimizer to improve
the performance of SVMclassifier by selecting an appropriate
feature subset and kernel parameters. Further, time-domain
reflectometry (TDR) with pseudorandom binary sequence
(PRBS) stimulus has been utilized for generating a fault
dataset. In the proposed technique, not only does using PRBS
injection overcome the stimulus distortion problem, but it
also surmounts the impact of noise to provide a reliable
dataset for SVM classifier. The proposed PSO based SVM
classifier has been successfully applied to identify all ten
types of short-circuit faults in the radial distribution network
observed. The achieved high accuracy rate in classifying
fault types (over 97%) demonstrates greater effectiveness over
existing fault identifiers.
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