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Abstract

In health services and outcome research, count outcomes are frequently encountered and often 

have a large proportion of zeros. The zero-inflated negative binomial (ZINB) regression model has 

important applications for this type of data. With many possible candidate risk factors, this paper 

proposes new variable selection methods for the ZINB model. We consider maximum likelihood 

function plus a penalty including the least absolute shrinkage and selection operator (LASSO), 

smoothly clipped absolute deviation (SCAD) and minimax concave penalty (MCP). An EM 

(expectation-maximization) algorithm is proposed for estimating the model parameters and 

conducting variable selection simultaneously. This algorithm consists of estimating penalized 

weighted negative binomial models and penalized logistic models via the coordinated descent 

algorithm. Furthermore, statistical properties including the standard error formulae are provided. A 

simulation study shows that the new algorithm not only has more accurate or at least comparable 

estimation, also is more robust than the traditional stepwise variable selection. The proposed 

methods are applied to analyze the health care demand in Germany using an open-source R 

package mpath.
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1 Introduction

In health services and outcome research, investigators are frequently interested in study 

outcomes such as visits to a physician in an office or hospital, to an emergency room, and 

number of inhospital stays (Deb and Trivedi, 1997; Riphahn et al., 2003). These are 

examples of count data in which the observations can take only the non-negative integer 

values. Poisson and negative binomial (NB) regression are commonly used to develop 

predictive models for count data. Because of high frequency of zero values in empirical data, 
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these models may fail to describe the data adequately. In health care demand data, the 

population may consist of no-demanding healthy individuals who never need to visit the 

doctor, and usual-demanding and less healthy individuals who may or may not visit the 

doctor, depending on the health status and other factors. Thus, due to heterogeneous data, 

there are extra zeros that a single model is not designed to model. To take into account the 

extra zero observations, the zero-inflated Poisson (ZIP) and NB model (ZINB) have been 

applied. For instance, see Lambert (1992); Garay et al. (2011). The zero-inflated count 

model assumes a latent mixture model consisting of a count component and a degenerated 

zero component which has a unit point mass at zero. The count component can be modeled 

as a Poisson or NB distribution. For the Poisson distribution, the variance is assumed to be 

equal to the mean, which may be violated in real data. In contrast, the NB distribution has 

less constraint than the Poisson distribution. Therefore, the ZINB model is more appropriate 

to incorporate extra over dispersion not accounted for through zero-inflation by the Poisson 

model. The ZINB model characterizes the study population into two groups as the no-

demanding group corresponding to the zero component, and the usual-demanding group for 

the count component. For zero-inflated data, alternative models including the hurdle model 

have been proposed, see Min and Agresti (2005); Alfò and Maruotti (2010). The hurdle 

model may be considered as a two-stage modeling process. The first stage determines 

whether the outcome is above or equal to zero. In the second stage, a truncated Poisson or 

NB model is applied to fit the positive counts. A zero can be produced by only one process 

in hurdle models, which is contrast to zero-inflated models which assume that a zero can be 

produced by two different processes.

Zero-inflated count regression may be used to predict health care demand with 

demographics, social status and other clinical risk factors. For the zero component, the risk 

factors have effect on probability that an individual has zero-demanding. For the count 

component, the risk factors have effect on the count outcome, given that the individual is in a 

usual-demanding group. Among many potential risk factors, researchers are often interested 

in identifying a small subset. A parsimonious model often offers better interpretation, which 

will be demonstrated in this paper when analyzing health care demand data. In statistical 

literature, variable selection is one of the most active research areas. Penalized regression 

with a variety of penalty function is a popular choice, see, the least absolute shrinkage and 

selection operator (LASSO) (Tibshirani, 1996), smoothly clipped absolute deviation 

(SCAD) (Fan and Li, 2001) and minimax concave penalty (MCP) (Zhang, 2010). In 

penalized regression algorithms, a coefficient below some threshold value is set to zero and 

otherwise will be shrunk towards zero. The LASSO is a convex penalty function which has 

computational advantages than non-convex penalties MCP and SCAD. The LASSO, 

however, introduces bias when shrinking large coefficients towards zero. The MCP and 

SCAD are successful to reduce the bias and have an additional oracle property under some 

conditions. Namely, the MCP and SCAD performs like there is a prior knowledge on 

whether a variable has zero or non-zero coefficient.

However, there is a lack of methods in selecting variables in a zero-inflated and 

overdispersed count data framework, and recent research has focused on penalized ZIP 

models (Buu et al., 2011; Tang et al., 2014;Wang et al., 2014a). In the current paper, we 

extend the work in Wang et al. (2014a) to the penalized ZINB model and propose an EM 
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(expectation-maximization) algorithm for the penalties LASSO, MCP and SCAD, 

respectively. The ZINB model can incorporate additional overdispersion, thereby potentially 

fitting much better than a ZIP model in real data analysis. Indeed, the penalized ZIP is a 

special case of the current paper. Our major contribution is that we develop variable 

selection methods for zero-inflated and overdispersed count data through the penalized 

ZINB model and implement the EM algorithm into open-source statistical software.

The rest of the paper is organized as follows. Section 2 introduces a penalized ZINB model, 

and presents statistical properties and estimation methods. A simulation study is conducted 

in Section 3 to evaluate the proposed methods and compare with competing methods. In 

Section 4, the proposed methods are applied to a data set of health care demand collected in 

Germany. In Section 5, software and reproducible research are described. A discussion is 

provided in Section 6. Some technical details are in the Appendix.

2 Penalized ZINB regression model

In this section, we present new methodologies for penalized ZINB regression models, 

theoretical properties of estimates, an EM algorithm to estimate parameters, and standard 

error formulae of estimators.

2.1 Variable selection of ZINB regression model

Consider a ZINB regression model. Assume Yi, i = 1, …, n has a probability function

where 0 ≤ pi ≤ 1,μi ≥ 0 and 1/θ is the positive overdispersion parameter. The mean and 

variance are (1 − pi)μi and , respectively. Because the variance can 

only be larger than the mean, underdispersion cannot be modeled adequately in a ZINB 

model. When underdispersion occurs, the fitting of a ZINB model typically generates zero-

inflated Poisson with a large value of θ. On the other hand, if the data are generated by a 

ZINB model but are fitted by a NB model, a downward biased estimator of θ is expected to 

fit the overdispersion. The model is reduced to the NB distribution if pi = 0. In ZINB 

regression, assume length q1 predictor vector xi and length q2 vector vi are associated with μi 

and pi, respectively. Let  and  where β = (β0,β1, …, βq1) and ζ = 

(ζ0,ζ1, …, ζq2 ) are unknown parameters. Here β0 and ζ0 are intercepts. For n independent 

random samples, let ϕ = (β T, θ, ζ T )T, the log-likelihood function is given by

where  and .
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For variable selection, consider a penalized ZINB model:

where the nonnegative penalty function is given by

with tuning parameters λNB and λBI determined by data-driven methods. Since intercepts 

and scaling parameter θ are always included in the model, they are not penalized. The 

following three penalty functions are investigated:

a. the LASSO penalty (Tibshirani, 1996), for λ ≥ 0, p(λ ; |ξ|) =λ |ξ |.

b. the MCP penalty (Zhang, 2010), for λ ≥ 0 and γ > 1, the derivative of p(λ ;ξ ) 

with respect to ξ is given by p′(λ ;ξ ) = (λ –ξ/γ )I(ξ ≤γλ), where I(·) is an 

indicator function.

c.
the SCAD penalty (Fan and Li, 2001)  for 

λ ≥ 0 and γ > 2, where t+ denotes the positive part of t.

The oracle properties of penalized ZINB models can be established, see Appendices A and 

B. These results are direct applications of the respective theorems in Fan and Li (2001). 

Therefore, if λNB,n → 0,λBI,n →0,  and , then the ZINB-

MCP and ZINB-SCAD estimators hold the oracle property: with probability tending to 1, 

the estimate of coefficients without an effect is 0, and the estimate for coefficients with an 

effect has an asymptotic normal distribution with mean being the true value of nonzero 

coefficient and variance being the submatrix of the Fisher information matrix corresponding 

to the nonzero coefficients.

2.2 The EM algorithm

Let zi = 1 if Yi is from the zero state and zi = 0 if Yi is from the NB state. Since z = (z1, …, 

zn)T is not observable, it is often treated as missing data. The EM algorithm is particularly 

attractive to missing data problems. If complete data (Yi, zi) are available, the complete-data 

penalized log-likelihood function is given by

where , with . The EM algorithm 

computes the expectation of the complete-data log-likelihood, which is linear in z. Thus, the 

E-step simplifies to update z by its conditional expectation given the observed data and 
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previous parameter estimates. Specifically, the conditional expectation of z at iteration m is 

provided by

Therefore, the expectation of the complete-data log-likelihood can be calculated:

where

Next, the EM algorithm updates the estimates by maximizing Q(ϕ | ϕ̂(m)), which is handy 

since (β, θ ) and ζ are in two disjoint terms. The first term, Q1(β, θ | ϕ̂(m) is a weighted 

penalized NB log-likelihood function and the second term Q2(ζ | ϕ̂(m)) is a penalized logistic 

log-likelihood function. The coordinate descent algorithm has been proposed to optimize 

generalized linear models (Friedman et al., 2010; Breheny and Huang, 2011; Wang et al., 

2014b). The EM iterations are repeated for the E-step and M-step until convergency.

In Wang et al. (2014a), the coordinate descent algorithm adaptively rescales a shrinkage 

parameter for the nonconcave MCP and SCAD penalties (Breheny and Huang, 2011). While 

this strategy may help select tuning parameters, the EM algorithm can be substantially slow 

to converge for the penalized ZINB model. This is because the adaptive rescaling violates 

the non-decreasing property of the EM algorithm and estimating the dispersion parameter θ 
further complicates the algorithm. In this paper, the proposed algorithm avoids the adaptive 

rescaling, leading to much improved computing efficiency.

2.3 Selection of tuning parameters

The penalty parameters (λNB,λBI) can be determined based on the BIC (Schwarz, 1978):

where ϕ̂ are the estimated parameters, (λNB,λBI) are tuning parameters, and ℓ(·) is the log-

likelihood function. The degrees of freedom are given by df = Σj=0,…,q1 1{β j ≠ 

0}+Σk=0,…,q2 1{ζk ≠ 0}+1, which includes the degree of freedom for the scaling parameter 

θ. We first construct a solution path based on the paired shrinkage parameters. To begin 

Wang et al. Page 5

Biom J. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with, the algorithm generates two decreasing sequences  and 

. Then, we pair the sequences: . In 

principle, large values ( ) can be chosen such that all the coefficients are zeros 

except the intercepts. A refined method suggests that the smallest values ( ) can be 

calculated from data for the LASSO penalty (Wang et al., 2014a). For other penalties, we 

follow the same strategy.

2.4 Standard error formula

Wang et al. (2014a) used the computational demanding bootstrap procedure to estimate 

standard errors for the penalized ZIP model. In this paper, we establish standard error 

formulae for the penalized ZINB models. A sandwich formula can be used as an estimator 

of the covariance of the non-zero estimates ϕ1 = (β1,ζ1) (Fan and Li, 2001; Fan and Peng, 

2004):

(1)

where

where Σ(·) is defined in Appendix B. For the ZINB regression model, the elements of ∇2ℓ(ϕ1) 

are provided in Appendix C. It is worth noting that most of the results in Appendix C are 

different from Garay et al. (2011). Indeed there is a mistake in the log-likelihood function 

presented in that paper.

3 A simulation study

We investigate performance of the proposed methods with sample size n = 300,100 and 20 

predictors in both count and zero components (q1 = q2 = 20) in the simulation study. The 

predictor variables were randomly drawn from multivariate normal distributions N20(0,Σ), 

where Σ has elements ρ |i−j|(i, j =1, …, 20). The correlation among predictor variables was 

fixed at ρ = 0.4 and 0.8, respectively. The predictor variables are the same for the count and 

zero components. We set θ = 2 or 10 for the scaling parameter of the NB distribution. There 

were 100 replications for each set of parameters described below. These parameters were 

chosen to have a different number of effective predictors and different levels of zero 

inflation.
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1. In example 1, set the parameters

β = (1.10, 0, 0, 0, −0.36, 0, 0, 0, 0, 0, 0, 0, 0, −0.32, 0, 0, 0, 0, 0, 0, 0)

ζ = (0.30, −0.48, 0, 0, 0, 0.4, 0, 0, 0, 0, 0.44, 0, 0.44, 0, 0, 0, 0, 0, 0, 0, 0).

The zero inflation is about 55%.

2. In example 2, we kept all elements of β in example 1 and only changed the first 

element of ζ from 0.30 to −1.20, which has about 25% zero inflation.

3. In example 3, we remained all elements of β in example 1 and changed the first 

element of ζ from 0.30 to −0.35, leading to about 43% zero inflation.

4. In example 4, we doubled the number of ineffective predictors from the above 

examples, and the parameters were set to obtain about 29% zero inflation:

β =(1.50, 0, 0, 0, −0.22, 0, 0, 0, −0.25, 0, 0.20, 0, 0.30, −0.32, 0, 0, 0, 0.20, 0, 0, 

0)

ζ =(−1.05, 0, 0.45, 0, −0.3, 0, 0, 0, 0, 0, −0.33, 0, −0.39, 0, 0, 0.3, 0, 0, 0, 0.36, 

0).

5. In example 5, the parameters were set to obtain about 21% zero inflation:

β = (2.20, 0, 0, 0, −0.72, 0, 0, 0, 0, 0, 0, 0, 0, −0.64, 0, 0, 0, 0, 0, 0, 0)

ζ = (−2, −0.96, 0, 0, 0, 0.8, 0, 0, 0, 0, 0.88, 0, 0.88, 0, 0, 0, 0, 0, 0, 0, 0).

The effective predictors were dichotomized at median values, and ineffective 

variables remained continuous.

Statistical methods evaluated are penalized NB regression, penalized ZINB regression, a 

backward stepwise elimination (BE) procedure for significance levels α = 0.1573,0.05,0.01 

following Sauerbrei et al. (2008), and an oracle ZINB model assuming the true non-zero 

coefficients are known. In a BE(α) procedure, insignificant variables are removed from a 

full ZINB model (including all predictor variables in the NB and zero component), then a 

model is refit with the remaining predictors. This procedure is repeated until all variables are 

significant based on the α level. Estimation accuracy is measured by ratio of mean squared 

error of parameters (MSE) between a specific model and the full ZINB model. To evaluate 

performance of variable selection, we calculated sensitivity (proportion of correctly 

identified number of non-zero coefficients) and specificity (proportion of correctly identified 

number of zero coefficients). To compare prediction accuracy, we generated the same 

number of test observations as the training data from each model, and computed the log-

likelihood values using the parameters estimated from the training data. Finally, we 

evaluated accuracy of the proposed standard error formulae.

Estimation and variable selection results are summarized in Tables 1–4 and the Supporting 

Information, where bold fonts indicate the best values among the competitive models 

(excluding the oracle models). We first focus on the results with n = 300,ρ = 0.4 and θ = 2. It 

is clear that the penalized zero-inflated NB models have better performance than their 

counterparts which ignore zero-inflation. The estimates of ZINB models have smaller 

MSEs, larger sensitivity and specificity, and have more accurate scaling parameter θ̂. Due to 
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zero-inflation, a smaller estimate of θ was typically obtained in the NB models in an effort 

to capture this extra variability. Within the penalized ZINB models, the LASSO estimates 

can be less accurate in the NB component but are more comparable in the zero component; 

however, there is no universal winner on variable selection. The BE procedure is sensitive to 

the choice of the significance level α. For a large α value, the BE procedure keeps more 

predictor variables with increased sensitivity. For a small α value, more variables are 

eliminated to increase specificity. It would be interesting to determine an optimal value of α 
so that there is a trade-off between sensitivity and specificity. However, it appears that even a 

small change of α value can select variables quite differently. In comparison, the penalized 

ZINB models provide comparable solutions to the BE procedure, if not better. Specifically, 

in example 1, excluding the oracle model, ZINB-MCP has the most accurate parameter 

estimation with smallest MSEs in both the NB and zero components. Reducing zero-

inflation as in examples 2 and 3, variable selection was more accurate in the NB component. 

In example 4 and 5, ZINB-MCP and ZINB-SCAD are highly competitive to existing 

methods. In all examples, ZINB-MCP and ZINB-SCAD have good performance on variable 

selection in the NB components. Effective predictors are correctly selected most of the time, 

ranging from 85%–96% of sensitivity while variables having no effect are correctly 

eliminated in a high probability (more than 96%).

Determining predictors in zero components is more difficult than determining predictors in 

the count components (Buu et al., 2011; Wang et al., 2014a; Jochmann, 2013). Sensitivities 

for the zero components are typically lower than the corresponding sensitivities for the NB 

components. As argued in Jochmann (2013), this is to be anticipated since the data generally 

are not very informative about the hidden components of the observations.

Table 4 reports the predictive log-likelihood values. The penalized ZINB models have better 

prediction than the penalized NB models, and are better or comparable to the BE procedure. 

ZINB-MCP has the most accurate prediction in example 1 and 3 and ZINB-LASSO is the 

best in example 2. In examples 4 and 5, ZINB-MCP and ZINB-SCAD have best prediction 

or are comparable to BE.

With increased correlation from ρ =0.4 to 0.8, variable selection becomes more challenging. 

In general, sensitivity and specificity are decreased in all variable selection methods. 

However, the penalized ZINB models have the smallest MSEs in all examples with n=300. 

With increased scaling parameter from θ =2 to 10, the variance of the ZINB model 

decreases. As expected, variable selection methods have improved performances while the 

penalized ZINB models have the smallest or nearly the smallest MSEs. When the sample 

size decreases from n=300 to n=100, the performance of the variable selection methods 

becomes worse. Similar conclusions hold for ZIP models with small sample sizes (Buu et 

al., 2011; Wang et al., 2014a). It should be pointed out that the ZINB model is more 

complex than the ZIP model. Therefore, variable selection of ZINB models may perform 

inferior to the ZIP models with comparable sample sizes.

Next we evaluate the standard error formulae. For non-zero coefficient estimates with 

example 1, we computed the median absolute deviation divided by 0.6745, denoted by SD in 

Table 5. The SD can be treated as the true standard error. The median of estimated standard 
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errors using formula (1), denoted by SE, and the median absolute deviation of estimated 

standard errors divided by 0.6745 in the parentheses (std(SE)), are used to compare with SD. 

Due to space limitation, only a handful coefficients are displayed for example 1 while 

similar conclusions hold in other examples. The standard error formulae performs 

reasonably well as the differences between SD and SE are within twice std(SE). While the 

estimated standard error can underestimate the true SD (Hunter and Li, 2005), it is less 

severe when compared with the robust standard errors for the oracle estimators.

The proposed algorithm for fitting penalized ZINB appears to be stable, which is contrast to 

the BE procedure. In a typical algorithm to fit the ZINB model, the Newton-Raphson 

method requires to invert the Hessian matrix. The inverted Hessian can be numerically 

unstable and the solution may diverge. For instance, when estimating the full ZINB model in 

example 2 with ρ = 0.4,θ = 2,n = 300, the Newton-Raphson method failed in 41 out of 141 

(30%) simulated data sets. As a consequence, the BE procedure could not be implemented 

for the 41 data sets. For the remaining 100 data sets, even though the full ZINB model was 

successfully estimated, the BE procedure still failed five times. Such a phenomenon is not 

unique to example 2, and can be more severe when the number of predictor increases, or the 

sample size decreases.

4 Health care demand

Riphahn et al. (2003) utilized a part of the German Socioeconomic Panel (GSOEP) data set 

to analyze the number of doctor visits and the number of hospital visits. The original data 

have twelve annual waves from 1984 to 1995 for a representative sample of German 

households, which provide broad information on the health care utilization, current 

employment status, and the insurance arrangements under which subjects are protected. The 

German health insurance system provides almost complete coverage of the population. 

Those low-income individuals are required to have health insurance by a law except for civil 

servants and the self-employed, who along with high-income persons can choose to remain 

uninsured, to sign up one of the mandatory health insurances, a private insurance, or a 

combination of two. Consequently, the employment characteristics were thought to be linked 

with health care demand. The data set contains number of doctor office visits for 1,812 West 

German men aged 25 to 65 years in the last three months of 1994. As shown in Figure 1, 

many doctor office visits are zeros, which can be difficult to fit with a Poisson or NB model.

We focus on zero-inflated models and alternative models may be found in Riphahn et al. 

(2003); Jochmann (2013). The predictor variables are illustrated in Table 6. This data set 

was recently analyzed using a Bayesian variable selection procedure (Jochmann, 2013). 

Following Jochmann (2013), instead of the original variable age and its square, we study 

more complex effect of age. Namely, we include the linear spline variables age30 to age60 
and their interaction terms with the health satisfaction health (for instance health:age30). We 

estimate the following three models: the full ZINB model, models selected by the BE 

procedure and the penalized ZINB models. Other penalized count data regression models 

were evaluated and discussed below, although not included in Table 7. Among α = 

0.1573,0.05,0.01, BE(0.01) produces the most parsimonious model with the smallest BIC 

value. The results are given in Table 7.
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The results indicate more utilization of health care from the publicly issued than from 

privately issued. The mean doctor visits are 2.74 and 1.90, respectively. ZINB-LASSO and 

ZINB-SCAD generated positive coefficient estimates for variable public in the NB 

component, consistent with Riphahn et al. (2003); Jochmann (2013). The data show higher 

health care utilization for the aged and handicapped. ZINB-LASSO and ZINB-MCP both 

have positive coefficients on age55 in the NB component. However, the estimate for the full 

ZINB model is −0.52, which needs caution when interpreting the results. Notice that 

BE(0.01) is not able to select public or an age variable. For self, the ZINB-MCP and 

BE(0.01) estimates are −0.37, close to the estimate −0.356 in (Riphahn et al., 2003). 

Accordingly, the estimate suggests that a self-employed individual visits doctor about 31% 

less often than not self-employed, which confirms incentive effects in the health care 

demand. Those self-employed were lack of any financial compensation when visiting a 

doctor. In the ZINB-MCP model, age55 and age50 are chosen in the NB and zero 

components, respectively. Thus, males being 50 or older are more likely to see a doctor, and 

conditional on that males over 55 years old have more repeat doctor visits. The LASSO 

estimators also generate similar conclusions. In the zero component, the penalized methods 

all indicate a negative effect of having children on the demand of health care. The presence 

of children is less likely to increase the chance to see a physician (Riphahn et al., 2003). 

However, children was eliminated by BE(0.01). As expected, people with high health 

satisfaction are unlikely to see a doctor and have low demand on health care. The results also 

suggest that interaction between health status and age is not correlated with doctor office 

visits. The results from penalized ZINB models are similar to those in Jochmann (2013). 

The five variables selected by the NB component in the ZINB-MCP correspond to the top 

five inclusion probabilities by a Bayesian analysis (Jochmann, 2013). Similarly, the three 

variables selected by the zero component in the ZINB-MCP correspond to the top three 

inclusion probabilities. However, the penalized model has sparse representation, which is 

different from the Bayesian model selection. For instance, the interaction terms are not 

selected by the ZINB-MCP while two interaction terms were selected by the Bayesian 

procedure despite relatively small inclusion probabilities. In this case, it can be subjective 

when making a cut-off point of inclusion probability.

In the sequel, we focus on the ZINB-MCP method which has similar BIC value compared 

with BE(0.01), and largest log-likelihood value and smallest AIC value. The log-likelihood 

values from the reduced models are similar based on 10-fold cross validation, and larger 

than that from the full ZINB model, indicating better prediction with parsimonious models. 

Between ZINB-MCP and BE(0.01), we compare the predicted probabilities from the two 

methods. The Vuong test (Vuong, 1989; Greene, 1994) has a p-value < 0.001 in favor of the 

penalized model. Between ZINB-MCP and NB-MCP, the Vuong test has a p-value 0.01 

preferring the zero-inflated model again. When comparing to the full ZINB model, a 

likelihood ratio test returns a p-value 0.48 (chi-square statistic 45.8 with degrees of freedom 

46), which suggests that there is no statistically significant difference between the reduced 

and full ZINB models. One would question if a simpler ZIP model can fit the data as well as 

the ZINB model. To see this, we also fit penalized ZIP models. The ZIP-LASSO, ZIP-MCP 

and ZIP-SCAD have BIC 9012.6, 8944.2 and 8958.2, respectively, and log-likelihood 

−4405, −4400.8 and −4411.6, respectively. The penalized ZIP models have substantial large 
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values of BIC and small values of log-likelihood, leading to poorer fitting compared with the 

penalized ZINB models. Overall, the analysis provides evidence that the ZINB-MCP model 

fits the data best. Furthermore, using the variable selected by the ZINB-MCP, we evaluated 

traditional maximum likelihood estimates (not shown) which are very close to those by 

ZINB-MCP in Table 7. Thus, this is an example that although the MCP penalty shrinks 

estimates, the bias can be reduced.

5 Software

To facilitate public usage, the proposed algorithm has been implemented in the free software 

mpath (Wang, 2014) available at http://CRAN.R-project.org/package=mpath. Using penalty 

scaling parameters, the software allows different penalties for each of the variables in count 

and zero components. Thus, the adaptive LASSO (Zou, 2006) can be implemented with the 

penalty rescaling. The elastic net penalty (Zou and Hastie, 2005) has also been included in 

the package. We provided a package vignette for analyzing the German health care demand, 

which may be invoked by the following R codes:

R> library(“mpath”)

R> vignette(“german”, package = “mpath”)

6 Discussion

Variable selection for mixture models is a challenging problem particularly when the sample 

size is small to modest while the number of predictors is large. This paper investigates the 

performance of an EM algorithm for variable selection in a ZINB model. An alternative 

algorithm may take Taylor approximation of the log-likelihood function. However, this 

approach requires to invert the Hessian matrix, which can be numerically unstable for 

complex models (Buu et al., 2011). Indeed, even with the non-penalized ZINB model, the 

local approximation can fail, thus the traditional stepwise variable selection can encounter a 

failure. The simulation study supports that the proposed algorithm does not suffer such 

deficiency, thus is more reliable than the stepwise variable selection for the ZINB regression 

models. In addition, the new algorithm can be potentially useful even with high-dimensional 

variables. The developed methods can be applied in many studies including but not limited 

to health care utilization and service.

The current paper is concerned with cross-sectional data only, whilst panel data often arise 

in empirical applications. This represents a limitation of the proposed model. Variable 

selection for zero-inflated panel data demands new, different methods, but is beyond the 

scope of our development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Appendix A Regularity conditions

The oracle property of ZINB with MCP or SCAD may be developed based on the following 

regularity conditions, which also lead to asymptotic normality of the non-penalized 

maximum likelihood estimate of the ZINB model. Let ui = (xi,yi), i = 1,…,n be independent 

and identically distributed from the ZINB model. The regularity conditions are as follows:

a. There exists an open subset ω of Ω containing the true parameter point ϕ0 such 

that for almost all ui, ℓ(ϕ,ui) admits all third derivatives ∂3ℓ(ϕ,ui)/∂ϕ j∂ϕk∂ϕl for all 

ϕ ∈ ω.

b. The first and second partial derivatives of ℓ(ϕ,ui) satisfy the equations

and

c. The Fisher information matrix I(ϕ ) is finite and positive definite for all ϕ ∈ ω.

d. There exist functions Mjkl such that

where mjkl = Eϕ0 [Mjkl(ui)] < ∞ for all j,k, l.

Appendix B Oracle properties of the MCP and SCAD estimates

Assume true parameter vector ϕ0 has elements (β j0,ζk0), j = 0,1,…,q1,k = 0,1, …,q2. 

Decompose  and assume ϕ20 contains all zero coefficients.
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Theorem B.1

Let u1,,un be independent and identically distributed, each with a probability distribution 
satisfying regularity conditions (a)–(d) in Appendix A. If

then there exists a local maximizer ϕ̂ of pℓ(ϕ ) such that

where || · || is the Euclidean norm and

Theorem B.2

Let u1,,un be independent and identically distributed, each with a probability distribution 
satisfying conditions (a)–(d) in Appendix A. Assume that the penalty function satisfies

If λNB,n → 0, ,λBI,n → 0,  as n → ∞, then with probability 
tending to 1, the root-n consistent local maximizers ϕ̂ in Theorem 1 must satisfy:

i. Sparsity: ϕ̂2 = 0.

ii. Asymptotic normality:

in distribution, where I1(ϕ10) = I1(ϕ10,0), the Fisher information knowing ϕ2 = 0, 
and

where s and t are the numbers of non-zero components (excluding intercepts) in 
β10 and ζ10, respectively.
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Appendix C Elements of Hessian matrix

Let , pi = ξi/(1+ξi), ri = θ/(θ +μi), si = μi/(θ + μi), ,hi = ξi 

+ti. For ease of notation, the subscript i is suppressed in the sequel. Furthermore, Ψ′(·) 

denotes the trigamma function.
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Figure 1. 
Empirical distribution of number of doctor office visits
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Table 1

Simulation results with example 1, ρ = 0.4,θ = 2,n = 300. Median and robust standard deviations (in 

parentheses) of the MSE ratio between the penalized model and full model, and the estimated θ. Mean and 

standard deviations of sensitivity and specificity.

Method MSE Sensitivity Specificity θ̂

NB component

NB-LASSO 2.529 (1.434) 0.559 (0.427) 0.895 (0.123) 0.277 (0.067)

NB-MCP 3.514 (2.149) 0.713 (0.355) 0.869 (0.093) 0.309 (0.059)

NB-SCAD 3.434 (1.991) 0.644 (0.392) 0.854 (0.129) 0.304 (0.067)

ZINB-LASSO 0.243 (0.202) 0.862 (0.278) 0.924 (0.087) 2.229 (0.784)

ZINB-MCP 0.1 (0.133) 0.846 (0.243) 0.974 (0.048) 2.286 (0.868)

ZINB-SCAD 0.167 (0.214) 0.856 (0.239) 0.958 (0.056) 2.119 (0.881)

BE(0.1573) 0.614 (0.279) 0.956 (0.161) 0.748 (0.129) 3.138 (1.46)

BE(0.05) 0.404 (0.353) 0.918 (0.201) 0.879 (0.113) 2.666 (1.136)

BE(0.01) 0.177 (0.235) 0.824 (0.273) 0.968 (0.053) 2.207 (0.86)

ZINB-ORACLE 0.042 (0.042) 1 (0) 1 (0) 2.127 (0.759)

Zero component

ZINB-LASSO 0.381 (0.343) 0.614 (0.306) 0.973 (0.043)

ZINB-MCP 0.327 (0.282) 0.745 (0.201) 0.938 (0.09)

ZINB-SCAD 0.382 (0.316) 0.59 (0.234) 0.981 (0.036)

BE(0.1573) 0.607 (0.24) 0.83 (0.174) 0.788 (0.134)

BE(0.05) 0.406 (0.319) 0.731 (0.212) 0.922 (0.085)

BE(0.01) 0.403 (0.308) 0.58 (0.241) 0.987 (0.029)

ZINB-ORACLE 0.119 (0.091) 1 (0) 1 (0)

Biom J. Author manuscript; available in PMC 2017 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 18

Table 2

Simulation results with example 4, ρ = 0.4,θ = 2,n = 300. Median and robust standard deviations (in 

parentheses) of the MSE ratio between the penalized model and full model, and the estimated θ. Mean and 

standard deviations of sensitivity and specificity.

Method MSE Sensitivity Specificity θ̂

NB component

NB-LASSO 2.291 (1.043) 0.638 (0.338) 0.893 (0.108) 0.628 (0.1)

NB-MCP 2.445 (1.088) 0.743 (0.248) 0.922 (0.076) 0.671 (0.092)

NB-SCAD 2.558 (1.172) 0.748 (0.278) 0.877 (0.096) 0.663 (0.084)

ZINB-LASSO 0.856 (0.489) 0.87 (0.243) 0.863 (0.112) 2.329 (0.544)

ZINB-MCP 0.548 (0.372) 0.859 (0.185) 0.965 (0.06) 2.345 (0.558)

ZINB-SCAD 0.584 (0.37) 0.889 (0.165) 0.935 (0.085) 2.384 (0.57)

BE(0.1573) 0.719 (0.29) 0.956 (0.099) 0.809 (0.121) 2.51 (0.549)

BE(0.05) 0.592 (0.336) 0.916 (0.125) 0.923 (0.092) 2.39 (0.577)

BE(0.01) 0.538 (0.411) 0.841 (0.172) 0.98 (0.043) 2.301 (0.533)

ZINB-ORACLE 0.232 (0.147) 1 (0) 1 (0) 2.352 (0.506)

Zero component

ZINB-LASSO 0.519 (0.405) 0.454 (0.252) 0.948 (0.077)

ZINB-MCP 0.635 (0.276) 0.733 (0.184) 0.777 (0.176)

ZINB-SCAD 0.619 (0.349) 0.429 (0.215) 0.962 (0.053)

BE(0.1573) 0.676 (0.252) 0.719 (0.179) 0.797 (0.123)

BE(0.05) 0.602 (0.299) 0.533 (0.19) 0.927 (0.08)

BE(0.01) 0.655 (0.434) 0.292 (0.192) 0.984 (0.033)

ZINB-ORACLE 0.177 (0.125) 1 (0) 1 (0)
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Table 3

Simulation results with example 5, ρ = 0.4,θ = 2,n = 300. Median and robust standard deviations (in 

parentheses) of the MSE ratio between the penalized model and full model, and the estimated θ. Mean and 

standard deviations of sensitivity and specificity.

Method MSE Sensitivity Specificity θ̂

NB component

NB-LASSO 2.114 (1.391) 0.967 (0.146) 0.921 (0.079) 0.681 (0.072)

NB-MCP 0.98 (0.57) 0.961 (0.154) 0.949 (0.062) 0.705 (0.079)

NB-SCAD 1.063 (0.908) 0.967 (0.146) 0.914 (0.082) 0.706 (0.078)

ZINB-LASSO 0.665 (0.48) 0.989 (0.074) 0.947 (0.062) 2.247 (0.311)

ZINB-MCP 0.158 (0.16) 0.972 (0.115) 0.99 (0.025) 2.189 (0.352)

ZINB-SCAD 0.131 (0.12) 0.983 (0.09) 0.987 (0.028) 2.167 (0.362)

BE(0.1573) 0.615 (0.278) 0.994 (0.053) 0.795 (0.111) 2.429 (0.44)

BE(0.05) 0.292 (0.256) 0.994 (0.053) 0.928 (0.078) 2.306 (0.43)

BE(0.01) 0.168 (0.14) 0.989 (0.075) 0.984 (0.026) 2.252 (0.344)

ZINB-ORACLE 0.103 (0.094) 1 (0) 1 (0) 2.171 (0.31)

Zero component

ZINB-LASSO 1.189 (0.989) 0.642 (0.273) 0.947 (0.07)

ZINB-MCP 0.706 (0.423) 0.853 (0.191) 0.787 (0.165)

ZINB-SCAD 0.87 (0.807) 0.611 (0.252) 0.96 (0.057)

BE(0.1573) 0.734 (0.428) 0.823 (0.189) 0.798 (0.132)

BE(0.05) 0.73 (0.634) 0.697 (0.243) 0.929 (0.085)

BE(0.01) 1.09 (0.965) 0.455 (0.24) 0.985 (0.034)

ZINB-ORACLE 0.219 (0.214) 1 (0) 1 (0)

Biom J. Author manuscript; available in PMC 2017 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 20

Ta
b

le
 4

M
ea

n 
an

d 
st

an
da

rd
 d

ev
ia

tio
ns

 (
in

 p
ar

en
th

es
es

) 
of

 th
e 

pr
ed

ic
tiv

e 
lo

g-
lik

el
ih

oo
d 

va
lu

es
 w

ith
 ρ
 =

 0
.4

,θ
 =

 2
,n

 =
 3

00
.

ex
am

pl
e 

1
ex

am
pl

e 
2

ex
am

pl
e 

3
ex

am
pl

e 
4

ex
am

pl
e 

5

N
B

-L
A

SS
O

−
45

2.
5 

(2
8.

3)
−

60
8.

2 
(2

0.
1)

−
53

3.
4 

(2
6)

−
70

5.
2 

(2
6.

1)
−

71
2.

5 
(1

8.
5)

N
B

-M
C

P
−

45
0.

5 
(2

7.
9)

−
60

6.
4 

(1
9.

8)
−

53
2.

3 
(2

5.
6)

−
70

1.
2 

(2
4.

4)
−

71
0.

5 
(1

8.
6)

N
B

-S
C

A
D

−
45

3.
1 

(2
8.

7)
−

60
6.

9 
(2

0)
−

53
3.

2 
(2

5.
7)

−
70

2.
1 

(2
5.

2)
−

71
1 

(1
8.

8)

Z
IN

B
-L

A
SS

O
−

43
8 

(2
9.

3)
−6

01
.4

 (
22

.4
)

−
51

9.
8 

(2
6.

8)
−

69
1.

5 
(2

6.
6)

−
69

5.
5 

(2
0.

4)

Z
IN

B
-M

C
P

−4
35

.4
 (

29
.4

)
−

60
7.

4 
(4

9.
5)

−5
16

.6
 (

27
.1

)
−

68
9.

4 
(2

4.
7)

−
69

6.
4 

(2
0.

7)

Z
IN

B
-S

C
A

D
−

43
7.

1 
(2

8.
9)

−
60

5 
(5

0.
9)

−
51

9 
(2

6.
7)

−
68

9.
8 

(2
4.

7)
−6

93
.7

 (
21

)

B
E

(0
.1

57
3)

−
45

3.
3 

(3
5)

−
61

6.
3 

(2
9.

2)
−

52
9.

8 
(3

0.
6)

−
69

2.
8 

(2
6.

3)
−

70
5.

9 
(2

3.
2)

B
E

(0
.0

5)
−

44
4.

7 
(3

1.
9)

−
60

5 
(2

6)
−

52
0.

8 
(2

9)
−6

89
.2

 (
25

.1
)

−
69

8.
7 

(2
2.

4)

B
E

(0
.0

1)
−

43
8.

5 
(2

9.
7)

−
60

1.
7 

(2
3.

2)
−

51
9.

1 
(2

7.
2)

−
68

9.
5 

(2
4.

3)
−

69
5.

8 
(1

9.
9)

Z
IN

B
-O

R
A

C
L

E
−

42
5.

3 
(2

7.
1)

−
59

1.
9 

(2
2.

2)
−

50
8.

6 
(2

6.
3)

−
67

5.
8 

(2
3)

−
68

6 
(1

9.
3)

Biom J. Author manuscript; available in PMC 2017 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 21

Ta
b

le
 5

St
an

da
rd

 d
ev

ia
tio

ns
 o

f 
es

tim
at

or
s 

w
ith

 e
xa

m
pl

e 
1,

 ρ
 =

 0
.4

,θ
 =

 2
,n

 =
 3

00
.

β̂ 4
β̂ 1

3
ζ̂ 1

SD
SE

SD
SE

SD
SE

Z
IN

B
-L

A
SS

O
0.

11
9

0.
08

9 
(0

.0
22

)
0.

11
3

0.
08

9 
(0

.0
21

)
0.

14
3

0.
13

 (
0.

01
)

Z
IN

B
-M

C
P

0.
1

0.
08

6 
(0

.0
23

)
0.

09
6

0.
08

5 
(0

.0
23

)
0.

22
7

0.
16

8 
(0

.0
29

)

Z
IN

B
-S

C
A

D
0.

12
7

0.
08

6 
(0

.0
24

)
0.

10
9

0.
08

5 
(0

.0
21

)
0.

22
6

0.
16

8 
(0

.0
35

)

Z
IN

B
-O

R
A

C
L

E
0.

13
1

0.
08

7 
(0

.0
19

)
0.

12
3

0.
08

5 
(0

.0
23

)
0.

25
9

0.
16

6 
(0

.0
34

)

Biom J. Author manuscript; available in PMC 2017 July 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 22

Table 6

Variable descriptions

Variable Description

health health satisfaction, 0 (low) – 10 (high)

handicap 1 if handicapped, 0 otherwise

hdegree degree of handicap in percentage points

married 1 if married, 0 otherwise

schooling years of schooling

hhincome household monthly net income, in German marks/1000

children 1 if children under 16 in the household, 0 otherwise

self 1 if self employed, 0 otherwise

civil 1 if civil servant, 0 otherwise

bluec 1 if blue collar employee, 0 otherwise

employed 1 if employed, 0 otherwise

public 1 if public health insurance, 0 otherwise

addon 1 if add-on insurance, 0 otherwise

age30 1 if age >= 30

age35 1 if age >= 35

age40 1 if age >= 40

age45 1 if age >= 45

age50 1 if age >= 50

age55 1 if age >= 55

age60 1 if age >= 60
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