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Abstract

Objective—The article proposes a set of metrics for evaluation of patient performance in 

physical therapy exercises.

Methods—Taxonomy is employed that classifies the metrics into quantitative and qualitative 

categories, based on the level of abstraction of the captured motion sequences. Further, the 

quantitative metrics are classified into model-less and model-based metrics, in reference to 

whether the evaluation employs the raw measurements of patient performed motions, or whether 

the evaluation is based on a mathematical model of the motions. The reviewed metrics include 

root-mean square distance, Kullback Leibler divergence, log-likelihood, heuristic consistency, 

Fugl-Meyer Assessment, and similar.

Results—The metrics are evaluated for a set of five human motions captured with a Kinect 

sensor.

Conclusion—The metrics can potentially be integrated into a system that employs machine 

learning for modelling and assessment of the consistency of patient performance in home-based 

therapy setting. Automated performance evaluation can overcome the inherent subjectivity in 

human performed therapy assessment, and it can increase the adherence to prescribed therapy 

plans, and reduce healthcare costs.
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Introduction

Functional recovery from neuromotor disabilities, various surgical procedures, or 

musculoskeletal trauma is strongly dependent on patient participation in a physical therapy 

program. While a large portion of all therapy exercises is performed by patients in a home-
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based setting, the lack of supervision and motivation for continued involvement in the 

therapy program in outpatient environment conduce low adherence to prescribed treatment 

regimens [1]. The presented work in this article was motivated by our belief that the latest 

progress in machine learning furnishes a potential to be harnessed for analysis and 

monitoring of patient progress toward recovery during in home physical rehabilitation, and 

accordingly, can greatly benefit both patients and healthcare providers.

The recent rapid advancements in artificial intelligence (AI), driven predominantly by its sub 

field machine learning, have been reflected by ubiquitous deployment across a wide 

spectrum of application domains, ranging from miscellaneous image-, text-, and voice-

processing apps in smart phones and computers to autonomous cars and personalized 

recommender systems.

It is expected that as the field further evolves in the years to come, AI-enabled systems will 

have even more pronounced and transformative impact on society as a whole and on all 

aspects of our lives as individuals.

In the medical field, the number of machine learning applications has proliferated recently 

due to the demonstrated capacity for discovering complex patterns by analysing large 

numbers of electronic medical records. Not surprisingly, the most notable medical AI 

success has been in the domain of medical image processing. For example, the medical team 

at Deep Mind have applied deep artificial neural networks (ANNs) for analysis of digital 

scans of the eye in diagnosis of age-related macular degeneration and diabetic retinopathy 

[2], and for analysis of radiotherapy scans for detection of oral and neck cancer [3]. Other 

exemplary AI applications include image processing of skin lesions in screening and 

detection of melanoma cancer [4], and image processing of scans for detection of invasive 

brain cancer cells [5]. Machine learning approaches have also been implemented in a variety 

of other biomedical research problems [6], such as analysis of genomics sequences [7], drug 

discovery and repurposing [8], and robotic healthcare assistants [9].

The benefits of applying machine learning algorithms to medical data analytics are 

numerous, and encompass customized and personalized diagnosis and treatment, faster 

screening and early detection of conditions, which can potentially lead to improved 

healthcare quality and patient satisfaction, reduced healthcare costs, reduced need for 

hospital stay, and similar.

As more archived traditional medical records are transferred to digital form, and as the 

personal wearable devices and mobile apps unobtrusively collect massive amounts of 

information about our bodily functions and activities, more training data will become 

available, which will improve the outcomes of the machine learning algorithms and leverage 

the extraction of subtle health related and behavioural patterns. For instance, one creative 

solution employing images taken from a regular cell phone camera is the mobile app AiCure 

[10], which uses AI-supported image processing for monitoring users’ habits in taking 

prescription medications, with an objective to increase the adherence rates, as well as to 

update the respective physician on patient habits related to taking the prescribed 

medications.
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Likewise, application of machine learning algorithms for monitoring and evaluation of 

patient compliance with a prescribed physical therapy program can improve the adherence 

rates, reduce the required time for functional recovery, and consequently, reduce treatment 

cost. The development of such systems requires hardware components, i.e., a dedicated 

computer for data processing, and a sensory system for capturing patient exercises during 

rehabilitation sessions. Among the different sensory systems for motion capturing, the 

vision-range sensors of the type of Microsoft Kinect are currently an excellent option for the 

task at hand, considering their affordability (price in the range of $150), reliability for 

different research and industrial applications, and availability of open source libraries for 

program development with a broad range of capabilities. Two such existing systems KiRes 

(Kinect Rehabilitation System) [11] and VERA (Virtual Exercise Rehabilitation Assistant) 

[12] utilize the motion capturing feature of Kinect to present an avatar on a computer display 

that reproduces patient motions in real time, and simultaneously displays the desired 

motions. The visualization of the performance provides an instantaneous feedback to the 

patient, helps in recognizing any needs for correcting the exercises, as well as motivates the 

patient to comply with the prescribed treatment. A comprehensive review of the technical 

and clinical merits of the application of Microsoft Kinect for motion capturing of patient 

exercises in physical rehabilitation is presented by Hondori and Khademi [13].

Equally important to the requirement for adequate hardware components is the development 

of a methodology for computer-driven analysis of patient therapy efforts, related to 

evaluating the consistency of the performance with the PT-prescribed exercises, the day-to-

day patient progress, and the level of compliance with the prescribed treatment plan. Such 

methodology is predicated upon the provision of: (i) efficient mathematical models for 

representation of bodily movements undertaken during physical therapy exercises [14], and 

(ii) efficient metrics for quantifying the patient executed motions and collating the 

performance to the prescribed motions by the PT.

The objective of this article is to present a survey of the current literature in reference to the 

metrics for evaluation of patient performance in physical therapy. The existing practice for 

evaluation of physical rehabilitation has exclusively relied on assessment by a PT. For 

instance, a common test for evaluation of motor recovery after stroke is Fugl-Meyer 

Assessment [15], where a PT evaluates a patient’s performance on a set of pre-defined 

movements and assigns a numerical score on a scale of 0 to 2 for each of the movements. 

Related tests for evaluation of the level of recovery after stroke include the Motor 

Assessment Scale [16] and the motricity index [17]. Another test for assessing the ability of 

upper motor movements is the Wolf Motor Function Test [18], which is a timed test 

consisting of several functional tasks, scored on a scale of 0 to 5. These and several other 

tests for assessment of patient performance and the corresponding level of functional 

recovery that are currently performed by a trained PT are suitable candidates for automation, 

since they rely on a set of standard pre-defined movements. Accordingly, drawbacks of this 

type of assessment include: it is time consuming, and it produces subjective scores where 

different PTs can provide different assessment scores due to human inability to accurately 

measure and quantify body trajectories. Automated performance evaluation can overcome 

these limitations by providing more accurate and quantified assessment, also can be involved 

Vakanski et al. Page 3

Int J Phys Med Rehabil. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



in daily monitoring of the therapy sessions, and can provide instantaneous corrective 

feedback and send the performance data to the respective PT on a daily basis.

With regards to the proposed metrics for automated performance evaluation in the published 

literature, to the best of our knowledge only the work by Komatireddy et al. [12] has 

partially addressed this topic. The authors proposed a quantitative metric, related to the 

number of correctly performed repetitions of an exercise, and a qualitative metric, related to 

ratio of optimal vs. sub-optimal repetitions of the exercise. The study does not provide a 

clear explanation of which discriminative approach was applied for distinguishing between 

optimal and suboptimal repetitions.

This article reviews metrics that have been used, or that can be potentially used, for 

evaluation of patient therapy motions. Motivated by the work in Komatireddy et al. [12], we 

employ a taxonomy that classifies the metrics as quantitative and qualitative. Further, 

quantitative metrics are categorized into model-less and model-based metrics. Model-less 

metrics perform the assessment based on the raw time series of the motions as acquired by a 

sensory system. Metrics is this category are: root-mean square distance, and norm of jerk. 

Model-based metrics calculate the consistency of patient exercises in comparison to a 

mathematical model of the motion as prescribed by a PT. Metrics in this category include: 

log-likelihood, Kullback Leibler divergence, heuristic consistency, and prediction intervals. 

Other related metrics not explored in this work are the Hellinger distance and the 

Bhattacharyya distance. While the quantitative metrics evaluate the motions at a low level of 

abstraction, i.e., at a level of individual measurement points in a sequence, the qualitative 

metrics evaluate the motions at a high level of abstraction, i.e., at a motion sequence level. 

Metrics in this category involve: number of optimal attempts, Fugl-Meyer Assessment, and 

Wolf Motor Function Test.

The article is organized as follow. The next section introduces the used mathematical 

notation for the human motions. Afterwards the metrics for patient performance evaluation 

are described. The reviewed metrics are next compared for evaluation of five human 

motions. The last section summarizes the presented study.

Notation

In a physical rehabilitation setting, a PT will prescribe a collection of desired therapy 

motions to a patient, by either performing the motions in front of the patient, or by 

physically moving the body parts of the patient along the required paths. It is assumed here 

that the PT will provide several demonstrations of each motion in order to reinforce the 

perception of the motion by the patient, which may be related to required range, speed of 

movement, and other respective constraints in the execution of the motion. The set of 

reference examples of a motion prescribed by the PT is denoted  where m is 

used for indexing the individual examples of the motion, and M is the total number of 

examples of the motion  demonstrated by the PT. It is also assumed that a sensory system 

is used for capturing the prescribed therapy exercises, where each motion Om is acquired by 

the sensor as a temporal sequence of measurements . Each 
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measurement  in the motion sequence represents a D-dimensional vector where the 

subscript m denotes again the example index, and the superscript k denotes the temporal 

position of the measurement in the motion sequence Om. The total number of temporal 

measurements in the demonstration Om is denoted Tm. In general, the length of the motion 

examples Tm in the set {O1, O2,.., OM} will be similar but different, due to the inherent 

variability of human movements.

Analogously, let’s assume that the patient is attempting to perform the prescribed motion 

in a home-based rehabilitation program in front of a sensory system for motion capturing. 

The patient is presumably asked to repeat the motion a predefined number of times at a 

predefined time period (e.g., 10 times daily). The measured motion examples performed by 

the patient are denoted  where by analogy n represents a motion index, and N is 

the number of performed motion examples. Each motion example is a temporal sequence 

, consisting of Tn D-dimensional vectors denoted in this work 

.

The metrics for performance evaluation are to describe in a quantitative or a qualitative 

manner, or both, the consistency of the patient performed examples of the motion  with the 

PT prescribed examples of the motion . Due to musculoskeletal constraints, pain, or other 

conditions, the patient may not be able to correctly perform the motion at the beginning of 

the therapy program, which may, or may not, improve as the therapy program progresses.

Metrics

The reviewed metrics for performance evaluation are classified in this work into two main 

categories: quantitative and qualitative metrics. Accordingly, quantitative metrics assign a 

numerical score for the consistency of the patient performance, whereas qualitative metrics 

assign either a non-numerical evaluation (e.g., correct versus incorrect performance) or a 

discrete numerical score from a finite and limited range of values or states.

Quantitative metrics

Quantitative metrics can be also referred to as low-level metrics, since they evaluate the 

consistency of each measurement with regards to the prescribed sequence of measurements, 

or with respect to a model of the motion in the form of a probability distribution. The 

quantitative metrics are further classified into model-less and model-based metrics.

Model-less metrics

The model-less metrics compare the motions captured during a physical therapy exercise by 

a patient, with the motions captured when prescribing the therapy exercise by the PT. These 

metrics compare the measured raw trajectories of the body parts as acquired by the sensory 

system.

The following metrics are classified in this group:
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a. Root-mean square (RMS) distance-obtained as a sum of differences between the 

points of a captured trajectory Rn and a set of prescribed trajectories Rn and a set 

of prescribed trajectories 

(1)

One constraint of the RMS distance is the requirement that the trajectories have 

the same length, i.e., the same number of observations Tm. Therefore, the 

observed trajectories need to be scaled to a same length before the RMS distance 

is calculated. For the case when the trajectories are linearly scaled to a same 

length, if there are great spatial differences along their temporal dimension, that 

will result in a large RMS distance between the trajectories. This limitation is 

typically mitigated by employing approaches for temporal alignment of the 

trajectories, such as Dynamic Temporal Warping (DTW) [19].

Another metric that can be derived from the RMS distance for a single motion 

example Rn is the mean of the RMS distances for all motion sequences in the set 

, i.e.,

(2)

b. Norm of jerk-where the term jerk is related to the time derivative of the 

acceleration, i.e., the third derivative of the position. The metrics calculates the 

norm of the jerk for each trajectory point as:

(3)

This metric quantifies the level of smoothness of the movement [20], and high 

value of jerk can be indicative of shaky patient movements during the physical 

exercises. In certain rehabilitations exercises and conditions, it is expected that 

the patients will produce high level of jerks at the beginning of the treatment, 

which will gradually reduce as the recovery improves. Although this metric 

evaluates only one aspect of the movements, when combined with other metrics 

it can provide valuable information regarding the level of progress toward 

functional recovery.
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Model-based metrics

These metrics rely on a model of the prescribed motions and/or a model of the patient 

motions. Common methods used for modeling human motions include probabilistic 

approaches, such as Gaussian mixture models [21] and hidden Markov models [22]. These 

approaches model the sequences through a set of latent states that describe a statistical 

distribution of the motion dynamics. Other common approach for modeling human 

movements is by employing a set of deterministic latent states connected by weights, such as 

the artificial neural networks [21].

The metrics in this category include:

a. Log-likelihood-expresses the probability P that a performed motion example by 

the patient is drawn from a model of the motions as prescribed by the PT. For a 

model described with a set of parameters λ, the log-likelihood of a motion 

example Rn is calculated as a natural logarithm of the likelihood for all data 

points given the model parameters λ [21], that is,

(4)

Similar to (2), the mean of the log-likelihood for all sequences in the set 

 can be employed as a measure of consistency of the repetitions of a 

single motion in reference to a model λ of the prescribed set .

(5)

b. Kullback Leibler (KL) divergence-is a measure of the similarity between two 

probability distributions [23]. One of the distributions is considered to represent 

the true theoretical distribution of the data, in this case that is the empirical 

distribution of the prescribed movements by the PT, i.e., . The other 

distribution represents an approximation of the true distribution, which in this 

case is the distribution of the executed movements by the patient, i.e., . 

The KL divergence between  and  is defined as:

(6)

If the probability distributions of the motions are modelled with a parameter set, 

the KL divergence can be found by calculating the mean probability of the data 

points in the motion sequences as
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(7)

This metric is also known as relative entropy, and is a measure of the lost 

information when the probability distribution  is used to approximate the 

probability distribution .

Other alternative metrics to the KL divergence that have been used to quantify 

the difference between two probability distribution and can be as well considered 

for evaluation of human motion consistency are the Hellinger distance and 

Bhattacharyya distance.

c. Heuristic consistency-is a simple qualitative measure that determines the 

proportion of patient movements that are contained within the extremums of the 

demonstrated movements . The measure is defined as:

(8)

The indicator function  evaluates to 1 if the captured 

trajectory data at time step  and otherwise the indicator function evaluates 

to 0. Higher values of the measure indicate increased consistency between the 

patient performed, and the prescribed movement examples. This metric may 

require a larger number of movement examples.

d. Prediction intervals-can be used to determine if the estimated means of the 

patient movements are consistent with the fitted model of PT’s demonstrated 

movements. For this purpose, 95% confidence intervals from the relative 

likelihood are constructed, determined by the bounds

(9)

Next, the proportion of estimated means from the captured patient trajectory that 

is contained within the confidence interval is calculated, and averaged over all 

captured trajectories to obtain the metric . If the captured trajectories 

are consistent with the demonstrated movements then  should have a 

value of approximately 5%.
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Qualitative metrics

Qualitative metrics can be referred to as high level metrics because they evaluate each 

patient’s performed motion example as an individual repetition with respect to the 

prescribed motion examples, as opposed to evaluating the individual sequential 

measurements at the trajectory level.

The following metrics have been used for qualitative assessment of therapy exercises in 

previous works in the literature:

a. Number of optimal attempts-is used in the work of Komatireddy et al. [12] to 

assess patient performance. As stated before, it is not clear what type of approach 

the authors applied in labeling the motions as either optimal or suboptimal.

On the other hand, it is possible to use any of the quantitative approaches listed 

above to calculate a numerical score for each repetition of a motion, and then to 

label it as optimal if the score is greater than a predefined threshold value.

b. Fugl-Meyer assessment (FMA)-introduces a series of standardized exercises 

intended to evaluate the development of motor functions and balance in patients 

recovering from stroke [15]. The FMA test encompasses five principle domains 

for assessment: motor function, sensory function, balance, joint range of motion, 

and joint pain. Each domain involves several assessment steps related to the 

performance of respective movements. The movements are evaluated by a PT on 

a scale with 3 grades, with 0 as minimum and 2 as maximum grade. The 

assessment produces a cumulative numerical score representing the progression 

toward functional recovery of the stroke patient.

This assessment method can be employed in the development of metrics for 

automated performance evaluation, by either drawing insights from the PT 

evaluator’s way of scoring the movements, or by training a machine learning 

algorithm to score in a similar manner by using PT’s scores as inputs.

In addition, the FMA test has been reported to be complex and time consuming 

[16]. Consequently, an automated version of the test based on machine learning 

methodology could be a valuable contribution to the domain of physical 

rehabilitation. Another potential advantage of automated assessment is the 

provision of more precise evaluation than the three grades scale.

Several faster alternative tests to the FMA have been introduced, including the 

Motor Assessment Scale [16] and the motricity index [17]. These tests have been 

frequently used in practice, and can also be exploited in the development of an 

automated performance metric.

c. Wolf motor function test (WMFT)-is a timed test of functional tasks used to 

assess the ability of upper motor movements [18]. The test relies on using a 

number of objects as props, such as a chair, table, weights. The required motions 

are performed by using the props. The tasks are timed, with each motion given a 

maximum time of 2 minutes. The performance of each task is scored on a scale 
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from 0 to 5. Summary scores are calculated based on the medians of the timings 

of the motions, and on the means of the ratings for the functional abilities.

Similar to the observation regarding the FMA test, WMFT is also suitable for automation 

and can provide understanding into the development of automated performance metrics.

Evaluation

Dataset

The proposed metrics were evaluated on the publically available dataset of human motion 

UTD-MHAD (University of Texas at Dallas – Multimodal Human Action Dataset) [24]. The 

dataset includes 27 actions, each performed by 8 subjects 4 times. A Kinect sensor and a 

wearable inertial sensor were used for collecting the data.

The following 5 actions were employed here for evaluation purposes: two hands front clap, 

right arm throw, draw circle clockwise, draw triangle, and tennis serve. Sample images for 

the actions are presented in Figure 1.

Evaluation Results

The following metrics were evaluated for the five actions: rot-mean square distance, log-

likelihood, KL divergence, heuristic consistency, and prediction intervals. The results are 

presented in Table 1.

The data for the five actions was divided into 2 sets: a training set consisting of 21 sequences 

for each action, and a testing dataset consisting of 7 sequences of each action. Both the 

training and the testing set correspond to actions performed by the same group of subjects. 

One may note that it is preferred the motions to correspond to therapy exercises, and the 

testing set to include suboptimal examples of the motions. As part of the future work, we 

have plans to create a dedicated dataset related to motions performed in physical therapy.

The root-mean square distance was calculated for the recorded trajectories. The motion 

capture feature of Kinect provides a skeletal data, where the human skeleton (shown in 

Figure 1) consists of 20 joints. The temporal measurements for each joint are spatial 3-

dimensional coordinates. Hence, the data comprises 60 dimensional data sequences. The 

recorded motion sequences were scaled to a same number of measurements by using the 

DTW algorithm. The provided results in Table 1 present the mean values for the root-mean 

square distance for the 7 motion sequences in the testing dataset.

Log-likelihood of the testing data was calculated for several different mathematical models 

of the training data. The dimensionality of the raw observation data was first reduced from 

60 to 3-dimensions, by employing an autoencoder neural network [25]. Afterwards, the 3-

dimensional sequences were modeled using a mixture density network [14], Gaussian 

mixture model by employing expectation maximization, and a hidden Markov model [26]. 

The mean log-likelihood of the testing dataset is shown in Table 1.
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The mean KL divergence of the testing data is also presented in Table 1. Similar to the log-

likelihood metric, an autoencoder is employed to reduce the dimensionality of the observed 

data, and a mixture density network is afterwards used to model the data.

The last two columns in the table present the heuristic consistency and prediction intervals 

metrics.

Conclusion

The article presents a survey on the current literature on the metrics for evaluation of patient 

performance in physical therapy. The metrics are classified into quantitative and qualitative 

metrics. The quantitative metrics assign a numerical score for the patient performance, and 

are categorized into model-less and model-based metrics, based on whether a mathematical 

model of the motions is employed for performance evaluation.

The existing practice in physical therapy predominantly relies on assessment by a physical 

therapist. The studies related to automated assessment of therapy motions are scarce in the 

published literature, and consequently little attention has been paid to the development and 

definition of metrics for performance evaluation. This article reviews some of the reported 

metrics in the literature. In addition, the article reviews metrics that have been used for 

evaluation of human motions in other fields. Examples are root-mean square distance and 

norm of jerk, which have been used in the domain of robotic learning from human 

demonstrations. Other metrics, such as Kullback Leibler divergence, heuristic consistency, 

have been used in general for comparison of probability distributions.

The presented metrics in this article can be used for evaluation of human motions in other 

application domains, or also for assessment of sequential data in other fields, if applicable.
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Figure 1. 
Sample images and skeletal representations for the selected actions in the UTD-MHAD 

dataset: (a) Two hands front clap; (b) Right arm throw; (c) Draw circle clockwise; (d) Draw 

triangle; and (e) Tennis serve.
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