
RESEARCH ARTICLE

Expression of uncharacterized male germ cell-

specific genes and discovery of novel sperm-

tail proteins in mice

Jun Tae Kwon☯, Sera Ham☯, Suyeon Jeon☯, Youil Kim, Seungmin Oh, Chunghee Cho*

School of Life Sciences, Gwangju Institute of Science and Technology, Gwangju, Korea

☯ These authors contributed equally to this work.

* choch@gist.ac.kr

Abstract

The identification and characterization of germ cell-specific genes are essential if we hope

to comprehensively understand the mechanisms of spermatogenesis and fertilization. Here,

we searched the mouse UniGene databases and identified 13 novel genes as being puta-

tively testis-specific or -predominant. Our in silico and in vitro analyses revealed that the

expressions of these genes are testis- and germ cell-specific, and that they are regulated in

a stage-specific manner during spermatogenesis. We generated antibodies against the pro-

teins encoded by seven of the genes to facilitate their characterization in male germ cells.

Immunoblotting and immunofluorescence analyses revealed that one of these proteins was

expressed only in testicular germ cells, three were expressed in both testicular germ cells

and testicular sperm, and the remaining three were expressed in sperm of the testicular

stages and in mature sperm from the epididymis. Further analysis of the latter three proteins

showed that they were all associated with cytoskeletal structures in the sperm flagellum.

Among them, MORN5, which is predicted to contain three MORN motifs, is conserved

between mouse and human sperm. In conclusion, we herein identify 13 authentic genes

with male germ cell-specific expression, and provide comprehensive information about

these genes and their encoded products. Our finding will facilitate future investigations into

the functional roles of these novel genes in spermatogenesis and sperm functions.

Introduction

During spermatogenesis, germ cells are processed from primordial germ cells (PGCs) to

mature sperm [1, 2]. The tightly regulated nature of this process, which occurs in the seminif-

erous tubules of testes, indicates that a highly organized network of genes is expressed in male

germ cells during their development [3]. An intrinsic program determines which genes are uti-

lized and when they are expressed in germ cells, and an interactive regulation between germ

cells and somatic cells is necessary for germ cell proliferation and progression. Extrinsic influ-

ences, including steroid and peptide hormones, control this interactive regulation. However,

the intrinsic genetic program is central to the development and fertilization of male germ cells.
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Many unique genes and variant transcripts are expressed during spermatogenesis, and the

identification and characterization of male germ cell-specific genes are crucial to our under-

standing of the mechanisms of sperm development [4, 5]. Analysis of the proteins encoded by

such genes has revealed that they are developmentally regulated and involved in diverse func-

tions during spermatogenesis and fertilization [6–8]. For example, Mm.290718/Zfp541 was

found to encode a protein that forms a complex involved in chromatin remodeling during late

spermatogenesis [7]. The protein encoded by Mm.87328/Shsp1 localizes to the head region of

mature sperm, particularly the surface of the acrosomal region [6]. Finally, three novel male

germ cell-specific genes (Mm.386907/Sfap1, Mm.157049/Sfap2, and Mm.442063/Als2r12)

were found to encode proteins associated with cytoskeletal structures in the sperm flagellum

[6, 8].

Here, as part of an ongoing study of germ cell-specific genes, we identified 13 testis-specific

genes using sequence information from the mouse testis UniGene database, and analyzed

their characteristics at the gene and transcript levels. Furthermore, we obtained original find-

ings on the developmental expression patterns and localizations of seven of the encoded pro-

teins. In particular, we found that three of the novel proteins were present in mature sperm

and associated with cytoskeletal structures of the sperm tail. Therefore, our study represents

the first transcript- and protein-level characterization of 13 novel testis-specific genes that may

play roles in spermatogenesis and fertilization.

Materials and methods

Ethics statements

The biospecimens used in this study were provided by the Pusan National University Hospital,

which is a member of the National Biobank of Korea supported by the Ministry of Health,

Welfare and Family Affairs. All samples from the National Biobank of Korea were obtained

with informed consent under institutional review board-approved protocols. The study of

human sperm was also ratified through the Ethics Committee of Gwangju Institute of Science

and Technology (GIST) and Chonnam National University (permit number: 20140818-BR-

14-01-02). All participants signed an informed consent form permitting use of their semen

remnants in this study.

UniGene database analysis

Mouse UniGene profile data (Build #193) was obtained from the NCBI UniGene database.

The profile data contained expressed sequence tag (EST) expression profile of each gene entry

in 47 different tissues. Transcripts per million (TPM, indicating the normalized expression lev-

els) and testis specificity were calculated as described [9]. Genes with unassigned functions

were regarded as ’unknown’ according to Gene References into Function (GeneRIF) in the

NCBI Gene database. We discarded previously characterized testis-specific genes by PubMed

search.

Reverse-transcription (RT) PCR

RT-PCR experiments were performed using total RNA from eight tissues (testis, brain, heart,

kidney, liver, lung, muscle, and spleen) of male mice. RT-PCR was also performed using RNA

from germ cell-lacking testes of W/Wv mutant mice (SLC) [10], to determine whether the

genes were expressed in somatic cells of the testis. Total RNA was extracted using the TRIzol

reagent (Molecular Research Center) according to the manufacturer’s protocol, and cDNA

was synthesized by random hexamer and oligo(dT) primers using the Omniscript reverse
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transcriptase (Qiagen). The utilized gene-specific primers are listed in S1 Table. PCR was per-

formed for 30 cycles of 94˚C for 30 s, 55˚C for 30 s, and 72˚C for 1 min. Glyceraldehyde-

3-phosphate dehydrogenase (Gapdh) was amplified as a control (forward, 5’-TGAAGG TCG
GAG TCA ACG GAT TTG GT-3’ and reverse, 5’-CATGTG GGC CAT GAG GTC CAC CAC-
3’). Specific expression at different stages of spermatogenesis was established using total RNA

obtained from the testes of prepubertal and adult male mice (ages 8, 10, 12, 14, 16, 20, and 30

days after birth). All animal investigations were carried out according to the guidelines of the

Animal Care and Use of Gwangju Institute of Science and Technology. The protocol was

approved by the Animal Care and Use Committee of Gwangju Institute of Science and Tech-

nology (Permit number: GIST 2011–13).

Antibodies

For production of polyclonal antibodies, glutathione S-transferase (GST)-fusion proteins con-

taining the specific antigenic regions of seven candidate proteins were expressed in Escherichia
coli BL21 and affinity purified with glutathione Sepharose 4B (GE Healthcare). The recombi-

nant proteins were used as antigens for producing rabbit polyclonal antisera. The antibodies

were affinity purified using the appropriate proteins and an AminoLink immobilization kit

(Pierce). The following commercially available antibodies were also used: a mouse monoclonal

antibody against ADAM2 (1/1000, MAB19292) from Millipore; an antibody against α-tubulin

(1/1000, T6199) from Sigma-Aldrich; and an antibody against GAPDH (1/1000, MCA4739)

from Bio-Rad. As secondary antibodies for Western blot analysis, we used horseradish peroxi-

dase (HRP)-conjugated anti-rabbit or anti-mouse IgG (Jackson ImmunoResearch).

Preparation of protein samples

Mouse tissues were lysed in a nonionic detergent lysis buffer (1% NP-40) containing 1% prote-

ase inhibitor cocktail (GenDEPOT) for 1 h on ice. Debris was removed by centrifugation at

13,000 g for 15 min at 4˚C. The supernatant fractions from the lysate were mixed with 2x SDS

sample buffer and boiled for 5 min. Testicular cells and sperm were prepared as previously

described [11]. Briefly, cells were isolated by suspension in 52% isotonic Percoll (GE Health-

care) followed by centrifugation for 10 min (27,000 g, 4˚C), and then resuspended in Mg2

+-HEPES buffer. Sperm from the cauda epididymis and vas deferens were released into PBS.

The sperm suspension was centrifuged twice at 800 g for 3 min to remove contaminants, and

the pelleted sperm were resuspended in 2x SDS sample buffer and boiled for 10 min. For

sperm fractionation, sperm were collected and sonicated. An equal volume of 1.8 M sucrose

was added and the suspension was layered over a discontinuous sucrose gradient containing

equal volumes of 2.05 M and 2.2 M sucrose solutions. The sample was centrifuged at 100,000 g

at 4˚C for 16 h, and the sperm heads and tails were collected from the pellets at the bottom and

the middle of the 2.05 M sucrose layer, respectively. To test the solubility of sperm tail proteins,

sperm were lysed in lysis buffer (10 mM Tris-Cl, pH 8.0, 150 mM KCl, 5 mM MgCl2, 0.5 mM

EDTA) containing 2, 3, 4 or 6 M urea, or in 1% NP-40 or Triton X-100. Lysis was performed

on ice for 2 h, except for experiments that used the lysis buffer containing 6 M urea, which

involved incubation at room temperature. Soluble and insoluble fractions were separated by

centrifugation at 10,000 g for 15 min, and each faction was subjected to Western blot analysis.

Western blot analysis

Proteins were denatured by boiling for 10 minutes in the presence of 3% SDS and 5% β-mer-

captoethanol, separated by SDS-PAGE, and transferred to polyvinylidene difluoride (PVDF)

membranes (0.2 μm; PALL Lifesciences). The membranes were blocked with 5% nonfat dry
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milk in TBS-T (50 mM Tris-HCl, pH 7.5, 150 mM NaCl [TBS] containing 0.1% Tween-20)

and incubated with primary antibodies at room temperature for 1 h. After three 10-min

washes with TBS-T, the membranes were incubated with HRP-conjugated secondary antibod-

ies for 1 h at room temperature. Following three washes with TBS-T, immunoreactive proteins

were detected using a chemiluminescence kit (Thermo Scientific).

Immunofluorescence

Freshly dissected testes were fixed in 4% paraformaldehyde, embedded in paraffin and sec-

tioned at 5 μm. The sections were deparaffinized in xylene and an ethanol series. Antigen

retrieval was performed by boiling the sections for 20 min in 10 mM tribasic sodium citrate,

pH 6. The samples were washed in phosphate-buffered saline (PBS) and then immersed in

0.4% Triton X-100 for 10 min before being blocked with a buffer (3% bovine serum albumin

in PBS) for 30 min. The sections were incubated overnight at 4˚C with the primary antibodies

(5 μg�mL-1), and then placed in 1/1000 dilutions of Rhodamine Red™-X goat anti-rabbit IgG

(Molecular Probes) for 30 min at room temperature. DNA was stained with DAPI, and the sec-

tions were mounted and visualized by fluorescence microscopy (DMLB, Leica).

Results

Identification of testis-specific novel genes

To select for genes that are exclusively transcribed in testis, we calculated testis specificity

using information from the mouse UniGene database (Build #193) [9], which includes the

EST expression profile of a given gene in particular tissues of mice at a specific age and/or

health status, as expressed in TPM. We selected genes on the basis of the following criteria: (i)

genes with testis specificity >50% and (ii) genes with unassigned function. We collected the

information available for the selected genes, such as the presence of coding sequences, known

homologies, and cell lines with known mutations. Using this strategy, we identified 13 novel

genes as being putatively testis-specific or -predominant. The UniGene ID numbers and

names of these genes are Mm.276332/MORN repeat containing 5 (Morn5); Mm.23509/phos-

phatidylethanol amine binding protein 4 (Pebp4); Mm.56430/coiled-coil glutamate rich pro-

tein 1 (Ccer1); Mm.73222/testis expressed 33 (Tex33); Mm.131623/transmembrane and

coiled-coil domains 5 (Tmco5); Mm.269049/1700001P01Rik; Mm.157047/4933417A18Rik;

Mm.271255/1700013F07Rik; Mm.272519/1700013G24Rik; Mm.87624/family with sequence

similarity 71, member F1 (Fam71f1); Mm.258841 /family with sequence similarity 71, member

E1 (Fam71e1); Mm.159422/4930505A04Rik; and Mm.46148/family with sequence similarity

209 (Fam209).

Expression patterns of the 13 novel genes

To determine whether the genes selected from the mouse UniGene library represented authen-

tic genes with testis-specific expression, we performed various expression analyses. RT-PCR

analysis showed that all of the genes were expressed at the expected sizes exclusively in mouse

testis, which was consistent with our in silico prediction (Fig 1). When we examined their

expressions in the germ cell-lacking testis of W/Wv (c-kit) mutant mice [10], we found little or

no expression of the selected genes (Fig 1), further validating that their expression is germ cell-

specific.

In the first round of spermatogenesis in a prepubertal mouse, spermatogonial stem cells

increasingly proliferate and differentiate through the sequence of spermatogonia, spermato-

cytes, and spermatids (Fig 2) [12]. We hypothesized that if a given gene is transcribed in germ

Germ cell-specific genes and sperm-tail proteins
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cells during spermatogenesis, the transcripts will appear in the testis at an exact post-partum

time point corresponding to a specific stage of spermatogenesis. Indeed, our RT-PCR results

showed that all of the selected genes were expressed at least after day 12, indicating that their

expressions are developmentally regulated. With the exception of Mm.159422/4930505A04Rik,

the examined genes were all first expressed between day 12 and day 20, which corresponds to

the spermatocyte stage. Mm.159422/4930505A04Rik was expressed in germ cells after meiosis

(Fig 2). Collectively, the results of our in vitro analyses indicate that the in silico-selected genes

show testis- and germ cell-specific expression, and are developmentally regulated during

spermatogenesis.

Fig 1. Testis- and germ cell-specific expression of the 13 novel genes. The tissue distributions of the 13 selected genes were assessed by RT-PCR in

eight different tissues of adult male mice. Germ cell-specific expression was also examined in germ cell-lacking testes from W/Wv mutant mice.

Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) was amplified as a loading control. WT, wild-type testis; W/Wv, germ cell-less testis. All genes

exhibited testis- and germ cell-specific expression.

https://doi.org/10.1371/journal.pone.0182038.g001
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Fig 2. Developmental expression of the selected genes during spermatogenesis. Juvenile spermatogenesis consists of the

mitotic, meiotic and postmeiotic phases. The meiotic phase includes the preleptotene (PL), leptotene (L), zygotene (Z), pachytene

(P), and diplotene (D) stages. Diplotene spermatocytes undergo two meiotic divisions (MI and MII). The stage-specific expressions

of the selected genes were determined from mouse testes obtained on days 8, 10, 12, 14, 16, 20, and 30 after birth. Gapdh was

included as a loading control. All of the selected genes, with the exception of Mm.159422, were expressed from spermatocytes.

Spcy, spermatocytes; Sptd, round spermatids.

https://doi.org/10.1371/journal.pone.0182038.g002
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In silico analysis of genomic, transcript, and protein characteristics

To characterize the genomic, transcript, and protein natures of the selected genes, we collected

the information available from various databases. Fig 3 shows the exon organizations and chro-

mosomal locations of the genes, the predicted transcript sizes, and the numbers of amino acids,

specific domains, and gene ontology (GO) of the predicted proteins. The exon numbers of the

genes ranged from 1 to 12 exons, and the genes were found to be widely distributed across the

mouse chromosomes. To extend our findings, we searched the human genome database and

found that human orthologs for 12 of the 13 selected mouse genes are present in genomic regions

that show conserved synteny between mice and humans. Ten of these human genes were pre-

dicted to be expressed predominantly in testis; MORN5 and PEBP4 were not. The protein-coding

region of each gene was defined by selecting the longest amino acid sequence before a stop codon.

All of the translated gene products were predicted to contain various domains and motifs, and

could be annotated with GO codes.

Generation of antibodies and expression patterns of novel proteins

To further investigate the characteristics of the proteins encoded by the selected genes, we

generated antibodies against seven of them: Mm.276332/MORN5, Mm.258841/FAM71E1,

Mm.272519/1700013G24Rik, Mm.73222/TEX33, Mm.131623/TMCO5, Mm.159422/4930505

A04Rik and Mm.271255/1700013F07Rik. GST-fused recombinant proteins were produced

Fig 3. In silico analysis of the genomic, transcript, and protein characteristics of the selected genes. The chromosomal localization and intron-exon

organization of each gene were determined by genome database searches. Under ‘exon organization,’ the boxes indicate exons. The bars represent the

regions amplified in our PCR analysis. The protein-coding regions (black-shaded) were determined by selecting the longest open reading frames deduced

from the predicted cDNA sequences. The position of the poly A signal is marked by an arrowhead, and the presence of poly A is indicated by ‘A.’ The Gene

Ontology (GO) terms for each gene product were obtained from the Gene Ontology Consortium; they all fall under the broad categories of molecular function

(M), cellular component (C), and biological process (B).

https://doi.org/10.1371/journal.pone.0182038.g003
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and used to generate polyclonal sera (S1 Fig), and affinity purification of antibodies was per-

formed against GST and GST fusion proteins. To verify the specificity of the antibodies for

the novel proteins and confirm whether the proteins were expressed in testis, we performed

Western blot analysis with lysates of liver and testis. All of the generated antibodies recognized

appropriately sized bands in the testis, but not in the liver, and the bands disappeared when

the GST-fusion proteins were added along with the primary antibodies (S2 Fig). These results

support the specificity of the antibodies and the authenticity of the selected proteins.

To determine whether the selected proteins are expressed exclusively in testis, we per-

formed Western blot analysis with protein extracts from eight different tissues. Consistent

with our RT-PCR results, all of the proteins were expressed specifically in the testis (Fig 4A

and S3 and S4 Figs). Further immunoblot analyses performed with mouse testes obtained at

different times after birth revealed that Mm.276332/MORN5 and Mm.258841/FAM71E1 were

expressed in spermatocytes (day 21); Mm.271255/1700013F07Rik was weakly expressed in

spermatocytes during the first spermatogenesis; and Mm.73222/TEX33, Mm.131623/TMCO5,

Mm.272519/1700013G24Rik, and Mm.159422/4930505A04Rik were expressed in round sper-

matids (day 28) (Fig 4B and S5 Fig).

To investigate the expression pattern of the selected proteins in germ cells during sperm

development, we performed immunoblotting with lysates of testicular cells (TC), testicular

sperm (TS), and mature sperm (S) from the cauda epididymis and vas deferens (Fig 5A and

S6 Fig). We found that Mm.73222/TEX33 was present only in testicular cells; Mm.258841/

FAM71E1, Mm.131623/TMCO5, and Mm.272519/1700013G24Rik existed in testicular cells

and sperm but not in mature sperm; and Mm.276332/MORN5, Mm.271255/1700013F07Rik,

and Mm.159422/4930505A04Rik were present in all stages. None of these proteins exhibited

any change in molecular weight during spermatogenesis. These results indicate that the seven

analyzed proteins exhibited differential regulation during male germ cell development.

To confirm and further investigate the developmental expression and localization of the

selected proteins, we performed immunofluorescence analysis in paraffin sections of adult testis.

Antibodies to Mm.276332/MORN5, Mm.258841/FAM71E1, and Mm.159422/4930505A04Rik

did not display immunoreactivity (S8 Fig). In contrast, we observed immunofluorescence signals

in analyses with antibodies to the other proteins (Fig 6A). Mm.73222/TEX33 was found to exist

in the cytoplasm of round spermatids. Mm.131623/TMCO5 was identified exclusively in the

tail region of elongated spermatids. Mm.272519/1700013G24Rik showed a dot pattern in the

cytoplasm of round spermatids, but was mainly present in the tail of elongated spermatids.

Mm.271255/1700013F07Rik was expressed in the cytoplasm of spermatocytes and round sper-

matids, and then observed in the tail of elongated spermatids (Fig 6A). These data confirm and

extend the Western blot results (Figs 4 and 5).

Localization and characterization of novel proteins in mature sperm

Because three of the novel proteins (Mm.276332/MORN5, Mm.271255/1700013F07Rik, and

Mm.159422/4930505A04Rik) were found to exist in mature sperm, we hypothesized that they

might be related to sperm function and fertilization. To elucidate the distribution of these pro-

teins in mature sperm, we isolated sperm from the epididymis and vas deferens, separated

them into head and tail fractions, and subjected the protein lysates of these fractions to West-

ern blot analysis. ADAM2 and α-tubulin were used as positive controls for the head and tail

fractions, respectively. All three proteins were found exclusively in the tail fraction (Fig 5B and

S7 Fig). In addition, immunofluorescence analysis revealed that Mm.271255/1700013F07Rik

was localized to the neck and midpiece of sperm tail (Fig 6B).

Germ cell-specific genes and sperm-tail proteins
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Fig 4. Expression patterns of seven of the novel proteins in various tissues and the postnatal testes of

mice. A. The tissue distributions of some of the novel proteins were examined by immunoblotting, with GAPDH

Germ cell-specific genes and sperm-tail proteins
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Outer dense fibers (ODFs) and the fibrous sheath (FS) are specialized cytoskeletal structures

of the mammalian sperm tail. The proteins that comprise these structures show similar solubil-

ities in various detergents [13]. To examine the possible association of Mm.276332/MORN5,

Mm.271255/1700013F07Rik, and Mm.159422/4930505A04Rik with these structures, we exam-

ined their solubilities in nonionic detergents and 2–6 M urea. None of the tested proteins was

solubilized by 1% NP-40 or 1% Triton X-100 (Fig 7A and S9 Fig). Mm.276332/MORN5 was

solubilized only in 6 M urea, Mm.271255/1700013F07Rik and Mm.159422/4930505A04Rik

resisted the lower concentrations but showed a gradual increase in solubility as the concentra-

tion of urea increased (Fig 7B and S9 Fig). These results indicate that MORN5, Mm.271255,

and Mm.159422 are likely to be components of or associated with cytoskeletal structures of the

sperm flagellum, such as ODFs and the FS.

Expression of MORN5 in human sperm

As the three sperm tail proteins (Mm.276332/MORN5, Mm.271255/1700013F07Rik, and

Mm.159422/4930505A04Rik) identified from the mouse database showed 68–79% sequence

identity to their human homologs, we hypothesized that our generated antibodies might rec-

ognize the human homologs. To examine this possibility, we performed Western blot analysis

with protein extracts from mouse and human sperm. As shown in Fig 8A, the anti-MORN5

antibody recognized an 18-kDa band in human sperm, which was 2-kDa smaller than that rec-

ognized in mouse sperm. The antigenic region of MORN5 exhibits an 85% sequence identity

between mouse and human (Fig 8B). These findings suggest that MORN5 might be function-

ally conserved in mouse and human sperm. Our Western blot analyses using the antibodies

against Mm.271255/1700013F07Rik and Mm.159422/4930505A04Rik did not recognize any

band with the expected size of the proteins in human sperm (S10 Fig), suggesting that these

mouse antibodies did not cross-react with their human orthologs.

Discussion

In our previous studies, we identified a number of novel male germ cell-specific genes from

the McCarrey Eddy spermatocyte (Lib. 6787) and spermatid (Lib.6786) UniGene libraries

[4,5]. These two libraries contain 3513 putative gene entries, including ubiquitously expressed

genes. Thus, it is possible that a number of spermatogenic cell-specific genes are absent from

these data sets. In the present study, we analyzed all mouse testis UniGene libraries and identi-

fied 13 authentic genes as being putatively testis-specific or -predominant. Our RT-PCR analy-

sis confirmed that all of the selected genes are testis- and germ cell-specific. Consistent with

previous findings that male germ cell-specific genes characteristically show developmental reg-

ulation during the meiotic and postmeiotic phases [1, 2], the expression patterns observed for

the 13 selected genes during postnatal testicular development were indicative of developmental

regulation. With the exception of Mm.159422/4930505A04Rik, all of the genes were found to

be expressed from pachytene and diplotene spermatocytes. We integrated the available in silico
information on the genomic characteristics and encoded transcripts of the 13 selected genes.

We identified human orthologs for 12 of the mouse genes, all of which are found in regions of

conserved synteny. With the exception of Mm.276332/Morn5 and Mm.23509/Pebp4, all of the

human orthologs were predicted to be testis-specific or -predominant in the human UniGene

detected as a loading control. All of the gene products showed specific expression in testis. B. The stage-specific

expressions of the novel proteins were determined from mouse testes obtained on days 7, 14, 21, 28, 35, 42, 49,

and 56 after birth. The anti-α-tubulin antibody was used as a control. All of the proteins were expressed in late

meiotic or postmeiotic germ cells.

https://doi.org/10.1371/journal.pone.0182038.g004
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Fig 5. Developmental expression pattern of the novel proteins. A. Protein samples from testicular cells

(TC), testicular sperm (TS), and mature sperm (S) were blotted with antibodies against the novel proteins. α-

Tubulin was detected as a control. The expressions of the selected proteins were found to be developmentally

regulated during sperm maturation. B. Sperm from the cauda epididymis and vas deferens were separated

into head (H) and tail (T) fractions, and subjected to Western blot analysis. ADAM2 and α-tubulin were used to
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database. We thus propose that the functions of these genes may be conserved between human

and mouse. The proteins encoded by the 13 selected genes all possess conserved domains with

unknown function. The MORN5 protein is known to be expressed in chick craniofacial struc-

tures and has been shown to be involved in bone morphogenetic protein (BMP) signaling [14].

PEBP4 is a secreted and glycosylated protein that appears to be required for Protein kinase B acti-

vation [15]. Thus, MORN5 and PEBP4 may function in signaling pathways during the meiotic

and postmeiotic phases. The proteins encoded by Mm.87624/Fam71f1, Mm.258841/Fam71e1,

and Mm.46148/Fam209 are predicted to localize in the nucleus, and a previous LC-MS/MS study

identified the human homologs of FAM71A and FAM71B in the human sperm nucleus [16].

We corroborated the authenticity of seven of the selected genes at the protein level, and further

investigated the encoded proteins. Specific antibodies generated against the novel proteins clearly

recognized distinct bands of the expected sizes in the testis. Immunoblotting confirmed that the

seven proteins were testis-specific. Our analysis of the stage-specific expression of the novel pro-

teins in the postnatal testes of mice revealed that Mm.276332/MORN5, Mm.258841/FAM71E1

and Mm.271255/1700013F07Rik were expressed in spermatocytes (day 21), while Mm.272519/

1700013G24Rik, Mm.73222/TEX33, Mm.131623/TMCO5 and Mm.159422/ 4930505A04Rik

were first expressed in spermatids (day 28). When we investigated the developmental distribution

of the novel proteins during spermatogenesis, we found that Mm.73222/TEX33 was detected

only in testicular germ cells; Mm.258841/FAM71E1, Mm.131623/TMCO5, and Mm.272519/

1700013G24Rik were present in testicular cells and testicular sperm; and Mm.276332/MORN5,

Mm.271255/1700013F07Rik, and Mm.159422/4930505A04Rik were observed during all phases

of sperm development and maturation. Further immunofluorescence analysis of four proteins

(Mm.73222/TEX33, Mm.131623/TMCO5, Mm.272519/1700013G24Rik, and Mm.271255/

1700013F07Rik) confirmed the developmental expression pattern and showed the specific cellu-

lar localization of the proteins in spermatogenic cells.

The most remarkable finding of the present work was our discovery that three of the novel

proteins, Mm.276332/MORN5, Mm.271255/1700013F07Rik, and Mm.159422/4930505A04Rik,

were restricted to the tail region of mature sperm. Notably, Mm.271255/1700013F07Rik was

observed to exist at the neck and midpiece regions of sperm tail. The flagellum of a mammalian

sperm is divided into the middle, principal, and end pieces. The central core of the flagellum con-

sists of a cytoskeletal structure called the axoneme, and the region between the axoneme and the

plasma membrane harbors accessory structures, such as mitochondria, ODFs and the FS. The lat-

ter two structures are believed to stiffen the sperm tail while allowing elastic bending. The proteins

that comprise ODFs and FS commonly resist non-ionic detergents, and FS proteins are insoluble

in 6 M urea [13]. Our Western blot analysis showed that our three identified sperm tail proteins

were insoluble in the non-ionic detergents, NP-40 and Triton X-100. Mm.276332/MORN5 was

solubilized only in 6 M urea. Mm.271255/1700013F07Rik and Mm.159422/4930505A04Rik grad-

ually solubilized as the concentration of urea increased. These results suggest that Mm.276332/

MORN5 is intrinsic component of the FS, while Mm.271255/1700013F07Rik and Mm.159422/

4930505A04Rik are ODF components or are weakly associated with the FS.

Finally, we found that the antibody against mouse Mm.276332/MORN5 recognized a pro-

tein band corresponding to the expected size of MORN5 in human sperm, suggesting that this

protein might be functionally conserved in mouse and human sperm. MORN5 contains three

MORN (Membrane Occupation and Recognition Nexus) motifs, which contribute to the

plasma membrane-binding capacity of junctophilin type 1 [17]. MORN1 may function as a

confirm the head and tail fractions, respectively. All of the selected proteins were found to be expressed in the

sperm tail.

https://doi.org/10.1371/journal.pone.0182038.g005

Germ cell-specific genes and sperm-tail proteins

PLOS ONE | https://doi.org/10.1371/journal.pone.0182038 July 25, 2017 12 / 20

https://doi.org/10.1371/journal.pone.0182038.g005
https://doi.org/10.1371/journal.pone.0182038


Fig 6. Localization of the novel proteins in adult testis. A. Immunofluorescence staining of paraffin

sections of adult testis was conducted using specific antibodies for the four proteins. Normal rabbit serum
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(NRS) was used as a negative control. The red color indicates proteins and nuclei were stained with DAPI

(blue). Images in the boxes are magnified in the insets in merged images. Scale bar, 100 μm. B. Localization

of Mm.271255/1700013F07Rik in mature sperm. Sperm from the cauda epididymis and vas deferens were

immunostained with anti-Mm.271255/1700013F07Rik. DAPI was used to stain nuclei. Mm.271255/

1700013F07Rik is localized to the neck and midpiece of sperm. Scale bar, 100 μm.

https://doi.org/10.1371/journal.pone.0182038.g006

Fig 7. Characterization of three sperm tail proteins. A. Sperm from the epididymis and vas deferens were treated with 1% NP-40 or

1% Triton X-100 and then centrifuged. Soluble and insoluble fractions were subjected to immunoblot analysis. ADAM2 and α-tubulin

were used to verify the soluble and insoluble fractions, respectively. The tested proteins failed to solubilize with these detergents. S,

supernatant after centrifugation; P, pellet after centrifugation. B. Sperm were treated with 2, 3, 4, or 6 M urea and then centrifuged.

Soluble and insoluble fractions were subjected to Western blot analysis, with α-tubulin detected as a loading control. MORN5 and

Mm.271255 were found to be insoluble in urea.

https://doi.org/10.1371/journal.pone.0182038.g007
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linker protein between certain membrane regions and cytoskeleton of the parasites such

as Toxoplasma gondii and other Apicomplexa [18]. MOPT and MORN3 were found to be

expressed in the acrosomal region of elongating spermatids [19, 20], and a recent study sug-

gested that MORN5 is both regulated by and required for BMP signaling during craniofacial

development in chicken [14]. Based on these previous findings, we speculate that MORN5

may function in signaling during sperm development, and that it may participate in the tight

interaction that occurs between the plasma membrane and cytoskeletal structures of a mature

sperm flagellum.

Fig 8. Expression of MORN5 in human sperm. A. Extracts of sperm from mouse and humans were subjected to SDS-PAGE

and blotted with anti-MORN5. Tubulin was detected as a loading control. MORN5 was expressed in human sperm. B. Diagram

of human and mouse MORN5, showing amino acid identities and domain information. The predicted MORN5 proteins are 170

and 161 amino acids in mouse and human, respectively, and contain three MORN motifs (gray boxes). The antigenic region

used to raise the mouse MORN5 antibody is indicated by a red line. This region showed 85% identity between the mouse and

human protein sequences (whole protein: 79% identity).

https://doi.org/10.1371/journal.pone.0182038.g008
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More than a hundred proteins have been identified in mature sperm tail (S2 Table). Our sum-

mary of the results from localization and functional studies of these sperm proteins (Table 1)

reveals that 73 of the 111 were restricted to the tail region of mature sperm, and more than half

of these tail proteins showed region-specific distributions thought to reflect their molecular func-

tions in the sperm tail. GO analysis showed that these sperm tail proteins participated in various

processes and structures, including voltage-gated calcium channel activity, cilium, sperm axo-

neme assembly, transmembrane transport, sperm capacitation, and sperm motility (S3 Table).

Notably, only 21 of these proteins have been characterized in terms of their functions in tail for-

mation and fertilization. For example, ODF1 [21], ODF2 [22], meiosis-specific nuclear structural

protein 1 (MNS1) [23], and solute carrier family 22 member 14 (SLC22A14) [24] are reportedly

related with sperm structure, while the cation channel sperm associated (CatSper) proteins [25,

26], plasma membrane Ca2+-ATPase 4 (PMCA4) [27], and rhophilin associated tail protein 1

(ROPN1) [28] function in sperm motility.

In this study, we identified and characterized authentic genes specifically expressed in male

germ cells through integrative analyses including genomic, transcript, and protein approaches.

In particular, the three sperm-tail proteins are noteworthy because of their potential functions

in mature sperm. However, the precise functions of the proteins are currently unknown. Future

studies are needed to investigate the functions of our identified tail proteins and their relation-

ships with the other known proteins. This should provide new insights into the role of various

proteins in sperm development, motility, and fertilization.

Supporting information

S1 Fig. Protein characteristics of seven candidates. The GenBank accession numbers of the

cDNA sequences predicted for the novel genes are listed. The numbers of amino acids, hydro-

phobicities, and expected molecular weights were predicted from the deduced coding regions

of these cDNA sequences. The bars indicate regions corresponding to the antigens used for

Table 1. Characteristics of 111 previously identified proteins of mature sperm tail.

Parameter Number of proteins

Pattern in sperm Tail 74

Head and tail 4

Head (e,p) and tail 7

Head (e) and tail 4

Head (p) and tail 6

Acrosome and tail 16

Pattern in tail Whole tail 46

Mid-piece 18

Mid-piece and principal piece 15

Principal piece 21

Principal piece and end-piece 7

ND 4

KO mice Infertile 17

Subfertile 3

Fertile 1

ND 90

e, equatorial region; p, post-equatorial; ND, not determined

https://doi.org/10.1371/journal.pone.0182038.t001
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antibody generation. No, number; AA, amino acid; MW, molecular weight.

(TIF)

S2 Fig. Specificity of antibodies to the novel proteins. Total protein lysates were obtained

from liver (L) and testis (T) using lysis buffer containing 1% SDS. These samples were sub-

jected to SDS-PAGE under reducing conditions followed by Western blotting with the gener-

ated antibodies. All antibodies detected bands of the expected sizes except for the anti-TMCO5

antibody, which recognized a 40-kDa band that was larger than expected. When GST or GST-

fusion (GST-F) proteins were mixed with the primary antibodies for immunoblotting, all of

the bands disappeared in experiments run with the GST-fused antigens.

(TIF)

S3 Fig. Original blots for tissue distributions of Mm.276332/MORN5, Mm.271255/

1700013F07Rik, Mm.28841/FAM71E1, and Mm.272519/1700013G24Rik. These are origi-

nal uncropped and unadjusted blots of four proteins in Fig 4A. Bands corresponding to the

proteins are indicated by arrowheads.

(TIF)

S4 Fig. Original blots for tissue distributions of Mm.73222/TEX33, Mm.131623/TMCO5,

Mm.159422/4930505A04Rik. These are original uncropped and unadjusted blots of three

proteins in Fig 4A. Bands corresponding to the proteins are indicated by arrowheads.

(TIF)

S5 Fig. Original blots of stage-specific expression pattern. These are original uncropped and

unadjusted blots of the proteins in Fig 4B. Bands corresponding to the proteins are indicated

by arrowheads.

(TIF)

S6 Fig. Original blots of developmental expression pattern. These are original uncropped

and unadjusted blots of the proteins in Fig 5A. Bands corresponding to the proteins are indi-

cated by arrowheads.

(TIF)

S7 Fig. Original blots of sperm head and tail. These are original uncropped and unadjusted

blots of the proteins in Fig 5B. Bands corresponding to the proteins are indicated by arrow-

heads.

(TIF)

S8 Fig. Immunostaining of Mm.276332/MORN5, Mm.258841/FAM71E1, and

Mm.159422/4930505A04Rik. Immunofluorescence staining of paraffin sections of adult testis

was conducted using specific antibodies to Mm.276332/MORN5, Mm.258841/FAM71E1, and

Mm.159422/4930505A04Rik. Nuclei was stained with DAPI (blue). These antibodies did not

display immunoreactivity. Scale bar, 100 μm.

(TIF)

S9 Fig. Original blots of the solubility of three tail proteins. These are original uncropped

and unadjusted blots of the proteins in Fig 7. Bands corresponding to the proteins are indi-

cated by arrowheads.

(TIF)

S10 Fig. Expression of Mm.276332/MORN5, Mm.271255/ 1700013F07Rik, and

Mm.159422/4930505A04Rik in human sperm. Extracts of sperm from mouse and humans

were subjected to SDS-PAGE and blotted. Tubulin was detected as a loading control. MORN5
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was expressed in human sperm (A). Mm.271255 (B) and Mm.159422 (C) antibodies did not

cross-react with human orthologous proteins. Bands corresponding to the proteins are indi-

cated by arrowheads.

(TIF)

S1 Table. Sequences of primers.

(DOCX)

S2 Table. List of 111 proteins previously identified in mature sperm tail.

(DOCX)

S3 Table. Gene ontology terms related to sperm tail proteins.

(DOCX)
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