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Abstract

Previous reports from National Institutes of Health and National Science Foundation have 

suggested that peer review scores of funded grants bear no association with grant citation impact 

and productivity. This lack of association, if true, may be particularly concerning during times of 

increasing competition for increasingly limited funds. We analyzed the citation impact and 

productivity for 1755 de novo investigator-initiated R01 grants funded for at least 2 years by 

National Institute of Mental Health between 2000 and 2009. Consistent with previous reports, we 

found no association between grant percentile ranking and subsequent productivity and citation 

impact, even after accounting for subject categories, years of publication, duration and amounts of 

funding, as well as a number of investigator-specific measures. Prior investigator funding and 

academic productivity were moderately strong predictors of grant citation impact.

Introduction

National Institutes of Health (NIH) primarily rely on percentile rankings of peer-review 

priority impact scores to decide which investigator-initiated research grants they will fund. 

There is conflicting evidence, however, supporting funding decisions based on peer review 

alone.1,2 Recent reports from the National Heart, Lung and Blood Institute (NHLBI)3,4, the 

National Institute of General Medical Sciences5, the National Science Foundation6 and from 
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other sponsors have found either no or at best a modest7 association between grant peer-

review judgments and outcomes. Furthermore, one study from NHLBI suggests that, in 

contrast to peer-review percentile rankings, prior investigator productivity may be a 

moderately strong predictor of an R01 grant's eventual citation impact.4 As percentile 

rankings are used by the National Institute of Mental Health (NIMH) to assist in funding 

decisions, we chose to examine whether we could replicate the NHLBI findings in an R01 

grant cohort that would be entirely different in scientific focus and in investigator pool.

Materials and Methods

Grant sample and attributes

We identified all 1755 de novo (‘Type 1’) investigator-initiated R01 grants that met the 

following inclusion criteria: initial award between 2000 and 2009, receipt of a percentile 

ranking based on a peer-review priority score, project duration of at least 2 years and 

funding solely by NIMH.

We used internal tracking systems to secure data on a number of grant-based attributes, 

including the amount and duration of funding, submission status (whether the funded grant 

was a revision or not), use of animal and/or human subjects and focus on basic or applied 

research. At the time of award, trained NIMH staff prospectively coded grants as ‘applied’ 

using the following definition: ‘The practical application of such knowledge for the purpose 

of meeting a recognized need. This includes the study of the detection, prevention, 

epidemiology, cause, treatment or rehabilitation of specific disorders or conditions. Applied 

research also encompasses studies of the structure, processes and effects of health services, 

the utilization of health resources and the analysis and evaluation of the delivery of health 

services, health-care costs and organizations.’ Basic research was defined as, ‘The gaining of 

fuller knowledge or understanding of the subject under study and its biological and 

behavioral processes, which affect disease and human wellbeing, including such areas as the 

cellular and molecular bases of diseases, genetics, immunology, neuropsychology and 

neurobiology.’

We used internal systems to gather data on principal investigators, including their home 

institution (which enabled us to consider total institutional NIMH R01 support during the 

study period), terminal degree, their academic rank, whether they were early-stage 

investigators (within 10 years of receiving their last terminal degree or have completed their 

medical residency within 10 years), their total prior NIH funding (in terms of dollars and in 

terms of project-years of support) and the number of NIH peer-review study sections they 

had previously served on.

Bibliometric measures and outcomes

We obtained grant-based publication data from NIH's Scientific Publication Information 

Retrieval and Evaluation Systems (SPIRES; https://era.nih.gov/nih_and_grantor_agencies/

other/spires.cfm) and PubMed. Paper-based citation data were obtained from the Thomson 

Reuters' InCites database (http://researchanalytics.thomsonreuters.com/incites/). Critics have 

noted the weaknesses of measuring raw citation counts, as citation behaviors vary widely 
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across fields (for example, cardiovascular medicine versus psychiatry) and over time.8 

Therefore, we worked with Thomson Reuters to use their InCites database9 to retrieve for 

each paper a citation percentile value, which was based on how frequently a paper is cited 

compared with contemporaneously published papers of the same type (for example, research 

article, letter) in the same field or category.8 Hence, a biochemistry paper published in 2005 

would only be compared with other biochemistry papers published in 2005. Subject 

categories were taken from a set of 252 empirically derived categories from the Web of 

Science; some articles were assigned to more than one subject category, in which case we 

used the best percentile value. For articles published in multi-disciplinary journals, Thomson 

Reuters focuses on the cited items within each publication to determine subject category. 

NIMH papers included 155 of the 252 categories; the most common categories were 

neurosciences (20%), psychiatry (14%), clinical psychology (6%), pharmacology (5%) and 

experimental psychology (4%). To assure maximum accuracy, we not only furnished 

Thomson Reuters with PMID numbers, we also sent a detailed EndNote library to allow for 

manual data cleansing.

We considered a paper to be ‘Top-10%’ if it had a percentile value of 0-10, meaning that it 

was cited more frequently than at least 90% of other same-field contemporary papers. For 

each paper, we calculated a ‘normalized citation impact’ as (100-citation percentile)/100. 

Thus, if a paper was the most highly cited paper in its field and in its year of publication, it 

would have a citation percentile value of 0, yielding a normalized citation impact of 1. If a 

paper was never cited, it would have a citation percentile of 100 and a normalized citation 

impact of 0. If a paper was cited more often than 75% of its same-field contemporaries, it 

would have a citation percentile of 25 and a normalized citation impact of 0.75. Of note, the 

InCites database yielded a percentile value for 95.3% of the papers identified by SPIRES 

and PubMed.

Our primary productivity end points were grant-based normalized citation impact per 

$million spent and number of top-10% papers per $million spent. We noted whether papers 

cited more than one grant, in which case we ‘penalized’ the bibliometric outcome for each 

grant to avoid superfluous counting.3 Thus, if a paper cited two grants and had a normalized 

citation impact of 0.80, each grant was credited with a normalized citation impact of 0.40.

We used the InCites database to collect publication and citation data for each principal 

investigator's NIMH-funded papers published in the 5 years before their grant was reviewed. 

In this way, we could assess whether prior productivity could predict a grant's productivity. 

However, this left us without the ability to consider all of an investigator's prior work, so we 

used Scopus data to identify all publications issued in the 5 years before grant review for a 

random sample of 100 grants. We chose to perform this secondary analysis on a random 

sample because of the extensive work needed to disambiguate author names. For each paper, 

we also used Scopus data to obtain citation counts and annual citation rates.

Data analysis

We used a machine learning technique, Breiman random forests,10 to investigate the relative 

importance of percentile ranking grant with citation impact. Random forests provide 

unbiased estimates of relative variable importance without making strict parametric 

Doyle et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modeling assumptions. ‘Variable importance’ is based on permutation importance, which 

assesses the prediction accuracy of a prediction model before and after randomly permuting 

a given predictor. Larger values of importance indicate stronger predictors, and values 

around zero suggests that the variable does not predict for grant productivity or impact. 

Random forests not only have an added advantage of being adept at handling large numbers 

of covariates, but they also handle non-linear associations, complex interactions, non-normal 

distributions and multi-collinearity in a robust and unbiased way.11 We used R statistical 

packages for all analyses, including the Harrell's rms and Hmisc packages for descriptive 

analyses, Wickam's ggplot2 (ref 12) for descriptive visualizations (with logarithmic 

transformations of outcomes due to skewed distributions) and Ishwaran's and Kogalur's 

randomForestSRC for random forest analyses.13 A de-identified version of the main analysis 

data set and accompanying R code will be available to researchers upon request.

Results

Table 1 shows characteristics of grants and their principal investigators according to peer-

review priority score-based percentile ranking. Grants with worse percentile rankings tended 

to receive lower budgets, to go to institutions that received less overall NIMH R01 funding, 

and to be focused more on animal research. Investigators of these grants were less 

productive in terms of NIMH-based normalized citation impact in the 5 years before their 

grant was reviewed, were less likely to have served on multiple NIH study sections, tended 

to have non-tenured positions and were recipients of less prior NIH grant funding.

After accounting for multiple grant acknowledgments per paper, the 1755 grants yielded 

12,332 papers, with a total normalized citation impact of 8186. As expected, normalized 

citation impact increased with total award dollars (Supplementary Figure 1, top panel) with 

diminishing marginal returns (Supplementary Figure 1, middle panel). Normalized citation 

impact also increased with longer project durations (Supplementary Figure 1, bottom panel).

Table 2 shows descriptive bibliometric outcomes according to grant percentile ranking. By 

percentile ranking categories, we found no clear pattern linking grant percentile ranking to 

number of papers published, normalized citation impact, number of top-10% papers or for 

any of these outcomes per $million spent. Figure 1 shows the associations of per-grant 

normalized citation impact and top-10% papers according to grant percentile ranking and 

type of research (basic or applied); there was no association with grant percentile ranking, 

but basic research projects yielded more favorable outcomes. We noted similar patterns 

when using the raw grant priority score instead of the percentile ranking (Supplementary 

Figure 2).

Figures 2 and 3 show the main results from the random forest regression models. The most 

important predictors of citation impact per $million spent were longer project duration, 

lower total grant award (consistent with diminishing marginal returns), less prior principal 

investigator (PI) NIH grant funding, more prior project-years of funding, fewer mean 

number of grants cited per paper, type of research (basic or applied), greater prior 

normalized NIMH citation impact and fewer mean number of authors per paper. All other 

variables, including grant percentile ranking, were unimportant predictors. In a 
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supplementary multivariable linear regression analysis, project duration and total grant 

award also emerged as independent predictors (P < 0.0001 for both), whereas prior 

normalized NIMH citation impact was a moderately strong predictor (P = 0.01).

Figure 4 shows the main results of a random forest regression on a random sample of 100 

grants in which we obtained prior publication data that were not limited to NIMH grants and 

that underwent manual name disambiguation. The three most important predictors of 

normalized citation impact per $million were a lower total grant award, longer project 

duration and greater annual citation rates for articles published by PI's in the 5 years before 

grant review.

Discussion

In a large cohort of de novo investigator-initiated R01 grants funded by NIMH, we found no 

association between peer-review-based grant percentile score and subsequent field-

normalized citation impact. Our results are consistent with previous findings from two other 

NIH institutes, National Institute of General Medical Sciences5 and NHLBI3,4, and from a 

unit at the National Science Foundation.6 Furthermore, consistent with previous findings 

from NHLBI4 and from NIH-wide analyses14, we found that productive applicants had 

better grant percentile rankings; consistent with previous NHLBI findings4, we found a 

moderate association between prior PI productivity and grant citation impact. We also found 

that basic science grants yielded greater citation impact than applied science grants, a 

finding supportive of NIMH's increasing focus on basic brain science.15

The most important predictors of grant citation impact were project duration and total award 

amount. Long project duration predicted greater citation impact, a finding that is intuitive as 

the longer a grant remains active, the greater the number of publications that can be 

generated, which increases the potential visibility of the research proposed and allows time 

for a promising line of scientific inquiry to mature. The association between total grant 

award and citation impact followed a more nuanced pattern (Supplementary Figure 1), with 

diminishing marginal returns as funding increased.5 Of note, we found parallel findings 

when focusing on prior PI activity; grant citation impact increased as prior PI project-years 

increased but also as prior PI total funding decreased (Figure 3).

Although we find no association between percentile rank and downstream grant outputs, 

findings presented here do not suggest peer review does not have any utility for Institutes, 

but rather underscores the importance of further work in this area. Some may argue that 

advances in science involve serendipitous events. Each grant proposal only represents the 

potential for highly impactful work and grant reviewers can only evaluate each grant's 

scientific promise—not what will actually materialize. Others may argue that peer review 

distills out the least promising work from being discussed during a review meeting, leaving 

proposals with almost equal probability of becoming successes.6

We acknowledge a number of limitations. First, we only used bibliometric indicators to 

assess grant productivity and impact. We did not consider changes in existing treatment 

practices, reductions in disease burden, development of novel drugs and therapeutics, and 
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openings in new avenues of research. Second, we restricted our analyses to data from 

NIMH. Thus, findings cannot be generalized to all possible areas, agencies, institutes, or 

centers funding neuroscience or to NIH overall. Third, we only focused on grants that were 

actually funded, and thus may be limited by looking at a narrow window of the best projects. 

Others have considered funded and unfunded projects and have found varying degrees of 

predictive validity of peer review scores.2,7,16

Despite these limitations, we confirm previous analyses performed at other federal funding 

agencies that showed no clear monotonic association between grant peer review percentile 

ranking and subsequent grant productivity and citation impact. As NIH confront increased 

fiscal uncertainty each year, the commensurate need to make informed funding decisions 

using information available at the time of application and review will only intensify, making 

the findings presented here both timely and important.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

Lisa Alberts, Dr Thomas Insel and the NIMH Division Directors for comments on earlier versions of the analysis 
and manuscript. All authors are full-time employees of the US Department of Health and Human Services and 
conducted this work as part of their official federal duties.

References

1. Demicheli V, Di Pietrantonj C. Peer review for improving the quality of grant applications. 
Cochrane Database Syst Rev. 2007:MR000003. [PubMed: 17443627] 

2. Bornmann L, Daniel HD. Reliability, fairness, and predictive validity of committee peer review. BIF 
Futur. 2004; 19:7–19.

3. Danthi N, Wu CO, Shi P, Lauer M. Percentile ranking and citation impact of a large cohort of 
National Heart, Lung, and Blood Institute-funded cardiovascular R01 grants. Circ Res. 2014; 
114:600–606. [PubMed: 24406983] 

4. Kaltman JR, Evans FJ, Danthi NS, Wu CO, DiMichele DM, Lauer MS. Prior publication 
productivity, grant percentile ranking, and topic-normalized citation impact of NHLBI 
cardiovascular R01 grants. Circ Res. 2014; 115:617–624. [PubMed: 25214575] 

5. Berg JM. Science policy: well-funded investigators should receive extra scrutiny. Nature. 2012; 
489:203. [PubMed: 22972279] 

6. Scheiner SM, Bouchie LM. The predictive power of NSF reviewers and panels. Front Ecol Environ. 
2013; 11:406–407.

7. Gallo SA, Carpenter AS, Irwin D, McPartland CD, Travis J, Reynders S, et al. The validation of 
peer review through research impact measures and the implications for funding strategies. PLoS 
One. 2014; 9:e106474. [PubMed: 25184367] 

8. Bornmann L, Marx W. How good is research really? Measuring the citation impact of publications 
with percentiles increases correct assessments and fair comparisons. EMBO Rep. 2013; 14:226–
230. [PubMed: 23399654] 

9. Pendlebury D White Paper: Using Biobliometrics in Evaluating Research. available at http://
wokinfo.com/media/mtrp/UsingBibliometricsinEval_WP.pdf2008

10. Breiman L. Statistical modeling: the two cultures. Stat Sci. 2001; 16:199–215.

Doyle et al. Page 6

Mol Psychiatry. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://wokinfo.com/media/mtrp/UsingBibliometricsinEval_WP.pdf2008
http://wokinfo.com/media/mtrp/UsingBibliometricsinEval_WP.pdf2008


11. Gorodeski EZ, Ishwaran H, Kogalur UB, Blackstone EH, Hsich E, Zhang ZM, et al. Use of 
hundreds of electrocardiographic biomarkers for prediction of mortality in postmenopausal women 
the Women's Health Initiative. Circ Qual Outcomes. 2011; 4:521–532.

12. Wickham, H. ggplot2: elegant graphics for data analysis. 2009. http://had.co.nz/ggplot2/book

13. Ishwaran, H., Kogalur, UB. Random Forests for Survival, Regression and Classification (RF-SRC). 
2015. http://cran.r-project.org/web/packages/randomForestSRC/

14. Jacob BA, Lefgren L. The impact of research grant funding on scientific productivity. J Pub Econ. 
2011; 95:1168–1177. [PubMed: 21857758] 

15. Carey, B. Blazing trails in brain science. New York Times; 2014. http://www.nytimes.com/
2014/02/04/science/blazing-trails-in-brain-science.html?_r=0 [accessed on 22 March 2015]

16. Clavería LE, Guallar E, Camí J, Conde J, Pastor R, Ricoy JR, et al. Does peer review predict the 
performance of research projects in health sciences? Scientometrics. 2000; 47:11–23.

Doyle et al. Page 7

Mol Psychiatry. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://had.co.nz/ggplot2/book
http://cran.r-project.org/web/packages/randomForestSRC/
http://www.nytimes.com/2014/02/04/science/blazing-trails-in-brain-science.html?_r=0
http://www.nytimes.com/2014/02/04/science/blazing-trails-in-brain-science.html?_r=0


Figure 1. 
Scatter and rug plots relating grant citation impact per $million spent and grant percentile 

ranking. The top panel shows results for normalized citation impact of each grant, calculated 

as the sum of the normalized citation impact of each paper. Each paper's normalized citation 

impact equals (100–InCites percentile)/100, where the InCites percentile value is based on 

how often a paper is cited compared with other papers of the same category published in the 

same year. The bottom panel shows results for the number of top-10% papers per grant, that 

is, the number of papers with an InCites percentile value ≤ 10. The shaded areas reflect 95% 

confidence ranges. The curves were derived using lowess smoothing.
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Figure 2. 
Results of random forest regressions for identifying the most important predictors of 

normalized citation impact per $million spent (top panel) and of number of top-10% papers 

per $million (bottom panel).
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Figure 3. 
Results of random forest regressions for identifying confounder- and interaction-adjusted 

associations of the seven most important continuous variables and for grant percentile 

ranking with normalized citation impact per $million spent. To enable meaningful 

comparisons, all y axes are shown on the same scale. X axes ranges reflect 10th to 90th x-

tile values.
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Figure 4. 
Results of random forest regressions for identifying the most important predictors of 

normalized citation impact per $million for a random subset of 100 grants, in which we 

obtained prior publication data on all PI publications (not just those funded by NIMH) and 

manually disambiguated names. The top panel shows the most important predictors, whereas 

the bottom panel shows the confounder- and interaction-adjusted association of prior annual 

citation rate with normalized citation impact per $million spent.

Doyle et al. Page 11

Mol Psychiatry. Author manuscript; available in PMC 2017 July 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Doyle et al. Page 12

Table 1
Grant, principal investigator and paper characteristics according to grant percentile 
ranking

Characteristic Best (0–5) Middle (5.1–15) Worst (415)

N = 398 N = 807 N = 550

Grant percentile ranking 1.3/2.7/3.8 7.4/10.0/12.5 16.7/19.3/23.3

Type of submission

 A0 18% (72) 26% (207) 33% (179)

 A1 46% (185) 45% (362) 43% (238)

 A2 35% (138) 29% (233) 24% (131)

 A3 1% (3) 1% (5) 0% (2)

 Priority score 124/132/140 140/150/160 160/170/183

 Total grant award ($M) 1.4/1.8/2.8 1.1/1.7/2.6 1.1/1.6/2.5

 Institutional funding ($M) 13.5/35.8/73.2 10.3/23.7/64.0 9.7/26.4/70.9

 Project duration (years) 5.0/5.9/6.9 4.9/5.8/6.7 4.9/5.8/6.6

 Basic (versus applied) 61% (243) 62% (504) 65% (358)

 Human subjects 63% (251) 60% (486) 56% (306)

 Animal subjects 32% (128) 36% (292) 39% (213)

 Early stage investigator 2% (8) 1% (11) 2% (9)

PI degree

 MD or equivalent 21% (83) 20% (160) 18% (100)

 MD/PhD 9% (36) 8% (63) 10% (54)

 PhD or equivalent 70% (279) 72% (584) 72% (396)

Academic rank

 Assistant 21% (85) 25% (198) 30% (167)

 Associate 24% (95) 22% (180) 21% (117)

 Full 37% (147) 36% (291) 29% (162)

 None 18% (71) 17% (138) 19% (104)

Prior NIMH normalized citation impact 0.84/2.87/7.66 0.75/2.61/6.28 0.52/2.10/5.69

Prior study section meetings 0/3/8 0/2/9 0/1/5

Prior NIH grant funding ($K) 146/1097/3368 43/816/3502 0/553/2063

Prior project-years of funding 2/7/18 1/6/17 0/5/12

Mean number of authors per paper 3.5/4.6/6.2 3.5/4.8/6.3 3.4/4.7/6.1

Mean grants cited per paper 2.2/3.7/5.8 2.1/3.4/5.2 2.0/3.2/4.8

Abbreviations: NIH, National Institutes of Health; NIMH, National Institute of Mental Health; PI, Principal Investigator. Continuous variables are 
represented as a/ b/c, with a the lowest quartile, b the median and c the upper quartile. Categorical variables are represented as % (N).
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Table 2
Productivity and citation outcomes according to grant percentile ranking

Characteristic Best (0–5) N=398 Middle (5.1–15) N =807 Worst (>15) N=550

Number of papers 1.5/4.0/7.9 1.7/3.8/8.9 2.0/4.0/8.0

Normalized citation impact 0.90/2.44/5.14 0.98/2.53/5.70 0.98/2.53/5.12

Number of top-10% papers 0.00/0.50/2.00 0.00/0.75/2.11 0.00/0.50/2.00

Number of papers per $million 0.72/1.97/4.42 0.97/2.63/5.29 1.04/2.72/5.60

Normalized citation impact per $million 0.42/1.25/2.90 0.56/1.68/3.62 0.65/1.67/3.61

Number of top-10% papers per $million 0.00/0.28/1.09 0.00/0.40/1.34 0.00/0.34/1.16

Continuous variables are represented as a/b/c, with a the lowest quartile, b the median and c the upper quartile. Categorical variables are 
represented as % (N).

Mol Psychiatry. Author manuscript; available in PMC 2017 July 25.


	Abstract
	Introduction
	Materials and Methods
	Grant sample and attributes
	Bibliometric measures and outcomes
	Data analysis

	Results
	Discussion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Table 1
	Table 2

