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Abstract

There continues to be a major effort in the United States to develop mitigators for the treatment of 

mass casualties that received high-intensity acute ionizing radiation exposures from the detonation 

of an improvised nuclear device during a radiological terrorist attack. The ideal countermeasure 

should be effective when administered after exposure, and over a wide range of absorbed doses. 

We have previously shown that the administration of a subcutaneous incision of a defined length, 

if administered within minutes after irradiation, protected young adult female C57BL/6 mice 

against radiation-induced lethality, and increased survival after total-body exposure to an LD50/30 

X-ray dose from 50% to over 90%. We refer to this approach as “protective wounding”. In this 

article, we report on our efforts to further optimize, characterize and demonstrate the validity of 

the protective wounding response by comparing the response of female and male mice, varying the 

radiation dose, the size of the wound, and the timing of wounding with respect to administration of 

the radiation dose. Both male and female mice that received a subcutaneous incision after 

irradiation were significantly protected from radiation lethality. We observed that the extent of 

protection against lethality after an LD50/30 X-ray dose was independent of the size of the 

subcutaneous cut, and that a 3 mm subcutaneous incision is effective at enhancing the survival of 

mice exposed to a broad range of radiation doses (LD15–LD100). Over the range of 6.2–6.7 Gy, the 

increase in survival observed in mice that received an incision was associated with an enhanced 

recovery of hematopoiesis. The enhanced rate of recovery of hematopoiesis was preceded by an 

increase in the production of a select group of cytokines. Thus, a thorough knowledge of the 

timing of the cytokine cascade after wounding could aid in the development of novel 

pharmacological radiation countermeasures that can be administered several days after the actual 

radiation exposure.

INTRODUCTION

Over the past 15 years, research efforts to develop mitigators for use against high-intensity 

acute ionizing radiation exposures have been intensified due to the increased threat of a 
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radiological terrorist strike and the mass casualties that would result from such an incident. 

Doses of 1–15 Gy of X rays or γ rays would result in the development of the acute radiation 

syndromes (ARS) (1), with the lethal dose to 50% of humans exposed (LD50) to total-body 

irradiation often being cited to be ~3.25 Gy without medical intervention (2). Doses of 1–3 

Gy might simply be temporarily debilitating, while doses in excess ≥10 Gy would almost 

certainly result in death from the gastrointestinal (GI) syndrome within 3–10 days 

postirradiation, due to depopulation of the epithelial lining of the GI tract and infection (1, 

3). Doses ranging from ~3–9 Gy induce the hematopoietic syndrome, with death occurring 

within 60 days of the exposure without medical intervention (1, 3). In the case of the 

hematopoietic syndrome, death would be attributed to the normal attrition of the terminally 

differentiated functional blood cells (or rapid apoptosis of radiosensitive lymphocytes), and 

failure to replace them due to depletion of the more radiosensitive stem and precursor cells. 

Many victims of an improvised nuclear device (IND) could be rescued by conventional 

supportive therapies such as antibiotics and blood transfusions; such treatments would likely 

double the LD50 (4–6). Recently, the FDA approved Neupogen (filgrastim; G-CSF, 

granulocyte colony stimulating factor) and Neulasta (pegfilrastim), and these are the only 

agents that can be provided by the government for mitigation of the radiation-induced 

hematopoietic syndrome via stimulation of recovery of peripheral blood cells during 

neutropenia resulting from a radiation incident without an Emergency Use Authorization (7–

9). While Neupogen and Neulasta are maintained in the Strategic National Stockpile for 

treatment of mass casualties (9, 10), the drugs are perishable, require several doses after 

treatment to be effective (e.g., must be given daily or weekly), and are only useful over a 

limited radiation dose range. Thus, the search has continued for other compounds or 

strategies that could be employed as mitigators after irradiation.

We previously demonstrated that the creation of a small subcutaneous (SC) wound, if 

administered shortly after irradiation, was extremely effective in preventing the death of 

female C57BL/6 mice that received an LD50/30 dose of X rays (total-body exposure), and 

that the mitigation of lethality may be attributed, at least in part, to an enhanced recovery of 

hematopoietic elements (red blood cells, neutrophils, platelets) after irradiation (11). We 

now show that our protective wounding strategy is effective at enhancing the survival and 

stimulating hematopoeisis of mice exposed to a broad range of radiation doses. In our quest 

to determine the optimal wounding parameters, we now show that protection against 

radiation lethality is independent of wound size. Finally, to demonstrate the validity of the 

protective wounding strategy in both sexes, we show that the creation of a small 

subcutaneous wound mitigates radiation lethality in male as well as female mice.

MATERIALS AND METHODS

Female and male C57BL/6 mice (in our hands, LD50/30 = ~6.9 Gy and 6.7 Gy for females 

and males, respectively) were obtained from Jackson Laboratories (Bar Harbor, ME) at 9–11 

weeks of age. Mice were housed in micro-isolator cages on ventilated racks (5 mice per 

cage) and were given food and acidified water ad libitum. All animal procedures were 

approved by the Indiana University School of Medicine Institutional Animal Care and Use 

Committee. At 12 weeks of age, after acclimating for at least one week, mice were randomly 

assigned to control and irradiated groups that either would or would not receive a 
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subcutaneous incision or “cut”. Mice were anesthetized with a ketamine cocktail (~100 

mg/ml ketamine, ~0.45 mg/ml atropine and ~2.2 mg/ml acepromazine) and either sham-

irradiated (0 Gy) or irradiated in a rectangular Lucite box (inner dimensions were 16 × 17.5 

cm), which was placed within a flat-beam field; 2–10 mice were positioned in the box 

during irradiations. Mice were placed in the box such that all heads were pointed toward the 

mid-line of the box, and we ensured that mice and their tails didn’t overlap one another. 

Mice were irradiated with a single uniform total-body exposure of 250 kVp X rays (various 

doses; dose rate = ~65 cGy/min) using a Precision X-ray machine (North Branford, CT) 

with a 2-mm aluminum filter. Mice were irradiated in the morning, and all irradiations were 

performed within the same 3 h window. Dosimetry was performed using a Farmer-type 

ionization chamber (PTW Model N30013, Freiburg, Germany) in conjunction with a 

Keithley electrometer (Model K602, Cleveland, OH). Survival experiments were repeated 2–

5 times with irradiated treatment groups consisting of 10–21 mice per experiment; these 

same mice were used for analysis of blood cell elements. For cytokine studies, groups 

consisted of 10–41 mice.

Within 20 min postirradiation, a 3-, 6- or 12-mm SC incision was administered as described 

by Garrett et al. (11). Briefly, the entire mid-section was rinsed with 70% isopropyl alcohol 

and then swabbed with Betadine (Purdue Pharma, Stamford, CT) before the hair was 

separated to expose a clean line of skin; aseptic techniques were used for all subsequent 

procedures to create the wound. After separating the hair to expose a clean line of skin, a SC 

cut of various lengths (but ~1 mm in depth) was made midway down the dorsal surface, 

parallel to the plane of each mouse. An incision was made with a pair of surgical scissors, 

and a pair of hemostats was inserted 1.5 cm underneath the skin and then opened to 

approximately 6 or 12 mm to separate the fascia, producing a final incision length of 6 or 12 

mm, respectively. To produce a 3-mm incision, after the initial incision, one side of the 

hemostat was inserted 1.5 cm underneath the skin; this itself resulted in the formation of a 3-

mm final incision length. Wounds were closed with a 9-mm MikRon Autoclip. Wound clips 

either fell out without provokation, or were removed by day 14 postirradiation. A group of 

“sham-cut” mice were included in every experiment, and were treated the same as mice that 

received the wound, except that no incision was ever made nor wound clip applied (thus, 

observers could not be blinded to treatment). Mice did not receive supportive care after 

irradiation. The Mantel-Haenszel test was used to determine whether there was a difference 

between the 30-day all-cause mortality of the different treatment groups. The test was run 

using the total number of surviving mice at day 30 and total number of mice irradiated 

initially from all experiments for that particular dose (2–5 experiments per dose).

To determine the effects of wounding on survival as a function of time after irradiation, it 

was necessary to anesthetize mice twice (once prior to irradiation and once prior to making a 

6-mm incision at various times after irradiation). To reduce the risk of mortality that can 

occur from multiple dosings of anesthesia within a short time period, the decision was made 

to reduce the anesthetic dosage used prior to irradiation. For example, for mice that received 

an incision approximately 24 h postirradiation, mice were anesthetized with 2/3 of the 

normal dose of anesthesia for irradiations, and approximately 24.3 h later, mice were given a 

full dose of anesthesia; the cut was administered approximately 24 h postirradiation.
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Mice were observed for signs of illness twice daily, and were euthanized if they could no 

longer respond to stimulation, right themselves, or if a combination of hunching, decreased 

activity and eye squint, reached a level of 7 on a 9-point grading scale (scale of 0–3 for each 

of the latter three criteria) (12).

Complete blood counts (CBCs) were performed as described previously (11), using a 

HemaVet cell counter (Drew Scientific, Dallas, TX). Mice from each of the aforementioned 

treatment groups were bled at least 24 h prior to irradiation (for baseline measurements) and 

on days 2, 6, 9, 13, 16, 20, 23, 27 and 30 postirradiation. Briefly, for acquisition of blood 

samples, mice were restrained and ~30–44 µl of blood drawn from clipped tails. Bleeding 

was stopped, and mice were released into their cages. For each experiment, at least two mice 

per group were bled as controls prior to irradiation. Blood analysis was performed on 2–6 

animals per experiment, per group, per time point. Since each experiment was repeated at 

least 1 time (experiments with male mice only) or up to 3 times, each time point represents 

the mean of 4–15 mice. As in our previous study (11), mice were rotated in the bleeding 

schedule such that no mouse was bled twice within the 30-day period of observation unless 

all other mice in the group had been bled at least once, and at least 10 days were allowed to 

elapse between bleeds to allow for recovery from the initial bleed. Mean blood cell counts 

and hemoglobin levels at each time point for each dose and treatment group were analyzed 

using a 2-tailed, uneven variance t test to determine if significant differences existed between 

the treatment groups at various days during the recovery period (days 13–23). Additionally, 

two-way ANOVA was done on the datum points from the recovery period to determine 

overall, whether treatment significantly affected the means.

Cytokine concentrations in the sera of cut and sham-cut mice (irradiated or sham irradiated) 

were assayed using Millipore kits (Billerica, MA) designed to separately quantify the mouse 

proteins RANTES, Interleukin (IL)-1a, IL-3, IL-6, IL-9, IL-12(p40), IL-12(p70), IL-13, 

IL-17, Eotaxin, G-CSF, keratinocyte chemoattractant (KC), monocyte chemoattractant 

protein-1 (MCP-1), macrophage inflammatory protein 1a and 1b (MIP-1a and MIP-1b, 

respectively), IL-1b, IL-2, IL-4, IL-5, IP-10, granulocyte-macrophage colony-stimulating 

factor (GMCSF), interferon gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α). 

Assays were performed according to the manufacturer’s protocol. Serum matrix was used as 

sample matrix for protein detection. Serum samples from 4–8 mice from 2–3 experiments 

were run undiluted, unless there was not enough serum, in which case the sample was 

diluted minimally (1.5 fold for 1 sample) with assay buffer according to the manufacturer’s 

recommendations. After preparation, samples were processed (50 beads per bead set in 25-µl 

sample size) on a Bio-Plex 200 System with High Throughput Fluidics (HTF) Multiplex 

Array System (Bio-Rad Laboratories, Hercules, CA).

RESULTS

We previously showed that 30-day all-cause mortality was greatly reduced (by ~40%) in 

female C57BL/6 mice that received a single subcutaneous 6-mm incision (cut) within 20 

min after total-body irradiation with a single LD50/30 dose of 250 kVp X rays compared to 

mice that were sham irradiated (11). In the current study, we sought to optimize the 

parameters of our protective wounding approach, further demonstrate its validity, and gain 

Dynlacht et al. Page 4

Radiat Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



further insight into the mechanisms by which the approach results in enhanced survival after 

total-body irradiation.

To determine whether the extent of protection was dependent upon the size of the incision, 

female mice were X irradiated with 6.8 Gy and incisions of 3, 6 or 12 mm were 

administered within 20 min thereafter. This dose represents the LD50/30 dose for sham-cut 

female mice. As shown in Fig. 1, 30-day all-cause mortality was significantly decreased in 

mice that received our standard 6-mm cut. Administration of a 3- or 12-mm cut also 

provided dramatic protection against radiation lethality, with no significant differences in 

survival noted between groups that received incisions of various lengths. That is, a 3-mm cut 

conferred as much protection against acute radiation lethality as our standard 6-mm incision 

or a 12-mm incision. Thus, the enhancement of survival when measured 30 days after total-

body irradiation was independent of cut size.

We next assessed the effectiveness of the protective wounding approach over a wide range of 

doses. Mice received total-body exposures of 6–7.1 Gy and all-cause mortality was 

measured through day 30 postirradiation, along with the overall timing of deaths. Survival 

after exposure to three representative doses approximating the LD30, LD60 and LD90 is 

shown in Fig. 2. A comparison of the curves for cut vs. sham-cut mice reveals a significant 

enhancement of survival at each dose for mice receiving a 3-mm cut. Although in general 

the temporal pattern of onset of deaths did not appear to be different (Fig. 2), with the first 

deaths in all groups beginning on approximately day 10 and the final deaths occuring by day 

24 postirradiation, wounding was found to confer a significant survival benefit compared to 

sham-cut mice, at all dose levels greater than 6 Gy (Fig. 3).

In various rodent models, we and others have found that the radiation-induced response of 

normal tissues (timing and severity of the normal tissue response) may be different 

depending on the sex of the animal [see ref. (13) and references therein]. Therefore, we 

investigated whether male mice might also be protected from radiation lethality after 

administration of a subcutaneous incision. Survival at day 30 postirradiation was about 25% 

greater in male mice that received a 3-mm incision after irradiation compared to male mice 

that received a sham cut (Fig. 4).

By performing serial CBCs and differential analysis of peripheral blood samples, we sought 

to determine whether there was a relationship between enhanced survival and either initial 

hematopoietic damage or recovery of blood-forming elements. In our previous studies, 

which were confined to one dose (LD50) in mice that either received a standard 6-mm SC 

wound after irradiation or were sham cut, we found that there were no significant differences 

in the time to reach the nadir of the RBC, neutrophil or platelet counts, or in the RBC, 

neutrophil or platelet counts themselves at the nadir, when mice that either received a cut or 

a sham cut after irradiation were compared (11). However, the recovery of these blood cell 

elements was significantly faster in the mice that received a cut after irradiation compared to 

irradiated sham-cut mice. In the current study, we obtained similar results for RBC and 

platelets after mice were exposed to a range of doses (6.2, 6.5 and 6.7 Gy) of X rays (Fig. 

5A – C). Both cut and sham-cut mice showed similar nadirs in RBC and platelet counts, as 

well as hemoglobin levels, by approximately 9–15 days postirradiation; enhanced recovery 
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of RBC counts and hemoglobin levels was observed between days 16 and 20 postirradiation 

over the entire dose range, while significantly enhanced recovery of platelets was observed 

over the entire dose range by day 23. By day 27 postirradiation, at all doses, levels of RBCs, 

platelets and hemoglobin were similar in both sham-cut mice and mice that were given a SC 

incision after irradiation; while recovery had reached a plateau, the levels never fully 

recovered to baseline levels. There were no significant differences in white blood cell and 

neutrophil counts between mice that received cuts or mice which were sham cut (e.g., no 

significant difference in recovery rates; data not shown).

Since a SC cut afforded significant protection from radiation lethality across a wide dose 

range if administered immediately after irradiation, and this protection may have been due, 

at least in part, to enhanced recovery of hematopoeisis that occurred over two weeks after 

the time of irradiation, but several days before the well-established crisis period for the 

hematopoietic syndrome (2) we hypothesized that administration of an SC cut hours to 

several days after irradiation would still be protective. However, when a 6-mm incision was 

made 12–24 h postirradiation with doses approximating the LD50 (not shown) or LD70, no 

protection against lethality was noted compared to sham-cut controls [Fig. 6; similar results 

were obtained for mice that received a 3-mm cut (data not shown)].

Since the only compounds currently approved by the FDA to treat hematopoietic ARS are 

granulocyte colony-stimulating factor (G-CSF) [filgrastim; brand name = Neupogen) and 

PEGylated G-CSF (pegfilgrastim; brand name = Neulasta), and these growth factors 

stimulate bone marrow granulopoiesis, the enhancement of which may explain the enhanced 

survival in mice receiving cuts after irradiation, we sought to determine whether specific 

plasma cytokines or growth factors were “overexpressed” or “under-expressed” in wounded 

vs. sham-cut mice within a 6-day window postirradiation. Several cytokines were assayed 

(see Materials and Methods) but only a minority showed a significant difference between 

sham-cut and cut mice. We found that G-CSF and IL-9 levels were significantly increased 

on day 2, and MCP-1 levels were increased on day 6 postirradiation, in female mice 

receiving a 3-mm cut after irradiation compared to those that were sham cut. Levels of KC 

in mice that received a 3-mm cut after irradiation were significantly higher than in the 

nonirradiated sham-cut mice (P = 0.0125), and showed a trend towards significance 

compared to the sham-cut mice (P = 0.0660). However, IL-13 levels on day 6 were 

significantly reduced in irradiated mice that received a cut, compared to irradiated sham-cut 

and nonirradiated cut control mice (P = 0.0489 and P = 0.000904, respectively; see Fig. 7).

DISCUSSION

Building upon our earlier studies in which we demonstrated that mortality was significantly 

decreased in female C57BL/6 mice if given a small SC incision within 20 min after 

receiving an LD50/30 total-body dose of X rays (11), we endeavored to determine optimal 

wounding parameters (size, timing of wounding relative to the irradiation to obtain the 

greatest decrease in 30-day all-cause mortality) and further demonstrate the validity of the 

protective wounding approach by testing its effectiveness over a large dose range and in 

male mice. We also attempted to gain greater insight into the mechanisms behind the 

enhancement of survival of mice that received an incision after irradiation.
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Since the detonation of an improvised nuclear device (IND) during a terrorist attack in a 

metropolitan area would result in mass casualties suffering from acute high-dose radiation 

exposure as well as burns and other wounds, many investigators in recent years have focused 

their efforts to develop mitigators that will reduce the increased mortality that would be 

predicted [in part from animal studies dating back to the 1960s (14, 15)] to result from such 

combined injuries. Interestingly, Ledney et al. (16) found that mortality was decreased if a 

very large wound was created in mice (corresponding to ~4% of the total-skin surface area) 

within 10 min after irradiation with 9 Gy and the wound was left open; this reduction of 

mortality greatly diminished or disappeared if the wound was created 1–2 days 

postirradiation or following larger exposures. In our studies, we found that mortality after 

exposure to a single acute dose or X rays is independent of incision size made after 

irradiation, and that a very small (3 mm) closed wound was sufficient to significantly protect 

female mice against radiation lethality over a wide range of doses (Figs. 1–3). Similar to the 

results of Ledney et al. (16), we found that the protective effect of the SC incision 

disappeared if administered at longer intervals (12–24 h) after irradiation (see below).

An ideal mitigator of the acute radiation syndromes and radiation lethality must not only be 

effective over a wide range of doses (since absorbed dose would be difficult to assess in 

situations involving mass casualties), but it must also be effective in both female and male 

subjects. Since males may be more sensitive to acute and late effects of ionizing radiation 

[see ref. (13) and references therein], and since there are differences in normal tissue 

response between the sexes, it would not have been unreasonable to hypothesize that males 

would respond differently to our protective wounding approach compared to females. While 

the decrease in mortality was not as great as we observed in female mice, we found that 

administration of a 3-mm incision after irradiation also significantly reduced mortality in 

male mice exposed to an LD50/30 dose of X rays compared to mice that received a sham cut 

(Fig. 4).

The temporal pattern of onset of deaths did not appear to be different when mortality was 

measured in sham-cut female mice compared to mice that received a 3-, 6- or 12-mm 

incision immediately after exposure to an LD50/30 dose or in mice that received a 3-mm 

incision after exposure to a range of radiation doses (Fig. 2). This finding was in contrast to 

what we observed in previous studies (10) in which female mice were irradiated with an 

LD50/30 dose and received a 6-mm incision immediately thereafter. It is difficult to speculate 

why we observed this difference. However, it should be noted that in the previous study, 

mice were purchased from a different vendor that bred and maintained the mice under very 

different husbandry techniques, which likely resulted in variations in microflora.

The enhanced survival we observed in animals receiving an incision immediately after 

irradiation was likely not due to a reduction in damage to, or enhanced repopulation of the 

stem cells of the GI tract. While total-body doses of less than 7 Gy might be sufficient to 

trigger mucosal barrier breakdown in a subset of mice, thereby allowing bacteria to 

translocate into the circulation, such doses lie below the threshold for the classical GI 

syndrome; thus, it was not surprising that we found no differences in the number of crypts or 

regeneration of the intestinal epithelium between cut or sham-cut mice irradiated with doses 

approximating the LD50/30 (not shown). Rather, as we proposed previously, the reduced 
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mortality of mice wounded after irradiation may be attributed, at least in part, either to the 

enhanced recovery of hematopoietic elements compared to sham-cut mice, or an increased 

activity of blood element precursors. While administration of a postirradiation incision did 

not significantly alter the timing or magnitude of the nadirs of the RBC, platelet and 

hemoglobin levels, recovery to near-normal levels was statistically significantly faster if 

mice received a 3-mm subcutaneous incision after exposure to various doses of X rays, 

compared to irradiated sham-cut mice (Fig. 5). The increase in platelet recovery in wounded 

mice suggests enhanced activity of colony forming unit-megakaryocytes (CFU-Meg).

Our finding that there was no reduction in mortality in mice after administration of an 

incision 12 or 24 h postirradiation (Fig. 6) was somewhat disappointing; although the 

Department of Defense and/or first responder populations may find it useful to employ the 

protective wounding strategy shortly after exposure, an ideal counter-measure for use with 

civilian populations should afford protection to exposed individuals even if given hours to 

days after irradiation. However, such a finding was not totally unexpected due to the 

complicated nature of the experiments and the fact that an experiment to test efficacy of 

wound administration several hours to days after irradiation cannot be performed under 

exactly the same conditions as an experiment to test wound administration immediately after 

irradiation. This is because of the need for mice to be anesthetized both during the 

irradiation and also subsequently, at the time of wounding. Mice that receive a cut 

immediately after irradiation would have already been anesthetized minutes earlier and 

would still be under anesthesia at the time the wound would need to be made, but mice that 

would require a wound to be made several hours after the irradiation would have to be 

anesthetized a second time. In our experience, mice are hypersensitive to a second dose of 

anesthesia unless spatially separated by several days. Thus, a direct comparison of 30-day 

all-cause mortality in mice that were given an incision immediately after irradiation (as per 

our standard protocol) with those that were given an incision up to 24 h later cannot be made 

directly.

It is worth speculating, though, that the reason for our failure to observe protection from 

lethality when the length of time between the irradiation and administration of the wound 

was increased to 12–24 h may have involved the lack of a synergistic interaction between the 

responses to the radiation injury and physical injury that might occur when the two injuries 

are not significantly separated temporally. This interaction could directly or indirectly lead 

to a unique cytokine cascade.

We posited that wounding after irradiation could result in the modulation of key cytokines 

normally involved in hematopoiesis. The design of our cytokine study was predicated on 1. 

the numerous findings that several cytokines, including the newly FDA-approved mitigator 

G-CSF (Neupogen), are known to stimulate or regulate hematopoiesis (17–21), and 2. that 

while the up- or down-regulation of cytokines could occur within days or weeks after 

irradiation and/or wounding, the most critical period of observation, for purposes of the 

potential development of phamacologic cytokine-based mitigator strategies, would occur 

within 1–6 days postirradiation.
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Three cytokines were found to be significantly up-regulated and one was significantly down-

regulated in wounded mice within this time period (Fig. 7). G-CSF, IL-9 and MCP-1 all 

increased at least twofold either 2 days (MCP-1 and IL-9) or 6 days (MCP-1) postirradiation 

in mice that had been given an SC cut; IL-13, showed at least a twofold decrease at day 6 

postirradiation. IL-9 is often referred to as a factor that regulates hematopoiesis, as it 

synergizes with IL-3 to enhance erythroid burst forming unit (BFU-E), CFU-E and multi-

lineage colony formation in combination with other factors from bone marrow precursors, 

and acts as an activator of megakaryocyte progenitor cells (22). MCP-1 regulates migration 

and infiltration of monocytes/macrophages (23) while G-CSF promotes neutrophil 

production and mobilizes hematopoietic stem cells from the bone marrow into the 

bloodstream (24). Finally, IL-13 down-regulates macrophage activity, thus inhibiting the 

production of pro-inflammatory cytokines and chemokines (25). Further studies are 

necessary to link the modulation of these cytokines with the enhanced recovery of 

hematopoiesis in mice that receive an incision after irradiation.

While we could not demonstrate efficacy of our protective wounding approach when 

wounds were administered 12–24 h postirradiation, we speculate that the lack of effectivness 

may be due to lack of effect of the cytokine cascade when it is induced (e.g., by a SC cut) 

outside of a critical time interval. For example, a specific cytokine may work in concert with 

other cytokines if it is triggered to be up-regulated day 1 postirradiation and wounding, but 

may be ineffective if induced day 2 postirradiation if the cut itself is delayed 1 day 

postirradiation. Further studies are necessary to determine whether the administration of 

combinations of cytokines at tightly-timed intervals after irradiation (following a pattern 

similar to that which is induced when wounding occurs immediately after irradiation) can 

provide a mitigating effect similar to that observed by wounding immediately after 

irradiation.

Since combinations of cytokines that are strong stimulators of hematopoiesis have been 

demonstrated to improve reconstitution of the hematopoietic system and decrease 30-day 

mortality (17–21), and recent data indicate that postirradiation administration of specific 

early-acting cytokines may lead to enhanced short- and long-term survival (26, 27), further 

insight into the mechanisms by which protection is afforded through subcutaneous 

wounding could lead to the development of novel pharmacological radiation 

countermeasures.

Acknowledgments

This work was supported by a grant from the National Institute of Environmental Health Sciences (ES021631). We 
thank Hui Lin Chua, Hailin Feng and the Multiplex Analysis Core at the Indiana University Simon Cancer Center 
for providing expert support in analyzing cytokine samples and interpretation of data. We also thank Helen Chin-
Sinex and Chris Roberts for providing technical support, and George Eckert (Indiana University School of 
Medicine Department of Biostatistics Core) for assistance with biostatistics. This paper is dedicated to the memory 
of Sigmund Dynlacht, father of JRD; he survived the Holocaust and came to the United States with nothing except 
“street smarts” and a good sense of humor, but succeeded in giving his three sons the tools to live better lives than 
their parents had.

Dynlacht et al. Page 9

Radiat Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



References

1. Lushbaugh, C. Reflections on some recent progress in human radiobiology. In: Augenstein, 
L.Mason, R., Zelle, M., editors. Advances in Radiation Biology. New York: Academic Press; 1969. 
p. 277-314.

2. Hall, E., Giaccia, A. Radiobiology for the Radiologist. Seventh. Philadelphia: Lippincott, Williams, 
and Wilkins Company; 2012. 

3. Thomas GE Jr, Wald N. The diagnosis and management of accidental radiation injury. J Occup Med. 
1959; 1:421–47.

4. Coleman CN, Blakely WF, Fike JR, MacVittie TJ, Metting NF, Mitchell JB, et al. Molecular and 
cellular biology of moderate-dose (1–10 Gy) radiation and potential mechanisms of radiation 
protection: report of a workshop at Bethesda, Maryland, December 17–18, 2001. Radiat Res. 2003; 
159:812–34. [PubMed: 12751965] 

5. Stone HB, Moulder JE, Coleman CN, Ang KK, Anscher MS, Barcellos-Hoff MH, et al. Models for 
evaluating agents intended for the prophylaxis and mitigation, treatment of radiation injuries. Report 
of an NCI Workshop, December 3–4, 2003. Radiat Res. 2004; 162:711–28. [PubMed: 15548121] 

6. Pellmar TC, Rockwell S. Priority list of research areas for radiological nuclear threat 
countermeasures. Radiat Res. 2005; 163:115–23. [PubMed: 15606315] 

7. Waselenko JK, MacVittie TJ, Blakely WF, Pesik N, Wiley AL, Dickerson WE, et al. Medical 
management of the acute radiation syndrome: recommendations of the Strategic National Stockpile 
Radiation Working Group. Ann Intern Med. 2004; 140:1037–51. [PubMed: 15197022] 

8. Farese AM, MacVittie TJ. Filgrastim for the treatment of hematopoietic acute radiation syndrome. 
Drugs Today. 2015; 51:537–48. [PubMed: 26488033] 

9. News Releases, Collected by the U.S. Department of Health and Human Services. http://bit.ly/
2ngYC0t

10. CDC Strategic National Stockpile. https://www.cdc.gov/phpr/stockpile/

11. Garrett J, Orschell CM, Mendonca MS, Bigsby RM, Dynlacht JR. Subcutaneous wounding post-
irradiation reduces radiation lethality in mice. Radiat Res. 2014; 181:578–83. [PubMed: 
24811864] 

12. Plett PA, Sampson CH, Chua HL, Joshi M, Booth C, Gough A, et al. Establishing a murine model 
of the hematopoietic syndrome of the acute radiation syndrome. Health Phys. 2012; 103:343–55. 
[PubMed: 22929467] 

13. Dynlacht JR. The role of age, sex and steroid sex hormones in radiation cataractogenesis. Radiat 
Res. 2013; 180:559–566. [PubMed: 24261552] 

14. Koslowski, L., Messerschmidt, O. Intermedes Proceedings: Combined Injuries and Shock. Vol. 80. 
Research Institute of National Defense; Stockholm: 1968. The role of the time factor in the 
combined injury syndrome; p. 21

15. Stromberg LW, Woodward KT, Mahin DT, Donati RM. Combined surgical radiation injury The 
effect of timing of wounding and whole body gamma irradiation on 30 day mortality and rate of 
wound contracture in the rodent. Ann Surg. 1968; 167:18–22. [PubMed: 5635182] 

16. Ledney GD, Exum ED, Jackson WE 3rd. Wound-induced alterations in survival of 60Co irradiated 
mice: importance of wound timing. Experientia. 1985; 41:614–6. [PubMed: 4039681] 

17. Van der Meeren A, Mouthon MA, Gaugler MH, Vandamme M, Gourmelon P. Administration of 
recombinant human IL11 after supralethal radiation exposure promotes survival in mice: 
interactive effect with thrombopoietin. Radiat Res. 2002; 157:642–9. [PubMed: 12005542] 

18. DiCarlo AL, Poncz M, Cassatt DR, Shah JR, Czarniecki CW, Maidment BW. Development and 
licensure of medical counter-measures for platelet regeneration after radiation exposure. Radiat 
Res. 2011; 176:134–7. [PubMed: 21545289] 

19. Van der Meeren A, Mouthon MA, Vandamme M, Squiban C, Aigueperse J. Combinations of 
cytokines promote survival of mice and limit acute radiation damage in concert with amelioration 
of vascular damage. Radiat Res. 2004; 161:549–59. [PubMed: 15161368] 

20. Waddick KG, Song CW, Souza L, Uckun FM. Comparative analysis of the in vivo radioprotective 
effects of recombinant granulocyte colony-stimulating factor (G-CSF), recombinant granulocyte-
macrophage CSF, and their combination. Blood. 1991; 77:2364–71. [PubMed: 1710151] 

Dynlacht et al. Page 10

Radiat Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://bit.ly/2ngYC0t
http://bit.ly/2ngYC0t
https://www.cdc.gov/phpr/stockpile/


21. Neta, R., Abrams, JS., Pelrlstein, RS., Rokita, H., Sipe, JD. Interactions of the cytokines IL-1, and 
IL-6 in in vivo host responses. In: Revel, M., editor. IL-6: Physiopathology and Clinical Potentials. 
New York: Raven Press; 1992. 

22. Goswami R, Kaplan MH. A Brief History of IL-9. J Immunol. 2011; 186:3283–88. [PubMed: 
21368237] 

23. Satish L, Kremlev S, Amini S, Sawaya BE. Monocyte chemo-attractant protein-1 (MCP-1): An 
overview. J Interferon Cytokine Res. 2009; 29:313–26. [PubMed: 19441883] 

24. Bendall LJ, Bradstock KF. G-CSF: From granulopoietic stimulant to bone marrow stem cell 
mobilizing agent. Cytokine Growth Factor Rev. 2014; 25:355–367. [PubMed: 25131807] 

25. IL13 interleukin 13 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene/3596

26. Herodin F, Bourin P, Mayol JF, Lataillade JJ, Drouet M. Short-term injection of antiapoptotic 
cytokine combinations soon after lethal gamma-irradiation promotes survival. Blood. 2003; 
101:2609–16. [PubMed: 12468435] 

27. Drouet M, Grenier N, Herodin F. Revisiting emergency anti-apoptotic cytokinotherapy: 
erythropoietin synergizes with stem cell factor, FLT-3 ligand, trombopoietin and interleukin-3 to 
rescue lethally-irradiated mice. Eur Cytokine Netw. 2012; 23:56–63. [PubMed: 22668525] 

Dynlacht et al. Page 11

Radiat Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.ncbi.nlm.nih.gov/gene/3596


FIG. 1. 
Enhancement of 30-day survival of female C57BL/6 mice after irradiation is independent of 

the size of the subcutaneous incision. The groups designated as “cut” received either a 3-, 6- 

or 12-mm cut (a sterile incision, as described in Materials and Methods) approximately 20 

min postirradiation with 6.8 Gy of X rays. Data shown are from 2–5 independent 

experiments, with 14–18 mice per experimental group. Error bars represent the standard 

error of the mean (SEM) from mice across all experiments. Day 30 survival between the cut 

groups was compared using the Mantel-Haenszel method and was found to be not 

significant (P = 0.39). Comparing each cut length group vs. the sham-cut group separately 

was significantly different each time (3-mm cut, P < 0.001; 6-mm cut, P = 0.001; 12-mm 

cut, P = 0.002). There was no difference in 30-day survival when different cut lengths were 

compared at other doses as well (6.2 Gy, P = 0.57; 6.7 Gy, P = 0.15; 7.1 Gy, P = 0.39, data 

not shown).
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FIG. 2. 
Subcutaneous wounding enhances 30-day survival of female C57BL/6 mice over a wide 

range of doses. Female C57Bl/6 mice received a subcutaneous cut approximately 20 min 

postirradiation with X rays. Data shown are from 2–5 independent experiments in which 

mice received a 3-mm incision, with 10–17 mice irradiated per experimental group. Error 

bars represent the standard error of the mean (SEM) from mice across all experiments. Day 

30 survival between the sham-cut and cut groups within each dose was compared using the 

Mantel-Haenszel method [since data sets consisted of dichotomous data (e.g., mice would 

either die or survive)] and was found to be significant at all 3 doses; LD30 P < 0.0001, LD60 

P = 0.0001, LD90 P = 0.0010. Numbers to the right of the 30-day survival data points 

indicate the fraction of mice surviving 30 days postirradiation for that particular treatment 

group.
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FIG. 3. 
Protective wounding results in decreased 30-day mortality of female C57BL/6 mice over a 

range of radiation doses. Mortality Curves are shown for sham-cut mice or mice that 

received a subcutaneous incision (3, 6 or 12 mm in length) within 20 min postirradiation 

with various doses of X rays. Groups consisted of 10–21 mice per experimental group and 

experiments were repeated 2–5 times. Using the Mantel-Haenzel method on 30-day survival 

data, a significant difference between sham cut and cut groups was found at all radiation 

doses except 6.0 Gy, P = 0.15. For 6.2 Gy, P < 0.0001; 6.5 Gy, P = 0.0219; 6.7 Gy, P = 

0.0199; 6.8 Gy, P < 0.0001, 7.1 Gy, P = 0.0017.
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FIG. 4. 
Subcutaneous wounding enhances 30-day survival of male C57BL/6 mice. Mice either 

received a sham cut, or a 3-mm SC incision approximately 20 min postirradiation with 6.5 

Gy of X rays. Analyzing the 30-day surviving fraction using the Mantel-Hanenzel method 

shows a significant difference between cut and sham-cut mice; P = 0.0134. Experimental 

groups consisted of 13–18 mice in 2 independent experiments. Error bars represent SEM 

from mice across both experiments.
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FIG. 5. 
Recovery of red blood cells (RBC), hemoglobin and platelets was enhanced in C57BL/6 

female mice receiving a subcutaneous cut within 20 min after exposure to various doses of X 

rays (panel A = 6.2 Gy; panel B = 6.5 Gy; panel C = 6.7 Gy). Experiments were performed 

2–4 times, with 2–3 mice bled per time point postirradiation, per experiment. Thus, from all 

experiments involved, each datum point represents 4–16 sham-cut or cut mice; baseline 

CBCs were obtained from both the sham-cut and cut mice, leading to n = 16, instead of n = 

8. The 6.2 and 6.7 Gy cut data represent pooled data from mice that received 3 and 6 mm, or 
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3-, 6- and 12-mm incisions, respectively; we elected to pool these data since we had 

previously determined that length of the cut did not significantly alter 30-day all-cause 

mortality. Blood cell counts obtained during the recovery period (days 13–23), were 

analyzed by two-tail t tests and two-way ANOVA. Asteriks (*) indicate where P < 0.05 in 

the two-tail t test between the sham-cut and cut treatment group datum points. Plus signs (+) 

indicate where P < 0.07. Two-way ANOVA indicated P < 0.05 for treatment (sham cut vs. 

cut) for all three types of blood measurements, for all 3 radiation doses. Additionally, the 

interaction between time and treatment was significant (P < 0.05) for 6.2 and 6.5 Gy in RBC 

and hemoglobin, and for 6.7 Gy for all 3 types of blood measurements.
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FIG. 6. 
A subcutaneous incision cannot mitigate the lethal effects of radiation when administered 24 

h postirradiation. Mice were irradiated with a dose approximating the LD70/30 (7.1 Gy) for 

that series of experiments (in which mice were anesthetized twice) and were returned to their 

cages for 24 h, after which a 6-mm subcutaneous incision was made. Using the Mantel-

Haenzel method on 30-day surviving fractions data, no significant difference between sham-

cut and 6-mm cut groups after irradiation was found (P = 0.17).
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FIG. 7. 
Effects of protective wounding on radiation-induced plasma cytokine production in female 

mice. Mice were exposed to either 0 or 6.7 Gy and either received a 3-mm subcutaneous cut 

15–20 min postirradiation or received a sham-cut. On days –1, 1, 2 and 6 postirradiation, 

peripheral blood was obtained and analyzed for plasma cytokines. On day 2 postirradiation, 

the observed concentration of G-CSF and IL-9 was significantly higher in the irradiated 3-

mm cut mice than in the irradiated sham-cut mice; P = 0.0271 and 0.0274, respectively. 

Additionally, at day 2, the observed concentration of G-CSF was significantly higher in the 
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irradiated 3-mm cut mice than in the nonirradiated sham-cut mice (P = 0.002). On day 6 

postirradiation, significant differences between irradiated 3-mm cut mice and other groups 

were seen for observed concentrations of MCP-1 and IL-13. Irradiated mice that received a 

3-mm cut showed higher MCP-1 levels than the nonirradiated sham-cut mice (P = 0.0006), 

the nonirradiated cut mice (P = 0.0005), and the irradiated sham-cut mice (P = 0.0241). 

Irradiated mice that received a 3-mm cut had a lower observed concentration of IL-13 than 

nonirradiated (NI) cut mice and irradiated sham-cut mice; P = 0.0009 and P = 0.0489, 

respectively. The observed concentration of keritinocyte chemoattractant (KC) in mice 

receiving a 3-mm cut after irradiation was significantly higher than in the nonirradiated 

sham-cut mice (P = 0.0125) and showed a trend towards significance compared to the 

irradiated sham-cut mice (P = 0.0660). All P values were determined using two-way t tests 

with unequal variance. Data from serum samples from 3 experiments were averaged (4–8 

mice per group). Asteriks (*) indicate where P < 0.05 in the two-tail t test between that 

particular group and the cut group. Plus signs (+) indicate where P < 0.07 in the two-tail t 
test between that particular group and the cut group.
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