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Abstract

A challenge facing nearly all studies in the psychological sciences is how to best combine multiple 

items into a valid and reliable score to be used in subsequent modelling. The most ubiquitous 

method is to compute a mean of items, but more contemporary approaches use various forms of 

latent score estimation. Regardless of approach, outside of large-scale testing applications, scoring 

models rarely include background characteristics to improve score quality. The current paper used 

a Monte Carlo simulation design to study score quality for different psychometric models that did 

and did not include covariates across levels of sample size, number of items, and degree of 

measurement invariance. The inclusion of covariates improved score quality for nearly all design 

factors, and in no case did the covariates degrade score quality relative to not considering the 

influences at all. Results suggest that the inclusion of observed covariates can improve factor score 

estimation.
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Measurement is arguably the single most important component of any empirical research 

endeavor and is a critical component in establishing construct validity (e.g., Shadish, Cook 

& Campbell, 2002). Thorndike (1918) famously wrote “Whatever exists at all, exists in 

some amount. To know it thoroughly involves knowing its quantity as well as its quality” 

(page 16). Later, Stevens (1946) proposed what might remain the most concise definition of 

measurement to date: "the assignment of numerals to objects or events according to rules" 

(page 677). What is most vexing about measurement in psychology and many allied fields, 

however, is that many of the constructs of critical interest are not directly observable. The 

difficulty is that we must infer the existence of what we did not directly observe as a 

principled function of what we did (Spearman, 1904). The field of psychometrics has 

embraced this challenge for more than a century, and we continue to make advances likely 

not even imagined by Thorndike and Stevens so long ago.
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Contemporary psychometrics is dominated by two broad modeling approaches, item 

response theory (IRT; e.g., Thissen & Wainer, 2001) and factor analysis (FA, which may be 

further subdivided into exploratory and confirmatory; e.g., Cudeck & MacCallum, 2007). As 

is widely known, there are many points of similarity between these two approaches (see, 

e.g., Reise, Widaman, & Pugh, 1993; Takane & de Leeuw, 1987; Wirth & Edwards, 2007), 

making it increasingly difficult to differentiate what “is” or “is not” an IRT or an FA model. 

Both are rooted in the notion that the existence of one or more unobserved latent factors can 

be inferred through the associations that exist among a set of observed items. For instance, 

item responses to questions about sadness, hopelessness, guilt, and social withdrawal are 

inter-related to the extent that they all reflect latent depression.

There are three closely related uses of IRT and FA models in applied social and behavioral 

science research. First, IRT and FA models are used to better understand the psychometric 
structure underlying a set of items. For example, we might want to identify the optimal 

number of latent factors needed to best reproduce the characteristics of an observed sample 

of respondents to a given set of items. Second, IRT or FA procedures are used to construct 
tests that meet some targeted criterion in terms of reliability, validity, or test length (e.g., 

Thissen & Wainer, 2001). In a typical application, IRT or FA models are fitted to a large 

pool of test items, and a subset of items are eliminated or retained following some a priori 
criteria (e.g., based on simple structure, item discrimination, item communality, etc.). The 

third and often most ubiquitous goal relies directly on the first two and involves using the 

final IRT or FA model structure to obtain maximally valid and reliable scale scores to be 

used in subsequent statistical or graphical analysis. Such scores are sometimes referred to as 

factor score estimates, or more simply factor scores (e.g., Estabrook & Neale, 2013; Grice, 

2001-a; Thissen & Wainer, 2001). Here we focus specifically on the third goal of scoring. In 

particular, because estimated scores are by definition imperfect, we wish to obtain the most 

accurate scores for a sample of individuals who differ on important between-person 

background characteristics such as gender, diagnosis, or age.

Given the imperfection of factor scores, some methodologists have argued that they should 

be avoided entirely, for instance by utilizing a structural equation model to directly model 

the relations between latent factors (Bollen, 1989, pp.305-306). Although we are highly 

sympathetic to this perspective (and even teach it in our classes), there remain a number of 

important applications in which factor score estimation is either beneficial or even necessary. 

For example, given a large number of repeated measures (e.g., annual assessments spanning 

three decades) it may be intractable to specify latent factors at each time point in a single 

large model, making factor scores an attractive alternative (e.g., Curran, McGinley, Bauer, 

Hussong, Burns, Chassin, Sher, & Zucker, 2014). Further, the simultaneous estimation of a 

structural and measurement model allows for the possibility of measurement being affected 

by misspecification of the structural model (Kumar & Dillon, 1987) and it might be useful 

for researchers to "quarantine" misspecification by estimating a factor score independent of 

structural relationships (Hoshino & Bentler, 2013). Factor scores may also be used not as 

independent or dependent variables in a standard structural model, but as ancillary variables 

to control for bias in subsequent analyses such as in propensity score analysis (Raykov, 

2012; Rodriguez de Gil et al., 2015). Finally, factor scores are also extremely useful for 

integrative data analysis (IDA; Curran & Hussong, 2009) in which data are pooled across 
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multiple independent studies that each measure the same underlying constructs in different 

ways (e.g., Curran et al. 2014; Rose, Dierker, Hedeker & Mermelstein, 2013; Witkiewitz, 

Hallgren, O’Sickey, Roos & Maisto, 2016). Taken together, there remain many widely used 

applications in which factor score estimation is highly relevant and in need of ongoing study 

and refinement.

An area of research in particular need of expansion is the importance of incorporating 

information about exogenous background variables, such as gender or age, when generating 

factor score estimates. The rather large literature on score estimation has primarily focused 

on the relative strengths and weaknesses of scoring approaches motivated by different 

traditions or goals. For example, the classical test theory model gives rise to sum, mean, or 

proportion score composites (e.g., Lord & Novick, 1968; Novick, 1966); see DeVellis 

(2006) for a review. The factor analytic tradition gives rise to a variety of estimation methods 

that vary primarily as a function of the target minimization or maximization criterion (e.g., 

Alwin, 1973; Bartlett, 1937; Harman, 1976; McDonald, 1981; Thurstone, 1935, 1947; 

Tucker, 1971); see Grice (2001-a) for a review. Finally, different scoring procedures have 

been developed within the IRT approach, including expected a posteriori (EAP) and modal a 
posteriori (MAP) scores (Bock & Aitken, 1981; Bock & Mislevy, 1982); see Thissen and 

Wainer (2001) for a review. Despite the different theoretical perspectives and practical goals 

underlying these different scoring methods, the scores they produce tend to be quite highly 

correlated (e.g., Cappelleri, Lundy & Hays, 2014; Flora, Curran, Hussong & Edwards, 2008; 

Fava & Velicer, 1992; Grice, 2001-b; Velicer, 1977). The vast majority of existing work on 

factor score estimation, however, has not considered the potential importance of including 

information on background characteristics.1 Instead, it is assumed that the same scoring 

algorithm applies for all individuals, boys and girls, alcoholic and non-alcoholic, young and 

old, or any other individual difference characteristic.

Momentarily setting scoring aside, an equally large literature exists on evaluating whether 

background characteristics affect the measurement model itself (e.g., Kim & Yoon, 2011; 

Raju, Laffitte, & Byrne, 2002; Reise et al., 1993). We can distinguish between two kinds of 

effects. First, background characteristics may influence the distribution of a latent factor, for 

instance, impacting its mean and/or variance. Second, background characteristics may alter 

the process by which differences on the latent factor produce differences in item responses, 

as represented by the item parameters (e.g., intercepts or factor loadings in an FA, or 

difficulty and discrimination parameters in an IRT model). Within the IRT tradition, these 

two kinds of effects are commonly referred to, respectively, as impact and differential item 
functioning (DIF; e.g., Holland & Wainer, 1993; Mellenbergh, 1989; Thissen, Steinberg, & 

Wainer, 1988; 1993), whereas within the FA tradition, the equivalence of item parameters is 

referred to as measurement invariance (MI; e.g., Cheung & Rensvold, 1999; Meredith, 1964; 

1993; Millsap & Everson, 2993; Millsap & Meredith, 2007; Millsap & Yun-Tein, 2004). 

Much research has been conducted to identify the best models, tests, and procedures for 

1An important exception to this is clearly evident in the field of plausible values (e.g., Mislevy, 1991; Mislevy, Beaton, Kaplan & 
Sheehan, 1992). Although exogenous covariates are commonly used in large-scale testing applications such as NAEP (e.g., Mislevy, 
Johnson, & Muraki, 1992), these applications are characterized by extremely large sample sizes and planned missing designs, neither 
of which characterizes the vast majority of typical scoring applications within the social sciences.
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evaluating DIF and MI (e.g., Chalmers, Counsell & Flora, 2016; Holland & Wainer, 2012; 

Thissen et al., 1988), yet comparatively little work has directly addressed the question of 

how best to incorporate impact and DIF when generating factor scores in typical research 

applications within the social and behavioral sciences.

We are thus in a curious situation in which a great deal of careful research has been 

conducted on the topics of scoring and of measurement invariance, but with little 

consideration of their intersection. To better understand these issues, our goal here is to 

present a systematic empirical examination of the psychometric properties of factor score 

estimates obtained with and without the inclusion of information on background 

characteristics. We make use of the moderated nonlinear factor analysis (MNLFA) model, 

which generalizes other commonly used psychometric models to allow for impact and DIF 

as a function of multiple nominal and continuous background characteristics (Bauer, in 

press; Bauer & Hussong, 2009; Curran et al., 2014). Using the MNLFA model, we conduct a 

comprehensive computer simulation study in which we specify varying levels of impact and 

DIF that we believe to be reflective of applied psychological research. We systematically 

vary sample size, number of items, magnitude of measurement invariance, and whether/how 

background characteristics are included in the scoring model, and we then compare the 

estimated factor scores to the underlying true scores.

Our design is based upon the following hypotheses. First, drawing on both quantitative 

theory and prior empirical findings, we expect that score recovery will improve with greater 

available information, particularly in terms of larger item sets and larger sample sizes. 

Second, we expect that score recovery will improve when impact and DIF which exists in 

the population is also included in the scoring model. Third, we expect that score recovery 

will improve when background characteristics have stronger effects on the conditional mean 

of the latent factor (i.e., impact) thus leading to greater factor determinacy. Finally, we 

expect interactive effects such that optimal score recovery will be obtained with large item 

sets, large sample size, and small impact and DIF, and the weakest score recovery will occur 

when impact and DIF exist but are omitted from the scoring model. The motivating goal of 

our study is to systematically test these hypothesis to better understand the psychometric 

properties of factor scores in a variety of conditions commonly encountered in behavioral 

science research.

Methods

Model Definition

We generated data to be consistent with a one factor, multiple indicator, moderated nonlinear 

factor analysis (MNLFA; Bauer, in press; Bauer & Hussong, 2009; Curran et al., 2014). The 

MNLFA is a general framework for estimating a broad class of linear and nonlinear factor 

models that allows for the moderation of multiple model parameters as a function of 

multiple exogenous background variables. This approach is similar to the location-scale 

model for mixed-effects modeling (e.g., Hedeker, Mermelstein, & Demirtas, 2012), but the 

MNLFA is generalized to the full structural equation model. Importantly, the moderating 

effects allow for complex patterns of impact and DIF in ways that are not possible using 

traditional two-group models or multiple-indicator multiple-cause (MIMIC) models (Bauer, 
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in press). The MNLFA can also be extended to multiple factors (Bauer et al., 2013) as well 

as to a mixture of linear or nonlinear link functions (Bauer & Hussong 2009). Here we 

studied a specific form of the MNLFA defined as a single latent factor underlying a set of 

binary items and three exogenous background variables with varying levels of impact and 

DIF. We focus our model definition on the specific conditions under study and refer the 

reader to Bauer (in press), Bauer and Hussong (2009) and Curran et al. (2014) for additional 

details about the general form of the MNLFA and its relations to other commonly used 

psychometric models.

Measurement model—We defined a single latent factor ηj for j = 1,2,…,J individuals 

assessed on i = 1,2,…,I binary items denoted yij. Each binary item yij follows a Bernoulli 

distribution with probability μij defined by the underlying factor model as

(1)

where νij and λij represent the intercept and factor loading for item i and person j and 

ηj~(αj,ψj).

Background characteristics—The MNLFA framework allows for a subset of model 

parameters to vary as a function of individual characteristics. To empirically evaluate the 

improvement in score accuracy when incorporating background characteristics, we drew 

upon recent IDA applications to inform data generation for three exogenous variables, as 

IDA is one of the few research contexts within which multiple background variables have 

been considered simultaneously (although all of our results generalize to non-IDA 

applications as well). The first covariate was a binary variable denoted study meant to 

represent an identifier for data that were obtained from one of two independent studies; this 

was effect coded as −1 and +1 with equal proportions of subjects within each group. Gender 

was drawn from a Bernoulli distribution with a mean of .35 for study one and .65 for study 

two. Age was drawn from a binomial distribution with seven trials and a probability of .70 

for study one and from a binomial distribution with six trials and a probability of .50 in 

study two, with constants added to result in integer values for years of age from 10 to 17 in 

study one and from 9 to 15 in study two. To facilitate model specification and interpretation, 

we then effect coded gender as −1 and +1 and rescaled age to range between −4 and +4 with 

a mid-point of zero. The exogenous predictors thus had non-zero covariances with one 

another in the pooled aggregate sample: the correlation between gender and study was .30, 

between age and study was −.51, and between gender and age was −.15.

Parameter moderation—To produce impact, we defined specific moderating relations 

between the three covariates and the mean and variance of the latent factor. Drawing on the 

notation of Bauer (in press), this is given as:

(2)
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and

(3)

respectively. We selected these terms as reflective of potential real-world applications and to 

introduce deterministic shifts in the factor mean and variance as a function of the observed 

covariates. The intercept terms (i.e., α0 and ψ0) reflect the factor mean and variance when 

all predictors equal zero, and the coefficients reflect the degree to which the mean and 

variance are shifted by changes in the values of the covariates. In the presence of covariates, 

the model-implied latent mean and variance thus vary as a function of the values of the 

covariates unique to each individual j (e.g., αj and ψj). In the absence of covariates (as 

would occur in single-group CFA or IRT models) αj = α0 and ψj = ψ0, reflecting that the 

latent mean and variance are constant across all individuals.

Covariates can also moderate item-level parameters to produce DIF. For the current study, 

the item intercept and item loading were defined as

(4)

and

(5)

respectively. As with the factor mean and variance, we selected these terms as reflective of 

potential real-world IDA applications (that again directly generalize to non-IDA 

applications). As before, these equations introduce systematic shifts in the values of the 

item-specific intercepts and factor loadings (or slopes) as a function of the unique 

combination of the three covariates for a given individual.

Experimental Design Factors

Our simulation was structured around five design factors that were systematically 

manipulated during data generation and model fitting. These were sample size (3 levels); 

number of items (3 levels); magnitude of impact (3 levels); magnitude of DIF (2 levels); and 

proportion of items with DIF (2 levels). The full factorial design included 108 unique cells, 

within each of which we generated 500 independent replications.

Sample Size—We studied three total sample sizes of 500, 1000, and 2000, each of which 

was split evenly between the two “studies”. We chose these values to be consistent with a 

typical IDA application (e.g., Hussong et al., 2008; Rose et al., 2013; Witkiewitz et al., 

2016).

Number of items—We studied three item set sizes: 6, 12, and 24. These values were 

selected to reflect a range of potential applications spanning small to large.
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Magnitude of impact—We studied three levels of impact. Because impact reflects the 

joint contribution of the set of covariates on both the latent mean and variance, we defined 

impact in terms of the ratio of mean to variance moderation: small mean/large variance 

impact (SMLV), medium mean/medium variance impact (MMMV), and large mean/small 

variance impact (LMSV). The covariate effects on the mean of eta were selected to result in 

multiple r-squared values for eta equal to .05, .15, and .35, respectively. Due to the 

nonlinearity of the relation between the covariates and the conditional variance of eta (e.g., 

Equation 3), selection of covariate effects on the variance of eta was more complex. We 

chose values of covariate coefficients based on the interquartile range (IQR) of the 

conditional latent standard deviations such that the resulting IQR values were .20, .50, and .

80, respectively. The final set of covariate coefficients are reflective of those that might 

realistically be encountered in practice and are presented in Table 1.

Magnitude of DIF—We studied two levels of DIF: small and large. Like impact, we 

defined DIF as the joint covariate moderation of both item loading and item intercept. For 

the subset of items that were not characterized by DIF (i.e., the invariant items), we selected 

population values for the item parameters (intercepts and loadings) that reflected those we 

obtained in our prior IDA applications (e.g., Curran et al., 2007; Curran et al., 2014; 

Hussong et al., 2008). These values resulted in endorsement rates ranging between 

approximately .20 to .40 and item communalities ranging between approximately .25 and .

65.2 For the remaining subset of items characterized by DIF (i.e., the non-invariant items), 

we selected values based on a generalization of the weighted area between curves index 

(wABC: Hansen, Cai, Stucky, Tucker, Shadel & Edelen, 2014; Edelen, Stucky, & Chandra, 

2013). We selected specific values of the covariate coefficients to result in wABC values 

approximately equal to .15 for our small DIF condition and .30 for our large DIF condition 

(holding other covariates constant). We introduced both positive and negative covariate 

effects on the item parameters to produce DIF effects that were either consistent or 

inconsistent in their direction and to control endorsement rates. Specifically, age and gender 
exerted both positive and negative effects on item parameters whereas study only affected 

item parameters positively. All population item and DIF parameters are presented in Table 2.

Proportion DIF—We studied two proportions of items with DIF: either one-third or two-

thirds of each item set (6, 12, or 24 items) were characterized by DIF. This was again 

informed by our prior empirical findings using IDA in which it is common to identify a 

majority of items having some form of DIF (Curran et al., 2007; Curran et al., 2014; 

Hussong et al., 2008).

Data Generation

Data were generated using the SAS data system (SAS Institute, 2013) following four 

sequential steps. First, the covariates age and gender were randomly sampled within one of 

two equally-sized groups (representing study) as described above. Second, for each 

2Item communalities were computed as follows: If, for each binary item, there is a continuous latent response which produces a binary 
observed value of zero / one if it falls below / above a fixed threshold, then the communality value represents the proportion of 
variance in the continuous latent response due to the common latent factor. These communality values are thus directly comparable to 
those commonly reported for linear factor analyses.
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individual observation a true factor score was randomly sampled from a univariate normal 

distribution with conditional mean and variance defined by the unique set of covariates that 

were drawn for that observation (i.e., Equations 3 and 4 above). Third, a logit was computed 

as a function of the true factor score and the item-specific factor loading and intercept (i.e., 

Equation 1). Finally, binary responses were obtained via random draws from a Bernoulli 

distribution with the implied probability of endorsement (i.e., Equation 2). A conceptual 

path diagram for the population-generating model for 12 items is presented in Figure 1. This 

sequence resulted in 500 separate data files for each of 108 unique cells of the design, and it 

was to these data files that we fitted four distinct scoring models.

Scoring Models

Factor scores were estimated using four different model structures fitted to each individual 

replication across all cells of the design; that is, each of four models were fitted to the same 
sample data. The first scoring model was a simple mean of the set of items (i.e., proportion 

scores, indicating the proportion of items that were endorsed), and the remaining three 

models involved alternative specifications of the MNLFA that varied in how they 

incorporated information on the background covariates.

Model 1: Proportion Score—The first scoring model is not a psychometric model in the 

strict sense of the term, but is the simple unweighted mean of the set of items for each 

replication. Given the items were coded 0 and 1, this score represents the proportion of items 

endorsed as 1. This score was used to reflect how multiple-item scales are often scored in 

applied research settings.

Model 2: Unconditional MNLFA—The second scoring model was an unconditional one-

factor nonlinear confirmatory factor analysis; this parameterization is analytically equivalent 

to a standard two parameter logistic (2PL) item response theory model (e.g., Takane & de 

Leeuw, 1987). More specifically, the set of binary items (6, 12, or 24) was used to define a 

single latent factor and no background characteristics were considered. Because both impact 

and DIF effects existed in the population generating model but are omitted in the scoring 

model, this unconditional model is misspecified in terms of both impact and DIF.

Model 3: Impact-only MNLFA—The third scoring model expands Model 2 with the 

inclusion of the properly specified influence of the three background characteristics on the 

latent mean and variance, but continues to omit DIF effects on the item-level parameters. 

This model is thus properly specified in terms of impact but is misspecified in terms of DIF.

Model 4: Impact+DIF MNLFA—The fourth and final scoring model expands Model 3 

with the inclusion of the properly specified influence of the three background characteristics 

on the latent mean and variance, and on the item-level parameters. This model is thus 

properly specified in terms of both impact and DIF.

Model Estimation

The proportion scores were computed arithmetically and the three MNLFA models were 

estimated using maximum likelihood with numerical integration (adaptive Gaussian 
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quadrature with 15 quadrature points) as programmed in Mplus (Version 7.2; Muthén & 

Muthén, 1998-2012). The latent factor was scaled to have a marginal mean of zero and 

marginal variance of one3, and each model used default start values and convergence 

criteria. Models that either failed to converge or converged and resulted in improper 

solutions were omitted (although these accounted for less than 1% of all estimated models; 

see results for further detail). For scoring models 2, 3, and 4, factor scores were estimated as 

expected a posteriori scores (EAPs), as originally described in Bock and Aitkin (1981).

Criterion Variables

Given our focus on score fidelity, we examined two criterion variables: score correlations 

and root mean squared error.4

Score correlations—We computed standard bivariate linear correlations between each of 

the four sets of score estimates and the underlying true factor scores for each replication; this 

can be thought of as a direct estimate of the reliability index (Estabrook & Neale, 2013). We 

also computed Fisher’s z-transformations of these correlations to be used as criterion 

measures in subsequent meta-models. Larger correlations reflect greater accuracy in 

estimated score recovery relative to the underlying true scores.

Root mean squared error (RMSE)—In addition to the correlations, for the three 

MNLFA-based score estimates we computed the associated RMSE. This was not computed 

for the proportion score as this is defined by a different scale than the underlying true score 

and the two cannot be directly compared. The RMSE was computed in the usual way as the 

root of the mean of the squared deviations between the estimated and true scores. Larger 

values of RMSE reflect greater variability in score estimates relative to the underlying true 

score.

Meta-Models

We estimated four separate general linear models (GLMs) using PROC GLM in SAS 

Version 9.4 (2013) to examine mean differences in the (z-transformed) correlations and the 

RMSE as a function of varying levels of our five design factors, one GLM for each obtained 

score. We estimated each model with all main effects (sample size, number of items, 

magnitude of impact, magnitude of DIF, and proportion of DIF) and all two-, three-, four-, 

and five-way interactions. Given the excessive power associated with the high number of 

replications (exceeding 50,000 replications for each outcome), we identified any design 

effect as potentially meaningful if the semi-partial eta-squared (denoted ) term 

conservatively exceeded 1%. Finally, we used graphical representations to explicate 

meaningful effects identified in the GLMs, and we provide fully tabled results in the online 

appendix.

3This is the typical method for setting the metric of the latent factor via standardization, but here we scaled the mean and variance 
conditioned on the covariates; see Bauer (in press) for further details.
4To maintain scope and focus, we do not present the vast corpus of results related to parameter recovery within the MNLFA scoring 
models themselves (e.g., factor loadings, covariate effects, etc.). Importantly, the sampling distributions of parameter estimates from 
the scoring models are precisely what would be expected from theory (e.g., higher precision with larger sample size, greater bias with 
model misspecification).
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Results

Model Convergence

We fit a total of 162,000 MNLFA models across all replications and all conditions (three 

scoring models fit to 500 replications within each of 108 cells). We retained properly 

converged solutions for subsequent analyses, although the omitted models represented only a 

small fraction of the total estimated. More specifically, a total of 107 of the 162,000 models 

failed to converge; the rate of successful model convergence thus exceeded 99.99%. The 

models that failed to converge were most evident at the extreme conditions (e.g., small 

sample size, small numbers of items, large DIF, large proportion of items with DIF). The 

cell-specific non-convergence rates ranged from less than 1% to 3.8% with the highest rate 

representing 19 of 500 models failing to converge. Given these very low rates, we omitted 

non-converged solutions without replacement.

Meta-Models Fitted to Z-transformed Correlations

As expected, the four GLMs resulted in highly significant omnibus test statistics with 

associated eta-squared values ranging from .95 to .97 (see online Appendix A.1 for complete 

results). We next identified potentially meaningful specific effects as those that accounted 

for at least 1% of the variance in the criterion as measured by  as described above. To 

begin, none of the main effects of sample size (500 vs. 1000 vs. 2000) nor any interaction 

term involving sample size even approached the 1% effect size criterion across all models 

and all outcomes, indicating that the mean correlations did not vary as a function of sample 

size. We will thus focus the remainder of our discussion on results from the smallest sample 

size of 500. This greatly reduces the number of cells to consider and there is no loss of 

generality given that the findings are identical across the three sample sizes.5

Correlation between the proportion score and the true score—We began by 

examining the correlations between the true scores and the scores obtained by computing a 

simple proportion of the set of endorsed binary items. Average correlations between the 

proportion scores and the underlying true score ranged from a minimum of .75 to a 

maximum of .90 with a median of .84 across all 36 cells (recall we are focusing only on 

N=500, although these values are virtually identical for N=1000 and N=2000; see online 

Appendix A.2 for complete results). Two design factors exceeded the 1% effect size 

criterion in the GLM: the number of items ( ) and the magnitude of impact ( ). 

Table 3 presents the cell-specific mean correlations across each condition, and this reflects 

that the magnitude of the correlations increased with increasing number of items and 

increased with increasing impact (where “increasing impact” reflects higher mean-to-

variance covariate moderating effects). We present these effects in boxplots in Figure 2.

Pooling over all other design factors, the mean correlation between the proportion score and 

true score was .78 (sd=.023) for six items, .84 (sd =.020) for 12 items, and .88 (sd=.018) for 

24 items. To better explicate the effect of impact, we pooled over the proportion of items 

5We observed the expected reduction in variability in which larger sample size was associated with lower within-cell variance, but 
there were no difference in the cell-specific means as a function of sample size.
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with DIF and the magnitude of DIF within just the 12-item condition: the mean correlation 

for small mean/large variance condition was .82 (SD = .018), for medium mean/medium 

variance condition was .85 (SD = .013), and for large mean/small variance condition was .85 

(SD = .011). Nearly identical patterns of findings held for 6 and 24 items (as is further 

reflected in the lack of any higher-order interactions in the GLMs). Consistent with the small 

effect size, although the magnitude of the correlations increased with increasing mean-to-

variance impact effects, these differences were small in magnitude.

In sum, the mean correlation between the proportion scores and the true scores ranged from .

75 to .90, and the magnitude of the correlations substantially increased with increasing 

number of items and modestly increased with larger mean-to-variance impact.

Correlation between the unconditional MNLFA score and the true score—We 

next examined the correlations between the true scores and the factor score estimates 

obtained from an unconditional MNLFA model that improperly excluded all effects 

associated with the three background characteristics (i.e., a standard 2PL IRT model). At a 

sample size of 500, the average correlations ranged from .75 to .92 with a median of .86. 

The pattern of GLM results were quite similar to those found for the proportion scores. 

Namely, two design factors exceeded the 1% effect size criterion: the number of items 

( ) and the magnitude of impact ( ). Examination of cell-specific means (see 

Table 3) reflects that the magnitude of the correlations increased with increasing number of 

items and increased with increasing magnitude of mean-to-variance impact; the boxplots are 

presented in Figure 3.

Pooling over all of the design factors within N=500, the average correlation between the 

unconditional factor score and the true scores was .78 (sd=.026) for six items, .85 (sd=.023) 

for 12 items, and .90 (sd=.019) for 24 items. As before, the magnitude of the correlations 

increased as a function of increasing magnitude of mean-to-variance impact. For example, 

pooling over magnitude of DIF and proportion of items with DIF within the 12-item 

condition, the average correlation was .83 (sd=.018) for low impact, .86 (sd=.013) for 

medium impact, and .87 (sd=.011) for high impact. These effects closely reflect those found 

with the proportion score, but the modest effect of impact is somewhat more pronounced for 

the unconditional factor score estimates.

In sum, the correlations between the (impact and DIF misspecified) unconditional factor 

scores and the true scores ranged from .75 and .92, and the magnitude of the correlations 

substantially increased with increasing number of items and modestly increased with 

increasing magnitude of mean-to-variance impact.

Correlation between the impact-only factor score and the true score—We next 

examined the correlations between the true scores and the estimated scores from an MNLFA 

model that included the three background characteristics but limited these effects to the 

mean and variance of the latent factor. These scoring models are thus partially misspecified 
in that within the scoring model impact effects are properly specified but DIF effects are not 

(indeed, DIF effects are wholly omitted). The average correlations ranged from .77 to .93 

with a median of .87. As expected, more complex results were identified in the GLMs 
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relative to the prior two scoring models; cell means are presented in Table 3 and 

corresponding boxplots in Figure 4. Similar to the prior models, there was an effect of the 

number of items ( ) and magnitude of impact ( ), but unlike the prior models 

there were additional effects associated with the magnitude of DIF ( ), the proportion 

of items with DIF ( ), and their interaction ( ).

As before, the magnitude of the correlations between the estimated and true scores increased 

with increasing numbers of items: pooling over all other design factors, the average 

correlation was .81 (sd=.030) for six items, .87 (sd=.021) for 12 items, and .91 (sd=.018) for 

24 items. However, these correlations were differentially affected by other design factors. 

Also as before, increasing mean-to-variance impact was associated with increasing 

correlation magnitude. However, as was not found previously, increasing levels of DIF 

(small vs. large) were associated with decreasing mean correlations, and this effect was 

particularly salient for larger proportions of items with DIF (one-third versus two-thirds). 

For example, for six items at the smallest level of mean-to-variance impact, the average 

correlation was .82 (sd=.018) for small DIF/low proportion of items, .81 (sd=.021) for small 

DIF/ high proportion of items, .82 (sd=.019) for large DIF/low proportion of items, and .77 

(sd=.027) for large DIF/high proportion of items. Similar patterns were found across all 

other design factors. As we describe in detail later, this conditional pattern of effects is due 

to the improper omission of DIF when DIF truly exists; thus the omission is logically more 

pronounced at higher levels of magnitude of DIF and when a larger number of items are 

characterized by DIF.

In sum, the mean correlation between the (DIF misspecified) impact-only MNLFA model 

scores and the underlying true scores ranged from .77 to .93. The magnitude of the 

correlations increased with increasing numbers of items, increased with increasing 

magnitude of mean-to-variance impact, and decreased with increasing magnitude of DIF, the 

latter effect being particularly salient when a higher proportion of items was characterized 

by DIF.

Correlation between the impact+DIF MNLFA score and the true score—Finally, 

we examined the correlations between the true scores and the estimated factor scores from 

an MNLFA that included both impact and DIF effects. These scores were thus obtained from 

a properly specified model in that all impact and DIF effects that existed in the population 

were estimated within the scoring model. The average correlations ranged from .81 to .93 

with a median of .88. Two design factors exceeded the 1% effect size criterion in the GLM: 

the number of items ( ) and the magnitude of impact ( ); cell means are 

presented in Table 3 and the corresponding boxplots in Figure 5.

Similar to the proportion score and unconditional MNLFA scoring model, the magnitude of 

the correlations markedly increased with increasing number of items and modestly increased 

with increasing mean-to-variance influence. For example, pooling across all other design 

factors, the average correlation was .82 (sd=.021) for six items, .88 (sd=.013) for 12 items, 

and .93 (sd= .008) for 24 items. As before, within item set, larger values of impact were 

associated with larger correlations, but this effect was small in magnitude. For example, for 
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the 12-item condition the correlations between estimated and true scores varied by 

approximately .01 across all three levels of mean-to-variance impact.

In sum, the correlation between the (fully properly specified) impact+DIF MNLFA model 

and the true scores ranged from .81 and .93, and the magnitude of the correlations 

substantially increased with increasing number of items and only slightly increased with 

increasing magnitude of impact.

Comparing Estimated Scores Across Scoring Model

Our discussion up to this point has focused entirely on the effects of the design factors on 

score recovery within individual scoring models. However, we can also compare score 

recovery across scoring models. Such a comparison provides a direct examination of relative 

score recovery when holding all other design factors constant. We again focus our discussion 

on the smallest sample size condition of N=500 given the nearly identical pattern of results 

obtained at the two larger sample sizes.

When considering just the smallest sample size of 500, our experimental design consists of 

36 unique cells (three levels of number of items, three levels of impact, two levels of DIF, 

and two levels of proportion of items with DIF). Given that we fit four separate scoring 

models to the simulated data within each cell, we have a total of 144 mean bivariate 

correlations computed on the 500 cell-specific replications. Of these 144 correlations, the 

lowest mean correlation between the true and estimated scores was .75 for the proportion 

score in the condition defined by the smallest mean-to-variance impact, 6 items, and 66% of 

items defined by large DIF. The highest correlation between the true and estimated scores 

was .93 for the impact+DIF MNLFA score in the condition defined by the largest mean-to-

variance impact, 24 items, and 33% of items defined by small DIF. These values imply 

overlapping variability between true and estimated scores ranging from 56% to 86% across 

the scoring models and experimental conditions. There are thus substantial differences in the 

ability of the four scoring models to recover the underlying true score as a function of 

variations in design characteristics. To better understand these differences, we conclude by 

focusing on all four scoring models within just 24 design cells: we consider four scoring 

methods, three levels of impact, and two levels of DIF holding sample size and number of 

items constant (500 and 12, respectively).

Comparing correlations obtained across various design features, several clear patterns can be 

seen (see Figure 6). First, although the proportion scores often correlate with the true scores 

in the mid-.70 to high-.80 range, these correlations are almost universally lower than any 
comparable score obtained using any form of the MNLFA model, even if the MNLFA model 

is substantially misspecified. Second, although the unconditional MNLFA almost always 

outperforms the proportion score model in terms of score recovery, this same model is itself 

almost always outperformed by the two MNLFA models that include exogenous covariate 

effects. However, this advantage of including covariates is partially mitigated under the 

condition in which the covariates are introduced into the MNLFA but their effects are 

restricted to just impact on the latent factor, particularly when the omitted DIF effects are 

large. In other words, if the covariates moderate DIF effects, and these moderating effects 

are improperly omitted, score quality is degraded. Finally, the fully specified impact+DIF 
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MNLFA produced correlations in the mid-.80 and up to low-.90 range across nearly all 

experimental conditions, well in excess of other scoring model estimates based on the very 

same data.

In sum, although there are minor cell-to-cell variations in mean correlations, the overall 

pattern of findings suggests that optimal score recovery is obtained using the impact+DIF 

MNLFA model followed by the impact-only MNLFA, the unconditional MNLFA, and 

finally the unweighted proportion score.

Root mean-squared error (RMSE)

All of our discussion thus far has focused on score recovery as manifested in estimated-by-

true score correlations. To examine absolute recovery of the true scores, we calculated the 

RMSE for the three variations of the MNLFA model. We did not compute this for the 

proportion score estimates because they do not retain the same scale as the underlying true 

scores. We fit meta-models to the RMSE for score estimates obtained from the unconditional 

model, the impact-only model, and the impact+DIF model just as we did for the (Fisher-z 

transformed) score correlations. These GLMs revealed precisely the same design effect 

influences for the RMSE values as were found for the score correlations. Further, 

examination of the RMSEs as a function of the design factors revealed the same trends as 

were identified with the correlations (although these were in the expected opposite direction; 

e.g., lower RMSE values reflect better score recovery). That is, whereas a higher number of 

items was associated with higher correlations, a higher number of items was associated with 

lower RMSEs, and so on. Given the complete overlap of effects for the RMSE as were found 

for the correlations, we do not present these results in detail; please see online appendix A.3 

for a complete reporting of RMSE effects.

Discussion

Our motivating research question was whether the inclusion of background characteristics 

can improve the quality of factor score estimates. Our results indicate that the answer to this 

question is yes. We used computer simulation methodology to empirically compare four 

methods of factor score estimation and we compared each estimated score with the 

underlying true score. The four methods of score estimation were the traditional unweighted 

proportion score, and factor scores generated from an unconditional model excluding 

covariates, an MNLFA allowing only for impact, and an MNLFA allowing for both impact 

and DIF. We examined score quality in two ways. First, we calculated the correlation 

between each score estimate and the underlying true score; correlations of 1.0 indicate 

perfect recovery, and decreasing values reflected decrements in score quality. Second, we 

calculated the root mean squared error between each score estimate and the underlying true 

score; higher values of RMSE reflect lower accuracy. Because the pattern of results was 

identical for the correlations and the RMSE, we focus our discussion on the former.

Sample Size

We studied three levels of sample size: 500, 1000 and 2000. We found no evidence of any 

influence of sample size on the means of the correlations across any condition for any of the 
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scoring models. Of course there was the expected reduction of variability of the score 

correlations at larger sample sizes, but the cell-specific means were unaffected by variations 

sample size. Because of this, we focused all of our attention on findings from the smallest 

sample size of 500.

Number of Items

We studied a single latent factor defined by three item set sizes: 6, 12, and 24. As expected, 

the strongest effects of all design factors were related to increasing number of items. We 

found marked improvements in score quality associated with increasing numbers of items 

regardless of scoring model. For example, we can consider the mean correlations obtained 

for different numbers of items while holding impact at medium mean/medium variance, DIF 

at small, proportion DIF at one-third, and sample size at 500. For the proportion score, the 

mean correlations for 6, 12, and 24 items were .79, .85, and .89, respectively. Similarly, for 

the fully specified DIF and impact MNLFA, the mean correlations for 6, 12 and 24 items 

were .82, .88, and .93, respectively. Similar patterns held for the other two scoring models as 

well.

The reason for improved score recovery with larger numbers of items primarily centers 

around factor indeterminacy (Guttman 1955; Schonemann, 1996; Wilson, 1928). Briefly, 

factor indeterminacy is an inherent component of nearly all latent factor models because the 

number of common and unique latent variables exceeds the number of observed indicator 

variables. As such, factor scores are not uniquely determined. However, it has been shown 

that the magnitude of indeterminacy varies as a function of the amount of available 

information, especially the number of observed items and the strength of the relations 

between the items and the factor. This is well known in EFA (e.g., Piaggio, 1933; McDonald 

& Mulaik, 1979) and Bollen (2002) explores this within the broader SEM (e.g., Equation 

16). The larger the number of items, the lower the indeterminacy; the lower the 

indeterminacy, the higher recovery of the factor scores. This is precisely what we found 

here.

Magnitude of Impact

We studied three levels of impact defined as the joint contribution of the background 

characteristics on both the latent mean and variance: small, medium, and large ratio of 

mean-to-variance impact effects. There was consistent evidence that score quality increased 

with increasing levels of mean-to-variance impact, but the magnitude of this effect was more 

modest than the effect of increasing number of items. Specifically, the unique variability 

associated with magnitude of impact in the prediction of the (Fisher-z transformed) 

correlations ranged from a low of 1% (for the properly specified MNLFA) to a high of 11% 

(for the unconditional MNLFA). This compares to the unique variability associated with 

number of items that ranged from 80% to 94%. The modest effect size estimates from the 

GLM were further reflected in only slight improvements in the correlations between 

estimated and true scores. For example, holding constant the number of items at 12 and DIF, 

proportion of DIF and sample size at the same levels as were used just above, the mean 

correlation at small, medium and large impact for the unconditional MNLFA was .84, .86, 
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and .87, respectively. Similar patterns of only modest increases in score recovery were 

evident across other design factors and other scoring models.

The reason for improved recovery associated with stronger covariate effects on the latent 

mean is due to greater determination of the latent factor as a function of the background 

characteristics. As we noted above, factor score recovery is improved under conditions of 

higher factor determinacy. Just as larger numbers of items improve determinacy, so does the 

lower residual variability of the latent factor in the presence of the explanatory predictors. 

This is analogous to the long-known finding that the inclusion of covariates in the general 

linear model reduces mean square error and increases statistical power and precision (e.g., 

Neter, Kutner, Nachtsheim & Wasserman, 1996, Section 25.1). Thus the inclusion of the 

background characteristics increases factor determinacy that in turn increases score recovery.

Magnitude of DIF and Proportion of Items with DIF

We studied two levels of magnitude of DIF defined as the joint contribution of the 

background characteristics on both the item loading and intercept (small and large) and two 

proportion of items with DIF (one-third and two-thirds). We discuss these two design factors 

jointly because these were found to exert interactive effects on score quality, but only for one 

method of scoring. For the proportion score, unconditional MNLFA, and fully specified 

MNLFA, neither magnitude of DIF, proportion of items with DIF, nor their interaction was 

meaningfully related to score quality. That is, the mean correlations between estimated 

scores and true scores were nearly equal for these three scoring models across all 

combinations of magnitude of DIF and proportion of items with DIF. But this did not hold 

for the impact-only MNLFA.

More specifically, for the impact-only model, there was a multiplicative interaction between 

magnitude of DIF and proportion of items with DIF in the prediction of the estimated and 

true factor correlations such that the larger magnitude of DIF was associated with lower 

score quality, and this was particularly pronounced with a larger proportion of total items 

that were characterized by DIF. The interesting aspect of this finding is that it was only 

evident in one scoring model: the impact-only MNLFA. The reason for this is clear. More 

specifically, the background characteristics were included in this scoring model but the DIF 

effects that truly existed in the population were not estimated in the scoring model. Thus the 

scoring model was properly specified in terms of impact but was substantially misspecified 

in terms of DIF. As is well known, when using full information estimators (as we did here), 

the inappropriate omission of parameters can commonly propagate bias throughout the 

entire system of equations (e.g., Bollen, 1996; Kumar & Dillon, 1987). Because the 

estimated effects of the covariates on the latent factor mean and variance will be biased due 

to the omitted effects of the same covariates on the item loadings and intercepts, these biased 

coefficients will in turn degrade score quality. This is precisely what occurred here.

However, there is a more interesting issue at hand compared to that of the predictable bias 

resulting from the omission of structural covariate effects. Although the interactive 

influences of magnitude of DIF and proportion of items with DIF were not evident in either 

of the scoring models that excluded the covariates entirely (i.e., the proportion score model 

and the unconditional MNLFA), the degraded scores obtained from the misspecified impact-
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only MNLFA still performed as well or better than the scores obtained from the models that 

omitted the influences of the covariates entirely. For example, holding sample size at 500, 

number of items at 24, magnitude of impact at small, the magnitude of DIF at large, and the 

proportion of items with DIF at large, the estimated true-score correlation for the proportion 

model was .85, for the unconditional MNLFA was .87, for the (misspecified) impact-only 

MNLFA was .88, and for the fully specified MNLFA was .92. These results reflect that 

scores are at least as good, and sometimes observably better, even when an incorrect scoring 

model is used that includes the covariates compared to a scoring model that does not include 

the covariates at all.

Relative Score Performance

It is also insightful to directly compare score recovery within design characteristics across 

each of the four scoring models. Several interesting patterns are clearly evident. First, with 

few exceptions, the unweighted proportion of endorsed items performed the worst of all 

other scoring models. With six items and small impact effects, the proportion scores and 

unconditional MNLFA performed equally (i.e., all correlations were within approximately .

01). However, across all other conditions and scoring models the proportion score was 

inferior. This was fully expected given the nature of the population generating model that 

was defined by complex covariate effects and differential relations between items and the 

latent factor. However, this is further evidence that, when possible, the proportion (or sum or 

mean) score should be avoided in practice.

Second, although the unconditional MNLFA scores outperformed the proportion score 

across nearly all conditions, these same scores were inferior compared to both the 

misspecified impact-only MNLFA and the properly specified impact plus DIF MNLFA. 

Recall that the unconditional MNLFA is analytically equivalent to the standard 2PL item 

response theory model, an approach to scoring that continues to be widely used in practice. 

Across nearly every single cell of the design, the correlations were modestly or markedly 

lower in the unconditional MNLFA compared to the two other MNLFA parameterizations. 

This is clear evidence that the inclusion of background characteristics does result in 

improved score recovery, at least under the conditions that we studied here.

Finally, both versions of the MNLFA that included covariate effects produced superior score 

estimates relative to the two models that did not include the covariates at all. As expected, 

the partially misspecified impact-only MNLFA produced inferior scores to those of the 

properly specified impact and DIF MNLFA across all cells of the design. However, the 

improvements in score quality moving from the impact-only to the impact plus DIF 

covariate effects were surprisingly modest. In conditions in which there was more limited 

information (e.g., six items at the smallest magnitude of impact), the score correlations were 

virtually equal between the two conditional MNLFA models. However, even at the most 

highly determined conditions (e.g., 24 items at the largest magnitude of impact), the 

difference in score correlations was modest at best. Differences in correlations were often .

01 or less and at no point exceeded a difference of .04. This is actually somewhat heartening 

news in that the largest improvement in score quality results from the inclusion of 
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meaningful covariates in the scoring model, and the proper specification of these covariate 

effects is then of secondary importance.

Are the Improvements in Score Quality Due to the Inclusion of Covariates Meaningful?

It is clear from our results that the inclusion of background characteristics unambiguously 

improves the quality of the resulting factor score estimates. The improvement in score 

quality relative to scoring models that omit covariates is consistent across all of the design 

factors in varying degrees of magnitude. However, the inclusion of covariates led to 

increases in some correlations with the true scores by .01 or .02, many by .03 or .04, and a 

few by up to .06. A logical question is whether these improvements are meaningful, the 

answer to which is partly informed by thinking more closely about the true score 

correlations. We have focused nearly all of our discussion on the bivariate linear correlations 

between each estimated score and the underlying true score. As is widely known, these 

correlations primarily reflect the degree of monotonic rank ordering in a paired set of 

observations. Thus comparing a correlation of .82 between an estimated proportion score 

and the true score with a correlation of .84 between an estimated MNLFA score and the 

same true score primarily reflects similar ordering of observations in the score estimates. 

This is a fundamental characteristic of score recovery, but it also represents only one aspect 

of the scores.

Another important aspect is reflected in the accuracy of the score value for a given 

individual, and this is best represented by the RMSE. We did not present detailed results of 

the RMSE because the patterns of findings from the GLMs in terms of cell mean differences 

across the study design factors were identical to those found with the correlations. However, 

the cell means themselves reflect further information about score quality (see online 

Appendix A.3 for complete results). Just as one example, for N=500, 12 items, medium 

impact, large DIF, and one-third items with DIF, the unconditional, impact only, and impact 

plus DIF MNLFA score correlations were .85, .84, and .88, respectively. These differences 

are modest at best. However, the associated RMSE values are .53, .59, and .48, respectively. 

Because RMSE is a measure of distance (i.e., the root of the averaged squared distance 

between each estimated and true score), larger RMSE values reflect less accuracy. Here we 

see that although there is only a .04 difference in the true score correlations between the 

impact-only and the impact-plus-DIF MNLFA models, the associated RMSE is 23% larger 

for the former compared to the latter. As such, scores obtained from the fully parameterized 

MNLFA model are substantially more accurate with respect to distance than are those from 

the impact-only model. This additional metric of score recovery further highlights the clear 

improvement in score quality attributable to the inclusion of background characteristics.

Limitations and Future Directions

As with any computer simulation, there are a multitude of conditions that could have been 

included but were not. For example, we could have considered more sample sizes, more 

items sets, different parameter values, different endorsement rates, used ordinal items, used 

alternative MNLFA structures, used alternative methods of estimation, or induced missing 

data, among countless other factors. However, it is far less important to list the multitude of 
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ways in which the simulation could have been different and more important to identify those 

specific factors that might serve to threaten the internal or external validity of the study.

With that in mind, the key limitation of this study is that we did not address the issue of 

model building. That is, we had oftentimes complex patterns of impact and DIF associated 

with the set of covariates and, when impact and DIF effects were included, these were 

always specified in accordance with the effects that existed in the population. The use of 

properly specified models of course did not hold across scoring models. The proportion 

score and unconditional MNLFA did not include covariates at all, and the impact-only 

MNLFA omitted all of the truly existing DIF effects. However, the mean and variance model 

were properly defined in the impact-only MNLFA and the impact plus DIF model was 

entirely properly specified. We of course did this with full intent. We wanted to first evaluate 

our ability to recover true factor scores when the scoring model corresponded to varying 

degrees to that of the population generating model. A very interesting yet separate question 

is the extent to which we could begin with a set of covariates and through some principled 

model building strategy approximate the population model. Importantly, this issue does not 

threaten the validity of our findings and inferences that we offer here.

Second, a logical next step is to consider how estimated scores perform when used in 

subsequent analyses. Rarely are factor scores estimated that are not intended to be used in 

some other form of model. They might be incorporated as predictors, criterions, mediators, 

moderators, for selection purposes, or fill a myriad of other roles. Statistical theory suggests 

that the performance of factor score estimates can be different depending on how the 

estimates were obtained and whether they take the role of predictor or criterion (e.g., 

Skrondal & Laake, 2001; Tucker, 1971). These differences could be even further 

exacerbated by the inclusion of covariates in the scoring model that might or might not be 

included in the subsequent predictive model. That is, omitting covariates from the scoring 

model risks generating bias when covariates and factors are used as joint predictors of some 

outcome (Mislevy, 1983; Skrondal & Laake, 2001). It will be important to carefully consider 

how factor score estimates from models including covariates perform when used in 

subsequent statistical models that might include the same covariates.

Conclusion

In conclusion, our motivating question was whether the inclusion of a set of correlated 

background characteristics using the moderated nonlinear factor analysis model could 

improve the quality of factor score estimates. Consistent with expectations, the inclusion of 

covariates improved score quality across nearly all factors under experimental study. In some 

cases the improvements were modest but in many others were substantial. In no case did the 

inclusion of covariates degrade score quality relative to not considering the influences at all. 

We conclude that if background characteristics are available and are believed to exert impact 

or DIF effects on the latent construct, these should be included in the subsequent scoring 

model. Further research is needed to better understand the complex process of model 

building and how the resulting score estimates perform when used in subsequent modeling 

applications. We are currently extending the results presented here to address this very 

question.
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Figure 1. 
Conceptual path diagram of MNLFA model with 12 items and impact and DIF effects from 

three background characteristics.
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Figure 2. 
Distributions of correlations between true scores and proportion scores across all design 

factors at N=500.
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Figure 3. 
Distributions of correlations between true scores and unconditional scores across all design 

factors at N=500.
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Figure 4. 
Distributions of correlations between true scores and impact-only scores across all design 

factors at N=500.
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Figure 5. 
Distributions of correlations between true scores and impact-and-DIF scores across all 

design factors at N=500.
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Figure 6. 
Distributions of correlations between true scores and scores generated by all four models 

under small and large mean impact in the 12-item condition.
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Table 1

Population values of covariate moderation three impact conditions.

Small Mean /
Large Variance

Medium Mean /
Medium Variance

Large Mean /
Small Variance

Mean Model

 Intercept −0.01 −0.01 −0.02

 Age 0.13 0.22 0.34

 Gender 0 0 0

 Study 0.21 0.37 0.56

 Age × Study −0.05 −0.09 −0.14

Variance Model

 Intercept 0.58 0.71 0.65

 Age 0.5 0.35 0.25

 Gender −1 −0.6 −0.05

 Study 0.5 0.3 0.05

Struct Equ Modeling. Author manuscript; available in PMC 2017 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Curran et al. Page 31

Table 2

Population values of item parameters under small and large DIF conditions.

Loading Small DIF Large DIF

Baseline Age Gender Study Age Gender Study

Items 1, 7, 13, 19 1

Items 2, 8, 14, 20 1.3 0.05 −0.2 0.2 0.075 −0.3 0.3

Items 3, 9, 15, 21 1.6 −0.05 0.2 0.2 −0.075 0.3 0.3

Items 4, 10, 16, 22 1.9 0.05 0.075

Items 5, 11, 17, 23 2.2 −0.2 0.2 −0.3 0.3

Items 6, 12, 18, 24 2.5

Intercept Small DIF Large DIF

Baseline Age Gender Study Age Gender Study

Items 1, 7, 13, 19 −0.5

Items 2, 8, 14, 20 −0.9 0.125 −0.5 0.5 0.25 −1 1

Items 3, 9, 15, 21 −1.3 −0.125 0.5 0.5 −0.25 1 1

Items 4, 10, 16, 22 −1.7 0.125 0.25

Items 5, 11, 17, 23 −2.1 −0.5 0.5 −1 1

Items 6, 12, 18, 24 −2.5
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Table 3

Correlations between true and estimated scores across all scoring models and design factors at N=500.

6 Items Proportion Score Unconditional Score Impact-Only Score Impact-and-DIF Score

  Small Mean/Large Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.758 0.020 0.759 0.019 0.821 0.018 0.820 0.018

    66% Small DIF 0.756 0.019 0.756 0.019 0.808 0.021 0.810 0.023

    33% Large DIF 0.759 0.019 0.760 0.019 0.820 0.019 0.825 0.018

    66% Large DIF 0.751 0.019 0.746 0.020 0.770 0.027 0.814 0.022

  Medium Mean/Medium Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.785 0.017 0.791 0.016 0.824 0.016 0.823 0.017

    66% Small DIF 0.786 0.016 0.792 0.016 0.811 0.017 0.814 0.019

    33% Large DIF 0.784 0.016 0.790 0.016 0.819 0.017 0.824 0.016

    66% Large DIF 0.782 0.016 0.783 0.017 0.769 0.024 0.814 0.020

  Large Mean/Small Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.789 0.015 0.799 0.015 0.841 0.013 0.841 0.014

    66% Small DIF 0.793 0.015 0.802 0.015 0.831 0.015 0.835 0.016

    33% Large DIF 0.790 0.016 0.800 0.016 0.835 0.015 0.841 0.014

    66% Large DIF 0.791 0.015 0.797 0.016 0.790 0.022 0.831 0.016

12 Items Proportion Score Unconditional Score Impact-Only Score Impact-and-DIF Score

  Small Mean/Large Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.826 0.016 0.835 0.015 0.879 0.012 0.880 0.013

    66% Small DIF 0.820 0.017 0.829 0.015 0.868 0.014 0.875 0.014

    33% Large DIF 0.824 0.017 0.830 0.016 0.871 0.014 0.881 0.013

    66% Large DIF 0.812 0.017 0.815 0.017 0.837 0.018 0.877 0.015

  Medium Mean/Medium Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.852 0.013 0.864 0.012 0.882 0.011 0.883 0.012

    66% Small DIF 0.847 0.012 0.859 0.011 0.871 0.011 0.878 0.011

    33% Large DIF 0.852 0.012 0.863 0.011 0.874 0.012 0.883 0.011

    66% Large DIF 0.840 0.012 0.849 0.012 0.839 0.016 0.878 0.011

  Large Mean/Small Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.855 0.011 0.872 0.010 0.890 0.010 0.891 0.010

    66% Small DIF 0.854 0.010 0.871 0.010 0.882 0.010 0.889 0.010

    33% Large DIF 0.858 0.010 0.874 0.010 0.883 0.010 0.892 0.010

    66% Large DIF 0.850 0.010 0.863 0.010 0.853 0.013 0.888 0.010

24 Items Proportion Score Unconditional Score Impact-Only Score Impact-and-DIF Score

  Small Mean/Large Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.866 0.014 0.891 0.012 0.920 0.009 0.922 0.009

Struct Equ Modeling. Author manuscript; available in PMC 2017 September 09.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Curran et al. Page 33

    66% Small DIF 0.861 0.015 0.885 0.012 0.912 0.009 0.920 0.009

    33% Large DIF 0.866 0.014 0.887 0.012 0.914 0.009 0.924 0.008

    66% Large DIF 0.849 0.013 0.866 0.012 0.882 0.013 0.922 0.009

  Medium Mean/Medium Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.889 0.010 0.913 0.008 0.923 0.007 0.925 0.007

    66% Small DIF 0.886 0.009 0.909 0.008 0.915 0.007 0.924 0.007

    33% Large DIF 0.890 0.010 0.912 0.008 0.917 0.008 0.927 0.007

    66% Large DIF 0.875 0.010 0.892 0.009 0.886 0.011 0.924 0.008

  Large Mean/Small Variance Mean SD Mean SD Mean SD Mean SD

    33% Small DIF 0.894 0.008 0.922 0.007 0.929 0.006 0.931 0.006

    66% Small DIF 0.890 0.008 0.917 0.007 0.920 0.007 0.928 0.007

    33% Large DIF 0.896 0.008 0.921 0.007 0.922 0.007 0.931 0.006

    66% Large DIF 0.883 0.008 0.904 0.008 0.893 0.009 0.927 0.007
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