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Abstract

We participated in the Critical Assessment of Genome Interpretation eQTL challenge to further 

test computational models of regulatory variant impact and their association with human disease. 

Our prediction model is based on a discriminative gapped-kmer SVM (gkm-SVM) trained on 

genome-wide chromatin accessibility data in the cell type of interest. The comparisons with 

Massively Parallel Reporter Assays (MPRA) in lymphoblasts show that gkm-SVM is among the 

most accurate prediction models even though all other models used the MPRA data for model 

training, while gkm-SVM did not. In addition, we compare to other MPRA datasets and show that 

gkm-SVM is a reliable predictor of expression and that deltaSVM is a reliable predictor of variant 

impact in K562 cells and mouse retina. We further show that DHS (DNase-I Hypersensitive Sites) 

and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) data are equally 

predictive substrates for training gkm-SVM, and that DHS regions flanked by H3K27Ac and 

H3K4me1 marks are more predictive than DHS regions alone.
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Introduction

The contribution of regulatory variation to human disease is becoming an increasingly active 

area of research. This is motivated in part by the observation that the majority of variants 

associated with disease by Genome Wide Association Studies (GWAS) are located in 

intergenic and putative regulatory regions (Hindorff et al., 2009; Maurano et al., 2012; 

Gusev et al., 2014), and in part by a growing number of regulatory variants whose disease 

impact has been directly experimentally elucidated (Musunuru et al., 2010; Bauer et al., 

2013; Huang et al., 2014; Canver et al., 2015; Soldner et al., 2016). To build a predictive 

model of how regulatory variants contribute to disease by modulating the activity of 

regulatory elements, my lab has developed a computational framework for systematically 

identifying the necessary set of transcription factor (TF) binding sites active in a given cell 

type, and quantifying the impact of modulation of these TF binding sites by genetic variants. 

These sequence changes can be naturally occurring SNPs, indels, or synthetic or CRISPR-

induced sequence scrambling. Our discriminative gkm-SVM model is typically trained on a 
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positive set of active regulatory regions in the cell type and a negative set of non-active 

regions. The gkm-SVM output is a score that can be summarized as the sum of weights for 

each k-mer occurring in the sequence to be evaluated. Sequence alterations change this set of 

k-mers, and change the score. We use deltaSVM to refer to the change of the gkm-SVM 

score induced by a sequence change, and deltaSVM is thus the gkm-SVM prediction of 

variant impact.

While we have previously shown that gkm-SVM can predict ChIP-seq binding for the 

complete set of ENCODE TFs (Ghandi et al., 2014), and that deltaSVM can predict variant 

impact (Lee et al., 2015) more accurately than alternative approaches (Kircher et al., 2014; 

Ritchie et al., 2014; Peterson et al., 2016), the Critical Assessment of Genome Interpretation 

eQTL challenge provided a rigorous test of this method in a blind control. Further, the eQTL 

challenge allowed us to assess gkm-SVM’s ability to predict expression levels directly, in 

addition to expression change, which we had not previously evaluated. Here we show on the 

eQTL challenge dataset and on previously published datasets that gkm-SVM is indeed a 

reliable predictor of expression levels, in addition to variant impact. As described in more 

detail in the eQTL challenge overview paper (Kreimer et al., 2016), the eQTL challenge 

dataset reports expression levels in Lymphoblast Cell Lines (LCLs) from a Massively 

Parallel Reporter Assay (MPRA) for both alleles of a set of 9116 150bp human DNA 

sequences encompassing variants which had been previously identified as eQTL loci in 

LCLs (Consortium, 2012; Lappalainen et al., 2013). Prediction groups were provided the 

expression levels of a subset of 3044 pairs of alleles as a training set to train parameters of 

the computational prediction models. In the first part of the challenge, an additional 3044 

alleles were tested for expression, and groups were asked to submit predictions for which 

would be positive. In the second part of the challenge, 401 additional variants which were 

positive for expression were tested for allelic differences, and groups were asked to predict 

which among these pairs of alleles would be differentially expressed. Each group was 

allowed to submit predictions from several distinct models, putting forward one main model 

for primary scoring.

Our gkm-SVM method is unique among the submitted eQTL challenge prediction methods 

in that we did not use the MPRA training set to develop our main model, yet gkm-SVM and 

deltaSVM were among the most accurate predictors for parts one and two of the challenge. 

Gkm-SVM used chromatin accessibility data from DNase-seq for training, and we show 

below that ATAC-seq chromatin accessibility data produces equally accurate predictions in a 

MPRA in mouse retina. This has significant consequences for the utility of gkm-SVM in the 

design of future MPRA experiments to test disease associated variants in other cell types. 

The constructs targeted for MPRA in this eQTL challenge were designed based on the 

existence of previous experimental evidence that these loci were eQTLs in LCLs 

(Consortium, 2012; Lappalainen et al., 2013; Tewhey et al., 2016). For most other disease 

relevant cell types, such eQTL data does not exist, and may be quite difficult to acquire. The 

results in this paper suggest that gkm-SVM can be trained on more easily obtainable DHS or 

ATAC-seq data in the cell type of interest, and then gkm-SVM be used to both identify high 

confidence enhancers active in this cell type, and identify variants which will modulate cell-

specific activity, greatly reducing the space of possible sequences required for testing in 

MPRA validation experiments.
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Materials and Methods

gkm-SVM parameters and training sets

We ran the gkm-SVM R package (Ghandi et al., 2016) using default parameters (total word 

length l=10, k=6 informative columns, and d=3), and scored all possible 10-mers to generate 

10-mer weights. We then calculated a gkm-SVM score for each construct tested using the 

full insert sequence. For the GM12878 cell line, we used a positive set of 22,384 300bp DHS 

regions defined by MACS (Zhang et al., 2008) and then optimized to maximize signal over 

the fixed 300bp interval, and used the average weights from training against each of five 

equal size GC and repeat matched (Fletez-Brant et al., 2013) negative genomic sequence 

sets, as described in (Lee et al., 2015). We choose the 300bp length to maximize cross-fold 

validation rates for DHS. To train on the MPRA data, we used the top expressing 1697 

training set sequences as a positive set, and the bottom expressing 1851 training set 

sequences as a negative set, out of the total 6088 training sequences provided. For the K562 

cell line, we used the top 10,000 300bp DHS (ENCODE Consortium, 2012) MACS peaks 

optimized in the same manner, but restricted to non-promoter sequences (>2kb from a TSS). 

For the Segway/ChromHMM training set we used all K562 Segway/ChromHMM regions 

which were between 300 and 500bp long (9320 sequences) to select a well-defined peak set 

of approximately equal size to the DHS training set, and we generated an equal size GC/

repeat matched negative set. For K562 DHS regions flanked by H3K27Ac and H3K4me1, 

we selected the top 10000 300bp non-promoter DHS peaks with an average histone mark 

signal of least 4 and 3 reads in the 1000bp window centered on the DHS peak for H3K27Ac 

and H3K4me1, respectively. For the retinal expression comparison we used WT (wild-type) 

retina ATAC-seq (Mo et al., 2016), DNaseI hypersensitive sites (DHS) from 8 week old 

retina (Yue et al., 2014), and enhancer marks in three unrelated cell types as controls: P300-

bound enhancers in melanocytes (Gorkin et al., 2012), GATA1-bound enhancers in 

megakaryocytes (Pimkin et al., 2014), and DHS regions in GM12878 described above (Lee 

et al., 2015). We trained the gkm-SVM classifier on the top 4000 distal (≥2 kb away from a 

TSS) WT retina ATAC-seq peaks, the top 10,000 distal retina DHSs, the top 2351 P300-

bound melanocyte enhancers, the top 1230 megakaryocyte GATA1-bound enhancers, and 

the top 22384 GM12878 DHSs versus length, repeat, and GC-matched negative sets of 

16000, 10,000, 9404, 4920, and 22384 sequences, respectively.

Results

eQTL Challenge: Predicting Expression and Variant Impact in GM12878

Our main model for the eQTL challenge (group 5, method 1) was a gkm-SVM trained on 

accessible chromatin regions as measured by UW ENCODE DHS in GM12878 LCLs 

(ENCODE Consortium, 2012), as described in (Lee et al., 2015) and in Materials and 

Methods. The regulatory vocabulary, or set of active TF binding sites, in LCLs are 

encapsulated in the set of weights for all 10-mers. The predicted expression score is then 

computed as the sum of all weights for all 10-mers in the 150bp tested expression construct. 

The Receiver Operating Characteristic (ROC) and Precision-Recall Curves (PRC) are shown 

in Figure 1. For evaluation, the positive set for part one (predicting expression, Figure 1AB) 

is defined to be those sequences where at least one allele drove sufficient expression 
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(regulatory hits), and all other sequences are negatives. For part two (predicting regulatory 

impact, Figure 1CD) the positive set is defined to be sequences exhibiting statistically 

significant differences between the reference and alternate alleles (emVar hits, (Tewhey et 

al., 2016)), and all other sequence are negatives. As shown in Figure 1 and in Table 1, gkm-

SVM (group 5, G5, red) was not the most accurate classifier, but was among the top three 

classifiers for both tasks: predicting expression and expression variation. For validation 

experiments, the precision of the predictions (how many predicted positives are actually 

positive) is usually the most useful measure of performance. These results are noteworthy 

because gkm-SVM was the only classifier that did not require the MPRA training dataset to 

achieve this level of performance.

We also submitted a second method (group 5-method 2), which by contrast did train a gkm-

SVM classifier on the MPRA training data by separating the constructs into a positive and 

negative set based on MPRA expression level. Because this yields a smaller training set of 

only a few thousand sequences compared to the tens of thousands of training sequences 

generated by DHS or ATAC-seq chromatin accessibility measurements, this classifier was 

slightly less accurate at predicting expression than our main method (group 5-method 1), as 

shown in Table 1, in the eQTL challenge overview manuscript (Kreimer et al., 2016), and in 

Figure 2 below, but was of comparable accuracy at predicting variant impact. The AUROC 

and AUPRC for all methods on both tasks are listed in Table 1.

Although not submitted as a prediction method for the original eQTL challenge, we 

subsequently trained a hybrid of the two methods described above, by training on the 

combination of the DHS data and the MPRA training data. We did this by training on the 

combination of all of the MPRA training sequences used for method 2 (3548 sequences, see 

Materials and Methods) supplemented by a variable amount of DHS regions (up to 22384 

positive sequences, adding the strongest DHS signal sequences first, and an equal number of 

negative sequences). Figure 2A shows the AUPRC of gkm-SVM trained on the combined 

DHS+MPRA data as the fraction of MPRA data is varied. The extreme limits (0,1) of 

MPRA fraction match the previous two submitted methods (5-1 and 5-2, respectively), but 

using a mixture of DHS and MPRA data for training gkm-SVM outperforms both methods, 

and slightly outperforms all methods in the CAGI challenge (Table 1). The optimization 

curve in Figure 2A is slightly noisy as there are only 105 positive sequences in the validation 

set, and AUPRC can be sensitive to changes in just a few predictions. Figure 2B compares 

the precision-recall curves for the top submitted method (4-1) the two submitted gkm-SVM 

methods (5-1 and 5-2) and gkm-SVM trained on the combined DHS+MPRA data with 

10,000 positive DHS regions (+10,000 negative) and 3548 MPRA sequences.

Predicting MPRA Expression in K562 cells

Encouraged by these results, we next sought to test whether gkm-SVM could predict 

expression levels in a previously published study of ENCODE enhancer predictions. In 

(Kwasnieski et al., 2014), ENCODE segmentation predictions were tested for enhancer 

activity by CRE-seq (Kwasnieski et al., 2012), a method very similar to the MPRA used in 

the eQTL challenge, in K562 cells. They selected 130bp regions labeled strong or weak 

enhancers from K562 Segway/ChromHMM (Ernst and Kellis, 2010; Hoffman et al., 2012) 
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merged predictions, and also tested regions predicted to be H1-ESC enhancers, and 

matching scrambled sequence constructs as negative controls. All tested regions were 

predicted to be enhancers based on ENCODE segmentations, but only 233 of the 3236 

constructs showed significant expression in this assay, or about 20% of the predicted 

enhancers (196/1200). We trained gkm-SVM on K562 DHS (see Materials and Methods) 

and scored each sequence tested, and found that gkm-SVM could predict the expressing 

positive set (with normalized expression > 1.9) with high accuracy based on the gkm-SVM 

score of the construct sequence (Figure 3A, red, AUROC=.79). Similarly, gkm-SVM trained 

on all 300–500bp size selected Segway/ChromHMM enhancers in K562 cells could also 

predict well (AUROC=.79), in spite of the fact that all tested constructs were within this set 

of Segway regions, yet validated at a low rate. As previously shown (Kwasnieski et al., 

2014), the DHS signal within the tested regions is also a poor predictor of the positive 

expressing subset (Figure 3A, green, AUROC=.64). We are thus led to the surprising 

conclusion that our DNA sequence based model (gkm-SVM) predicts expression 

significantly more accurately than the raw data used to train the model (either DHS or 

Segway predictions). Several important factors contribute to this result. First, the gkm-SVM 

extracts and encapsulates the essential binding site vocabulary from all enhancers active in 

the cell type, while any specific individual region may have varying DHS signal because of 

experimental or biological noise. Second, after decoding the relevant TF vocabulary, the 

gkm-SVM can accurately determine whether or not the shorter tested 130bp DNA fragment 

within the broader DHS peak or Segway/ChromHMM prediction contains the combinations 

of features necessary to produce expression in the reporter assay, and does so with higher 

resolution than standard DHS (but comparable resolution to footprinting). An even better 

gkm-SVM prediction (AUROC=0.83) is obtained by training gkm-SVM on K562 DHS 

regions flanked by H3K27ac and H3K4me1 marks, well known to be associated with 

enhancer activity (Heintzman et al., 2007). Although the training set crossfold-validation for 

the histone flanked regions is slightly lower than training on DHS peaks alone, the accuracy 

predicting enhancer reporter expression is improved, demonstrating that training set 

accuracy does not necessarily translate to more accurate predictions of enhancer activity.

Predicting MPRA Expression in Mouse Retina

To demonstrate that gkm-SVM is also a robust predictor of expression when trained on other 

datatypes and whole tissue samples, we next compared to a recent MPRA dataset testing 

longer ~500bp fragments tiling across DHS peaks in mouse retina and cortex (Shen et al., 

2016). Although in this experiment only 6% of the 36005 constructs tested produced 

detectable expression in each of three replicates, gkm-SVM was able to predict the 

consistently expressing constructs with high accuracy. We trained gkm-SVM on mouse 

retina DHS (Yue et al., 2014), retina ATAC-seq (Mo et al., 2016), and for comparison 

included three unrelated cell types which produced gkm-SVM classifiers which we have 

previously shown were predictive in their respective cell types: non-retinal melanocytes 

(Gorkin et al., 2012), megakaryocytes (Pimkin et al., 2014), and GM12878 lymphoblasts as 

described above. As shown in Figure 4, the reliably expressing constructs scored highly by a 

gkm-SVM trained on mouse retina accessible chromatin (DHS or ATAC-seq), but did not 

score highly when gkm-SVM was trained on unrelated cell types. For these ROC and PRC 

curves, the positive set was defined as those constructs which tested positive in all three 
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replicates (2156 barcodes) and the negative set was defined as those constructs which were 

not detected in any replicate (23147 barcodes). The tested insert sequences are all DHS 

positive in retina or cortex, but are staggered across the DHS peaks. Gkm-SVM can reliably 

detect those sequences which contain the necessary TF binding sites for expression in vivo.

Discussion

The eQTL challenge comparisons of MPRA expression and gkm-SVM predictions, and 

comparisons to other datasets shown here, demonstrate that DNA sequence based models 

trained on the relevant cell type can predict expression and variant impact with precision 

around 50% in both cell lines and tissues. This level of agreement is quite encouraging and 

suggests that computational predictions used to select SNPs and target regions for MPRAs 

should greatly accelerate the discovery and validation of disease associated variants.

As described in (Ghandi et al., 2014), we proposed gkm-SVM as a DNA sequence based 

regulatory prediction method in order to evaluate the impact of disease associated human 

genetic variation, and showed that it outperformed existing methods. We then systematically 

compared the gkm-SVM predictions to previously published MPRA variant datasets 

(Patwardhan et al., 2012; Kheradpour et al., 2013), to our own direct validation experiments, 

and to validated GWAS associated loci in (Lee et al., 2015). One of the disease associated 

SNPs that gkm-SVM can explain is the common SNP rs339331, which was shown by 

GWAS to increase prostate cancer risk (Takata et al., 2010) (odds ratio=1.22, p=1.6×10−12). 

Further dissection of this locus (Huang et al., 2014) showed that the risk SNP allele 

TTTTATGAG is bound by HOXB13, which in combination with FOXA1 and AR activates 

RFX6 and promotes cell migration and metastatic disease, while the protective allele 

TTTCATGAG is not bound by HOXB13. As shown in (Lee et al., 2015) and in Figure 5A, 

deltaSVM is able to identify the validated SNP rs339331 (red), which has a very large 

deltaSVM score relative to flanking SNPs (grey) when gkm-SVM is trained on LNCaP DHS 

(a prostate adenocarcinoma cell line) because the weight for the risk allele TTTTATGAG is 

large and the weight for TTTCATGAG is small. In contrast, when gkm-SVM is trained on 

melanocytes (Gorkin et al., 2012) (Figure 5B) or the liver cell line HepG2 (Lee et al., 2015) 

(Figure 5C), deltaSVM for the causal SNP (blue) is small and comparable to flanking SNPs. 

After publication of deltaSVM (Lee et al., 2015), a similar DNA sequence based regulatory 

prediction method called Deepsea was reported (Zhou and Troyanskaya, 2015) which differs 

from gkm-SVM in two main respects: first, it uses a deep neural network (DNN) instead of 

an SVM, and second, it trains on all ENCODE cell types simultaneously, while gkm-SVM is 

trained separately for each cell type. In principle DNNs could produce more accurate 

classifiers than SVMs if trained on sufficient data. However, because certain classes of cell 

types are overrepresented in the ENCODE collection (e.g. blood and immune), it is possible 

that Deepsea training is biased toward (and quite accurate on) these overrepresented cell 

types, and might be less accurate on underrepresented cell types (such as LNCaP). While the 

Deepsea predictions have not been directly experimentally validated, Deepsea predictions 

can be generated from deepsea.princeton.edu, and Figure 5D shows that this is indeed the 

case for the RFX6 prostate cancer SNP, where Deepsea predicts that the validated variant 

has less predicted effect on LNCaP DHS than flanking non-causal SNPs, in spite of the fact 

that Deepsea reported high test-set cross-fold validation AUROC for LNCaP DHS.
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While many validated GWAS SNPs are accurately predicted by deltaSVM (Lee et al., 2015), 

this requires training data for gkm-SVM in the cell type and time of development when the 

modulated enhancer is active. RET+3 (Emison et al., 2005) is not predicted well by gkm-

SVM trained on fetal intestine or brain DHS (Roadmap Epigenomics Consortium et al., 

2015), presumably because whole brain is not sufficiently representative of enteric neurons, 

which make up only a small fraction of intestinal tissue.

An advantage of gkm-SVM over neural network based approaches is the relative ease of 

interpreting biological mechanisms from the results. In our approach, each gapped k-mer 

can be assigned a weight directly from the support vectors, or more simply, each k-mer (we 

typically use length 10 for interpreting binding sites) can be assigned a weight based on its 

gkm-SVM score. The k-mers in the tails of this weight distribution typically fall into similar 

groups representing sets of binding sites for active TFs in the training cell-type. Large 

deltaSVM scores typically result from disrupting or creating one of these TF binding sites. 

In this regard, the improved prediction accuracy of gkm-SVM trained on combined DHS

+MPRA compared to DHS or MPRA alone is interesting. With sufficient MPRA training 

data, a gkm-SVM trained on MPRA data should best predict the MPRA experiments. 

However, MPRA training data is limited to the alleles tested (existing or synthetic). DHS 

data it is easier to acquire (for this test we have about ten times more positive sequences 

from DHS compared to MPRA), and is more diverse (longer sequences of more varied 

composition). However, DHS data is less direct for the current prediction task, as it measures 

chromatin accessibility instead of reporter expression. While it remains to be shown whether 

or not reporter expression is more disease relevant than genomic chromatin accessibility, 

there may be features in the DHS data which contribute to genomic accessibility but not to 

reporter expression. For this experiment the optimal training set, with approximately 15% 

MPRA and 85% DHS sequences, appears to balance the assay specificity of the MPRA 

training set sequences with the increased diversity and size of the DHS training set 

sequences.

The successful comparisons with MPRA experiments are encouraging because our gkm-

SVM model is relatively simple, is trained on easily obtainable chromatin accessibility data, 

and does not try to predict either the structure of the complexes of proteins interacting at the 

enhancer and promoter, specific binding site combinations, or spatial constraints between TF 

binding events. This experimental validation of the gkm-SVM model therefore supports the 

hypothesis that an accurate description of binding sites in the enhancers is sufficient to 

predict much of their activity. However, the precision of the gkm-SVM prediction of MPRA 

expression is still around 50%. Some of the errors may not in fact be problems with the 

model, but could be due to the difficulty of the expression measurements: either 

measurement noise, the episomal nature of the reporter assay, or other synthetic properties of 

the reporter constructs. Measurement noise from technical replicates could be used to 

estimate an upper bound on prediction accuracy. However, we also suspect that significant 

improvements to our DNA sequence based modeling (e.g. the combinatorial effects 

described above) could improve the overall prediction accuracy and resolve many of these 

differences.
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Fig. 1. Comparison of ROC and PRC curves for gkm-SVM and other prediction methods on the 
two eQTL challenges
A) ROC curve for eQTL challenge part one, predicting expression in GM12878. B) PRC 

curve for eQTL challenge part one, predicting expression in GM12878. C) ROC curve for 

eQTL challenge part two, predicting expression change in GM12878. D) PRC curve for 

eQTL challenge part two, predicting expression change in GM12878. Group numbers are 

labelled as in the eQTL challenge overview paper (Kreimer et al., 2016), gkm-SVM is group 

5 (G5). The gkm-SVM predictions are among the most accurate for predicting both 

expression and variant impact, even though they do not use the MPRA training data.
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Fig. 2. AUPRC for gkm-SVM trained on combined MPRA and DHS data
A) AUPRC for predicting expression change as the fraction of MPRA training data is varied 

from zero (method 5-1, red filled circle) to one (method 5-2, orange filled circle). Maximum 

AUPRC is achieved near 15% MPRA (dark red filled circle). B) PRC curve comparison for 

the top submitted method (4-1, blue), the two gkm-SVM submitted methods (red and 

orange), and gkm-SVM trained on 15% MPRA+DHS (dark red).
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Fig. 3. Comparison of ROC and PRC curves for predicting MPRA expression in K562 cells
A) ROC and B) PRC for predicting MPRA expression in K562 cells (Kwasnieski et al., 

2014) using different methods. All tested regions were within Segway/ChromHMM 

enhancer predictions in K562, but only ~20% were positive. DHS in the tested regions is 

also weak predictor of expression (green). However a gkm-SVM trained on DHS regions or 

Segway/ChromHMM regions is reasonably accurate (red and orange). The most accurate 

predictor is a gkm-SVM trained on DHS regions flanked by H3K27Ac and H3K4me1 (dark 

red).

Beer Page 13

Hum Mutat. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. Predicting MPRA expression in mouse retina
A) ROC and B) PRC for predicting MPRA expression in mouse retina (Shen et al., 2016). 

Gkm-SVM trained on either retina ATAC-seq or DHS (dark red, red) predicts the expressing 

constructs with about 50% precision, but gkm-SVM trained on unrelated cell types does not 

(melanocytes, cyan; megakaryocytes, blue; lymphoblasts, green).
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Fig. 5. Predicting causal SNPs within the RFX6 prostate cancer locus
deltaSVM using a gkm-SVM trained on a prostate cancer cell line LNCaP (A) can identify 

the causal SNP (red) from among flanking SNPs (grey), but a gkm-SVM trained on 

melanocytes (B) or HepG2 (C) cannot. Deepsea predictions include LNCaP cells in the 

training set but do not correctly identify the validated SNP (D).
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Table I

AUROC and AUPRC for all methods on both eQTL challenge tasks: predicting expression and predicting 

expression change.

Predicting expression Predicting expression change

Method AUROC AUPRC AUROC AUPRC

1-1 0.716044 0.329400 0.550820 0.305258

2-1 0.723336 0.385369 0.477301 0.234723

3-1 0.652051 0.242830 0.511197 0.284360

4-1 0.807690 0.528288 0.655261 0.452561

5-1 gkm-SVM DHS 0.693357 0.369462 0.626850 0.409730

5-2 gkm-SVM MPRA 0.578095 0.189516 0.577220 0.369083

6-1,4 0.786722 0.461099 0.561953 0.345064

7-1 0.670681 0.437487 0.562854 0.431639

gkm-SVM DHS+MPRA 0.680054 0.377978 0.619772 0.458197
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