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Abstract

Single-cell flow cytometric techniques have been indispensable to improving our understanding of 

the phenotype and function of immune cell subsets that are important in both rejection and 

tolerance post-transplant. Mass cytometry, or Cytometry by Time-of-Flight (CyTOF), is a single 

cell–based platform that utilizes antibodies conjugated to rare heavy metal ions for analysis of 

cellular proteins by a time-of-flight mass spectrometer. This new technology allows for the 

evaluation of over 40 simultaneous cellular parameters in a single sample because the limitation of 

spectral overlap, seen in conventional flow cytometry, is eliminated. In this review we discuss the 

current state of mass cytometry, describe the advantages and disadvantages over multi-parameter 

flow cytometry, introduce novel methods of high-dimensional data analysis and visualization, and 

review some recent studies using mass cytometry to profile the immune system of healthy people, 

and transplant recipients.

Introduction

Fluorescence-based flow cytometry has clearly become the standard choice for phenotypic 

and functional analysis of single cells and is crucial to our understanding of the immune 

response post-transplantation. Indeed, fluorescence-labeled antibodies and flow cytometry 

have been essential tools for both immune monitoring and basic science research in 

immunology, and indispensable to the field of transplantation. Advances in technology, 

including new fluorophores and tools to analyze and display data now allow for the 

quantitation of 15–20 parameters on a single cell [1]. However, spectral overlap or spillover 

between fluorescent signals, limits the expansion of the flow cytometry platform to 

additional parameters. An alternative technique, mass cytometry, also known as cytometry 

by time-of-flight or commercially known as CyTOF, has been developed [2]. In contrast to 

flow cytometry where the fluorescently-tagged cellular proteins are excited by lasers and 

quantitated via optical filters and photomultiplier tubes, mass cytometry utilizes antibodies 

Correspondence should be addressed to: Dr. Sheri M. Krams, Transplant Immunobiology Lab, Stanford University School of 
Medicine, 1201 Welch Road, MSLS P313, Stanford, CA 94305-5492, 650-498-6246, 650-498-6250 (FAX), smkrams@stanford.edu. 

Disclosure
The authors of this manuscript have no conflicts of interest to disclose as described by the American Journal of Transplantation

HHS Public Access
Author manuscript
Am J Transplant. Author manuscript; available in PMC 2018 August 01.

Published in final edited form as:
Am J Transplant. 2017 August ; 17(8): 1992–1999. doi:10.1111/ajt.14145.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



conjugated to rare heavy-metal isotopes. The isotopes are covalently linked to antibodies or 

other probes via a chelator protein. The workflow of labeling cells for mass cytometry is 

very similar to that of flow cytometry (Figure 1). After labeling with antibodies, the cells as 

a single-cell suspension are introduced into the nebulizer where the cells are deposited in a 

fine spray of droplets. Cells then travel through an argon plasma, covalent bonds are broken 

to produce free atoms which become charged [3]. The resulting ion cloud is filtered through 

a quadropole, selecting for heavy-metal reporter ions of mass range 80–200 which are the 

separated by their mass-to-charge ratio in a time-of-flight detector [1]. Ion counts are then 

converted to electrical signals and integrated into single-cell events [3]. Since the readout of 

atomic masses is very discrete, the potential for higher multiplexing is substantially 

enhanced.

Comparison of Mass Cytometry and Flow Cytometry

Since the first report of single-cell mass cytometry in 2009 from a group at the University of 

Toronto [2], substantial developments and improvements have occurred. In terms of the 

hardware, the commercially available Helios system (Fluidigm) has 135 detection channels, 

allowing flexibility as more metal tags are developed and is barcode enabled.

In the initial mass cytometry reports, in was necessary for investigators to conjugate the 

heavy-metal isotopes to the antibodies for use in experiments. This has been simplified 

recently by the commercial availability of metal labeling kits and pre-conjugated antibodies 

(Fluidigm) although only a few hundred unique pre-conjugated antibodies are currently 

available for either mouse or human. A challenge in all cytometry experiments is the 

development of the antibody panel. In flow cytometry, especially for multiparameter 

experiments (>12 colors) it is critical that the spectral overlap between fluorescent dyes is 

considered in the assignment of antibodies to fluorochome channels [4]. Although overlap 

between fluorochromes is not a concern for mass cytometry, the mass of the metal when 

paired to a specific antibody must be considered as the high and low end of the mass 

window (80–200) have somewhat lower intensities [5]. Thus markers with higher expression 

could be used in dimmer channels while markers with lower expression should be used in 

the channels with maximum sensitivity, which are centered just higher than the middle of the 

range. It is important to validate each antibody by testing cell subsets known to express and 

those that do not express the specific marker and in some cases to compare the staining 

results to those obtained with the same antibody used in the flow cytometry configuration. 

There is debate as to whether the controls typically used for flow cytometry, such as isotype-

matched control antibodies or fluorescence-minus-one-like controls, are useful for mass 

cytometry [6]. Optimization of the antibody panel, including shuffling antibody and metal 

pairs, is necessary for best results. Pre-configured screening panels of 5–17 markers to 

determine basic mouse or human phenotyping or functions are commercially available 

(Fluidigm) and are a good starting point for analyses.

Similar to flow cytometry the use of barcodes for multiplexing mass cytometry has been 

reported by several groups [7–9]. One example uses seven metals in a binary fashion to 

generate 128 barcodes to uniquely label each well of a 96-well plate. Individual wells are 

then combined, into one tube, for further sample processing and later debarcoded for 
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analysis [7]. A commercially available barcoding kit (Fluidigm) enables unique barcoding of 

20 samples which are subsequently stained and acquired as one multiplexed sample. Clearly 

there are many advantages to cellular barcoding including the requirement for smaller 

antibody volumes and reduced time on the machine for data acquisition. Importantly, data 

quality is improved by barcoding as variability between samples is minimized. Further, 

immune cell subsets could be detected by mass cytometry from only 10,000 cells, 

potentially expanding analysis to patient samples that were previously deemed too limited in 

cell numbers to analyze [10]. Since mass cytometry processes only a fraction of the events/

second that a flow cytometer can, there is drift of signal intensity over time that could 

introduce channel bias. Further, “batch effects” are seen between runs thus a good quality 

control sample should be used to account for system variations.

Mass cytometry does have some technical limitations when compared to flow cytometry 

(Table 1). Flow cytometry can be performed on live cells with recovery of sorted cells for 

subsequent functional analysis. In contrast, the cells must be fixed for mass cytometry, and 

the cells are ultimately vaporized and thus not recoverable. Further, unlike flow cytometry 

where virtually all of the cells in the sample can be analyzed, in mass cytometry a large 

proportion of cells in the sample are lost in the instrument resulting in less than 50% of the 

injected cell sample being analyzed [11]. Forward and side scatter can’t currently be 

measured on a mass cytometer thus the ability to easily discriminate size and granularity to 

distinguish between granulocytes, lymphocytes, cell doublets and cellular debris, is lost. To 

compensate for the lack of light scattering properties, and to assure that all cells are counted 

(cells will only be identified if they are bound to a metal within the mass range of the mass 

cytometer), cells containing DNA are labeled with iridium-containing intercalators. Further, 

live-dead stains such as cisplatin are used to determine viability. [5]. Moreover, the 

sensitivity of tagged antibodies used in mass cytometry is lower than the same antibodies 

used for flow cytometry since the chelating polymer that is generally used allows a 

maximum of 100 metal reporter ions to be attached to an antibody molecule [1]. Thus, the 

molecules/cell detected by mass cytometry is ten-fold less than can be detected by flow 

cytometry, consequently if a cellular protein is in low abundance, it may not be detected by 

mass cytometry. Currently, mass cytometry is in its infancy and thus it can be expected that 

improvements in technology will minimize the limitations and enhance utility.

Analysis and Visualization of Mass Cytometry Data

The development of mass cytometry has ushered in a new era in analysis and visualization 

of the immune system. While traditional flow cytometers struggle to distinguish around 18 

different markers per cell due to fluorescence spectra overlap, mass cytometers routinely 

examine around 40 or more markers per cell simultaneously. What this means for 

immunologists studying the human immune response is that many new combinations of 

markers can be examined, allowing researchers to discover and define new, more specific 

subsets of cells with potentially important and unique functions. Additionally, rather than 

focusing on certain branches of the immune system (e.g., CD4+ T cells) for particular 

experiments or analyses, a mass cytometry experiment can gain a much more 

comprehensive, systems view of the state of the immune system in patients by examining all 

branches at once.
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While traditional techniques involving manual gating can still be used, the very strengths 

gained by using so many markers (i.e., finding new populations of biologically-relevant cells 

defined by unique combinations of makers) won’t be realized in this manner. One of the first 

steps in analyzing high dimensional data should be to visualize it. When working with flow 

cytometry data, researchers routinely plot cells based on two markers in bi-axial plots, 

allowing them to identify key cell populations. The human brain has a remarkable ability to 

discover patterns, however it is not suited to finding these patterns when dimensions exceed 

three or four. With high dimensional data, we can use dimensionality reduction techniques to 

bring the dimensionality of the data down to a level that is suited for plotting. These 

techniques attempt to preserve the relationships between points in high dimensional space 

(in our case, cells defined by the expression of ~40 markers) in a lower dimensional setting 

(typically two or three). One of the most commonly used techniques in this area is principal 

components analysis (PCA) (Figure 2).

To understand PCA without getting into the linear algebra behind it, it’s best to think about 

how to represent a 3D object in two dimensions (and then extend that notion into higher 

dimensions). If you have data points in 3D that are laid out to form a cylinder, PCA would 

choose a side view as a vantage point since most of the variation in the data lies along that 

axis, rather than a head-on view where most of the data points would be on top of each other. 

Of course, this is a simplification of what is actually going on, but the underlying intuition 

with PCA should be that it rotates your high dimensional data so that your vantage point (in 

a lower dimension) preserves the most information about the data. The new axes (principal 

components) which define your vantage point are simple linear combinations of the original 

variables, making the axes interpretable. In practice, PCA will tell you how much of the 

cumulative variance is explained by the number of principal components chosen (typically 

the first two or three). This will give you an idea about how much information is being lost 

while doing this dimensionality reduction. Many researchers aim for at least 75% of the total 

variance in the data to be explained by the components chosen.

The strengths of PCA are that is well-established, interpretable (the PCA axes are just 

weighted combinations of the original variables), simple, and consistent (there is only one 

best rotation). The chief drawback of PCA is its linear nature. To understand that, imagine 

your data were a spiral in 2D. What would the best representation of that data be in one 

dimension? Well, the key insight is that a spiral is effectively one dimensional, so you would 

like your data points to be plotted in one-dimension corresponding to their position along the 

curve of the spiral. How would PCA deal with this problem? The answer: not very well, 

since it would end up clumping points from different parts of the spiral together in the one 

dimensional representation. Despite this, PCA is still a very powerful first step in analyzing 

high dimensional data, but it is best to keep in mind its pitfalls.

In response to this problem, several techniques in non-linear dimensionality reduction have 

been developed. Of particular note, given its recent popularity in visualizing high 

dimensional flow data, is t-distributed stochastic neighbor embedding (t-SNE) [12]. t-SNE 

has been used in several recent papers to visualize mass cytometry data [13–15]. The goal of 

t-SNE is to create a faithful lower dimensional representation of high dimensional data that 

preserves the overall relationships between data points. When t-SNE begins, each data point 
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in high dimensional space has a corresponding data point in two-dimensional space (on the 

plot). These points in 2D are laid out randomly at the start. For each data point, the distances 

to other points in 2D and in the original, higher dimensional space are used to calculate 

probabilities with the Gaussian distribution being used for the high dimensional distances 

and the t-distribution (from which the algorithm gets its name) being used in 2D. The 

algorithm then iterates in an attempt to make these probability distributions similar, which 

has the effect of moving similar data points in high dimensional space closer to each other. 

You can think of each point in 2D as being acted on by attractive and repulsive forces. These 

forces are determined by how its probability distribution in 2D space corresponds to its 

probability distribution in high dimensional space [12]. The points in 2D continue to move at 

each iteration until they stabilize. The end result is that points close together in 2D should be 

close together in high dimensional space. This pairwise distance calculation and movement 

for all points means that t-SNE is computationally intensive and may require a long time to 

complete with a large number of data points. Borrowing techniques from physics to solve N-

body problems efficiently has speeded up the process, but it will still typically be much 

slower than something like PCA.

The strength of t-SNE is its non-linear nature, giving it the ability to represent complex non-

linear relationships (e.g. spirals). This makes t-SNE particularly attractive for plotting 

immunological data where populations of interest may be contorted in many different ways. 

The drawbacks of t-SNE include its difficulty of interpretation (t-SNE axes do not have 

interpretation in and of themselves) and its stochastic nature (the problem does not always 

converge on the same solution, meaning subsequent t-SNE plots of the same data will vary). 

Nonetheless, t-SNE has now become a mainstream technique for the visualization of mass 

cytometry data. It can also be used in combination with manual gating (of the t-SNE plot) to 

identify populations of interest.

To make t-SNE plots more interpretable, Cheng et al. have developed a method, One-

SENSE, which allows the researcher to create two or three groups of markers (e.g., 

trafficking markers and differentiation markers) and then plot cells in a t-SNE-like plot 

based on these groups. For each grouping, it performs t-SNE with a one-dimensional output 

using the markers in that group. Cells can then be plotted based on the output of these one 

dimensional t-SNEs creating 2 or 3D plots [13]. Each axis would be the one-dimensional t-

SNE output using the markers in that user-defined group. This provides a little more insight 

into the clusters of cells in the resulting plots since the axes have more biological meaning.

One of the strengths of using such high dimensional data is the ability to identify new cell 

populations that would not have been found with a smaller number of markers. Several 

techniques have been developed which can identify populations automatically in high 

dimensional flow data. Many of these techniques are combined with a visualization 

component.

SPADE (spanning tree progression analysis of density normalized events) is probably the 

most well-known mass cytometry analysis technique as it was published in one of examples 

for the application of the mass cytometer to human samples [16]. The SPADE technique 

downsamples highly dense regions and then performs agglomerative hierarchical clustering 
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on cells in high dimensional space [17]. The resulting clusters can then be visualized in a 

minimum spanning tree (a tree with the minimum total edge weight). In a SPADE tree, 

clusters of cells that are neighbors are similar to each other. It is important to note that since 

this is a tree structure, the x and y axes do not have intrinsic meaning (and branches can be 

freely rotated as in a mobile without changing the structure of the tree). A drawback of 

SPADE is the necessity to specify the number of clusters one expects to find in the data 

beforehand and the lack of single-cell resolution. However, SPADE remains an extremely 

useful tool for mass cytometry analysis.

t-SNE and other dimensionality reduction techniques can be used as a first step for 

downstream automated detection of populations. One method which uses this idea with mass 

cytometry data is ACCENSE (automatic classification of cellular expression by nonlinear 

stochastic embedding). The discovery of populations can occur directly in high dimensional 

space, but ACCENSE performs t-SNE on mass cytometry data first, distilling the 

relationships between cells down to just two dimensions. It then finds the populations within 

the resulting low dimensional representation [14]. The resulting populations can then be 

further examined for markers of interest. A strength of ACCENSE is that it does not require 

the user to specify the number of populations she or he expects to find in the data and it 

allows the researcher to examine each cell individually if needed.

Researchers analyzing mass cytometry data may also want to discover which populations are 

significantly different between treatment groups. CITRUS (cluster identification, 

characterization, and regression) from Bruggner et al. combines automated population 

discovery with regression [18]. In CITRUS, data from all samples are combined and 

hierarchical clustering is performed. The cluster proportions are then determined per sample 

and then these are fed into a regression model (e.g., LASSO logistic regression) along with 

the group to which the sample belongs. For typical CyTOF experiments, at least 8 samples 

per experimental group should be used in order to have the necessary statistical power and 

robustness. The utility of CITRUS is being able to find significantly different populations 

between experimental groups and the downstream analysis of these populations (which can 

be graphed for different markers to get an idea of what types of cells they are).

This section only provided a brief overview of the myriad of techniques being developed for 

use on mass cytometry data. Aghaeepour et al., have provided an excellent evaluation of 

many of these techniques based on the FlowCAP dataset for readers interested in how they 

compare to manual gating and how well they classify samples [19]. Thus far, most 

algorithms have been adapted from standard machine learning algorithms and applied to 

flow data, but few have begun to incorporate the expert knowledge of the experimentalist 

using the technique. What has become apparent is that this burgeoning field will require 

more intense collaboration between algorithm developers and immunologists in order to find 

lasting solutions that are useful and interpretable.

Application of Mass Cytometry to Immunology and Transplantation

Mass cytometry allows for the deep profiling of cellular subpopulations along with an 

unprecedented ability to define relationships between phenotype and function in both 
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healthy people and during disease [13, 15, 20–28]. In one of the first comprehensive studies 

using mass cytometry, Bendall and colleagues dissected the functional complexity of 

hematopoiesis [16]. Single-cell analysis of 34 parameters performed on healthy bone-

marrow cells. In addition to surface markers, the signaling behavior of specific cell subsets 

was examined after ex vivo stimulation. This unique systems-level view of hematopoiesis 

demonstrated novel and unexpected signaling responses during hematopoietic development. 

More recently, the same group used a similar strategy to comprehensively analyze normal B 

cell lymphopoiesis and identify a novel early B cell population [21].

Mass cytometry has been applied to several studies that examine T cell phenotypes and 

function in healthy people and during viral infections [13, 15, 24, 25, 29]. Newell and 

colleagues analyzed CD8+ T cell diversity including functional parameters such as 

cytokines, cytotoxic mediators and antigen-specific T cells [25]. They observed that there 

were more than 200 functional phenotypes represented by distinct CD8+ T cell subsets and 

that virus-specific cells have both shared and unique phenotypic and functional attributes 

depending on the virus. Recently the multiplexing capacity of mass cytometry, cellular 

barcoding, and high-dimensional analysis, was leveraged to simultaneously probe T cell 

trafficking and functional markers across eight different human tissues [15]. In addition to 

demonstrating that T cells exhibit diverse patterns of cytokine secretion in different tissue 

environments, mass cytometry also highlighted that combinatorial expression of trafficking 

receptors and cytokines better defines tissue specificity and suggesting the presence of 

tissue-specific signature. Similarly, the multiplexing power of mass cytometry was used to 

characterize human NK cell subsets. Human NK cells express a multitude of both activating 

and inhibitory receptors which regulate cell function Interestingly, the findings demonstrated 

the extraordinary phenotypic diversity of NK cell receptors and suggests that a given 

individual may produce up to 30,000 distinct subsets of NK cells [23].

One of the major advantages of mass cytometry is the ability to multiplex over 40 cellular 

measurements from samples where there is a limited sample volume, as is often the case in 

clinical samples [10]. In a recent study, the phenotypical and functional immune response to 

surgical trauma was examined [22]. Serial blood samples from 32 patients undergoing hip 

replacement were analyzed, by mass cytometry, for 35 cell-surface proteins and intracellular 

phospho-specific epitopes at 1 h, 24 h, 72 h, and 6 weeks after surgery. The results indicated 

that there is indeed an immune signature of surgical trauma and that clinical recovery is 

associated with expansion of subsets of CD14+ monocytes.

It is evident that mass cytometry has enormous potential to define biologically important 

phenotypic and functional, including cytokines and phospho-signaling, changes in the 

immune system after transplantation. This technology will enable researchers to study 

mechanistic differences in defined populations of cells to yield a system-wide view of 

responses to specific immunosuppressive regimes. Moreover, mass cytometry is particularly 

amenable to biomarker discovery since multiple parameters can simultaneously be examined 

at the single-cell level from clinical samples. To date, however there have been just two 

studies published that applied this technology specifically to transplantation. Yabu and 

colleagues [30] used mass cytometry to profile the peripheral immune system of 20 highly 

sensitized kidney transplant recipients who underwent desensitization therapy (10 
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responders and 10 non-responders) to lower HLA antibodies and enable transplantation. 

PBMC were obtained prior to the initiation of therapy and analyzed for 33 parameters by 

mass cytometry. They utilized a multivariate decision tree model and demonstrated that 

kidney transplant candidates with low numbers of transitional B cells and high numbers of 

Tregs were less likely to respond to desensitization treatment. In this study, all of the 

responders, and only three of the non-responders received a transplant and had similar 

borderline rejection episodes and graft outcomes at one year. Additional studies are clearly 

necessary to validate these findings and determine if the numbers of transitional B cells and 

Treg can be used to predict response to desensitization therapy.

Our group has utilized single-cell mass cytometry to characterize the immune cell 

populations in a group of operationally-tolerant pediatric liver transplant recipients. PBMC 

from seven operational tolerant recipients, eight recipients on low dose single agent 

tacrolimus and five age-matched controls were examined for 25 parameters (22 immune 

markers and 191Iridium, 193Iridium and 195cisplatin to distinguish single live cells) by mass 

cytometry [31]. PCA demonstrated that tolerant patients exhibit a differential pattern of 

immune cell frequencies compared to patients on immunosuppression and normal controls. 

Further, by Citrus analysis a distinct population (CD3+, CD4+, CD5+, CD25+, CD38−/lo, 

CD45RA−) was specifically and significantly increased in tolerant liver transplant recipients. 

Analysis by both mass and flow cytometry identified a T cell subset of Operational 

Tolerance (TOT) that correlates with tolerance in pediatric liver transplant recipients.

Mass cytometry is a powerful new addition for single-cell analysis and will likely co-exist 

with flow cytometry for the foreseeable future as each has unique advantages and 

disadvantages (Table 1). Clearly the establishment of the mass cytometry technology, in a 

lab or facility, requires a significant investment in infrastructure and training, especially in 

data analysis. Although, individual antibodies for mass cytometry are priced similarly to 

those for flow cytometry, most laboratories have substantial stocks of flourophore-labeled 

antibodies, making the start-up for an individual mass cytometry experiment costly. Further 

the purchase price of a mass cytometer, operation (argon gas), and maintenance contracts for 

the instrument are more costly that a state-of-the art flow cytometer. Currently, mass 

cytometry is not high-throughput as the average time on the instrument, per sample, is 

increased as compared to flow cytometry. The true power of mass cytometry is discovery, by 

casting a wider net one can identify novel markers that can then be translated to a flow 

cytometry platform for diagnostics and basic science research.
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CyTOF Cytometry by Time-of-Flight

PCA Principal component analysis
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t-SNE t-distributed stochastic neighbor embedding

SPADE spanning tree progression analysis of density normalized events)

CITRUS cluster identification, characterization, and regression

ACCENSE automatic classification of cellular expression by nonlinear stochastic 

embedding
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Figure 1. Workflow of a Typical Mass Cytometry Experiment
Single cells are acquired, and a viability stain is applied to mark dead cells for exclusion 

from analyses. Fixation can optionally be applied at this point to preserve the cell state. 

Multiple samples can be barcoded with unique combinations of heavy metal tags, enabling 

them to be pooled together prior to staining to minimize technical variability at this step. 

After pooling samples into one tube, cells are then incubated with antibodies targeted against 

proteins of interest. Cell permeabilization can be performed if intracellular targets are to be 

measured. Cells are nebulized into droplets as they are introduced into the mass cytometer. 
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They then travel into an inductively coupled argon plasma (ICP), in which covalent bonds 

are broken and ions are liberated. The ion cloud is filtered by a quadrupole to remove 

common biological elements and enrich the heavy metal reporter ions to be quantified by 

time-ˇof-ˇflight mass spectrometry. Ion signals are integrated on a per-ˇcell basis, resulting in 

single-ˇcell measurements for downstream analysis. Data are compiled in an FCS file that 

can then be parsed and plotted in a variety of ways (from Spitzer and Nolan, Cell 

165:780-790;2016). FCS, Flow Cytometry Standard.
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Figure 2. Mass cytometry (CyTOF) data on PBMCs from a pediatric liver transplant recipient 
[31] is depicted using three different algorithms: PCA, tSNE, and SPADE
In each plot, the color corresponds to the level of CD3 on each cell (or group, in the case of 

SPADE). With PCA, one can see general separation of two different branches of the immune 

system. T cells are in the lower half of the plot and non-T cells are in the upper half. 

Replotting the same data using tSNE reveals a similar separation, but one can now see two 

groups of CD3+ cells in the upper half of the plot (which represent CD4 and CD8 T cells) 

and other groups of cells as well. Using SPADE similarly reveals the major branches of the 

immune system, including the separation of CD4 and CD8 T cells (the two branches on the 
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left). PBMC, peripheral blood mononuclear cell; PCA, principal component analysis; 

SPADE, spanning tree progression analysis of density normalized events.
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Table 1

Comparison of features of flow cytometry and mass cytometry

Fluorescence Flow Cytometry Mass Cytometry

Probes fluorescent stable mass isotope

Max number of measurements (current) 19 37

Compensation Compensation necessary to avoid signal overlap and 
spillover

discrete signals, minimal overlap

Sensitivity (molecules/cell) 40 400–500

Sampling efficiency >95% <50%

Acquisition rate/s > 25000 500

Light scatter properties forward and side scatter measured not measured (DNA stains used to 
distinguish cells)

Cellular proteins measured surface markers, intracellular cytokines, signaling 
proteins

surface markers, intracellular cytokines, 
signaling proteins

Cell preparation live or fixed cells fixed cells resuspended in pure water

Cell sorting cells can be sorted for functional assays cells are destroyed, no sorting possible

Cellular Barcoding and Sample 
Multiplexing

yes yes

Data files Flow Cytometry Standard (FCS) Flow Cytometry Standard (FCS)

Data analysis generally user-guided requires newer complex analysis 
techniques

robe cost (per test) $2.00–$5.00 $2.00–$5.00
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