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Fragment optimization for GPCRs 
by molecular dynamics free energy 
calculations: Probing druggable 
subpockets of the A2A adenosine 
receptor binding site
Pierre Matricon   1, Anirudh Ranganathan2, Eugene Warnick3, Zhan-Guo Gao3, Axel Rudling2, 
Catia Lambertucci4, Gabriella Marucci4, Aitakin Ezzati2, Mariama Jaiteh1, Diego Dal Ben   4, 
Kenneth A. Jacobson   3 & Jens Carlsson1

Fragment-based lead discovery is becoming an increasingly popular strategy for drug discovery. 
Fragment screening identifies weakly binding compounds that require optimization to become high-
affinity leads. As design of leads from fragments is challenging, reliable computational methods to 
guide optimization would be invaluable. We evaluated using molecular dynamics simulations and the 
free energy perturbation method (MD/FEP) in fragment optimization for the A2A adenosine receptor, 
a pharmaceutically relevant G protein-coupled receptor. Optimization of fragments exploring two 
binding site subpockets was probed by calculating relative binding affinities for 23 adenine derivatives, 
resulting in strong agreement with experimental data (R2 = 0.78). The predictive power of MD/FEP was 
significantly better than that of an empirical scoring function. We also demonstrated the potential of 
the MD/FEP to assess multiple binding modes and to tailor the thermodynamic profile of ligands during 
optimization. Finally, MD/FEP was applied prospectively to optimize three nonpurine fragments, and 
predictions for 12 compounds were evaluated experimentally. The direction of the change in binding 
affinity was correctly predicted in a majority of the cases, and agreement with experiment could be 
improved with rigorous parameter derivation. The results suggest that MD/FEP will become a powerful 
tool in structure-driven optimization of fragments to lead candidates.

Fragment-based lead discovery (FBLD) has rapidly become a well-established technique in early drug develop-
ment1. Several lead candidates developed using FBLD have already reached clinical trials, resulting in two FDA 
approved drugs2. In contrast to high-throughput screening (HTS), where large numbers (~105–106) of drug-sized 
molecules are tested experimentally, FBLD focuses on smaller libraries (typically 1000–5000 compounds) with 
molecules of low molecular weight (<300 Da)2, 3. By limiting the size of the molecules in the library, fragment 
screening achieves a much broader coverage of chemical space than HTS due to the astronomical number of 
possible drug-like molecules. The low molecular complexity of fragments also reduces the probability for steric 
mismatches with the receptor, leading to the discovery of ligands that optimally complement subpockets of the 
binding site4, 5. Consequently, screening of fragment libraries often delivers high hit-rates and diverse starting 
points for lead development2, 3. However, the ligands that emerge from fragment screening typically have low 
affinities and, in the second step of FBLD, these compounds need to be optimized to yield potent and selective 
lead candidates.
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Fragment-to-lead optimization has proved to be a very challenging step in FBLD2. Prioritization of fragments 
for optimization is often guided by ligand efficiency (defined as the free energy of binding divided by the num-
ber of heavy atoms of the compounds6) and access to atomic resolution information regarding binding modes7. 
Recently, more intricate criteria, e.g. based on the thermodynamic binding profiles of the fragments, have also 
been suggested to be an important factor in the selection of starting points for optimization8. Two main strat-
egies for fragment-to-lead optimization, “linking” and “growing”, have been proposed2. Although “linking” of 
compounds occupying different subpockets of a binding site has been successful in some cases, “growing” of the 
fragment by iterative additions of smaller chemical groups has become more widely used2, 3. In either case, access 
to high-resolution crystal structures of fragments bound to the target often makes crucial contributions to the 
optimization process7. Whereas computational methods for structure-based ligand design are routinely used 
for drug-sized molecules9, applications of such approaches to fragment optimization have been more scarce10. 
The fact that fragments are weak ligands, only occupy a small fraction of the binding site, and may have multiple 
binding modes adds extra levels of complexity that are challenging to predict with simplified models such as 
empirical scoring functions. Furthermore, scoring functions developed for computer-aided ligand design have 
been parameterized based on drug-like compounds, and it has been suggested that these may not be suitable 
for fragment ligands11, 12. Molecular dynamics (MD) simulations in combination with alchemical free energy 
methods, which explicitly consider contributions to binding from conformational flexibility and interactions 
with water molecules, could provide a rigorous approach to guide fragment optimization13, but this technique 
has only recently been applied to FBLD10. Accurate predictions of relative binding affinities for analogs to ligands 
identified by fragment screening could improve the efficiency of FBLD, further establishing this approach as a 
groundbreaking strategy for early drug development.

In this work, the utility of MD combined with alchemical free energy methods in fragment optimization 
was explored for the human A2A adenosine receptor (A2AAR), a G protein-coupled receptor (GPCR) relevant 
for drug development14 against Parkinson’s disease15 and cancer16. Multiple high-resolution crystal structures of 
the A2AAR have recently been determined17, 18 and numerous fragment-sized ligands have been identified to this 
target19–21, making it an ideal test case for evaluating a computational approach. Calculation of relative binding 
affinities using MD simulations in combination with the free energy perturbation (MD/FEP) method was first 
benchmarked retrospectively for 23 fragment-sized compounds22, 23. The MD/FEP technique was also used to 
assess multiple binding modes and predict the thermodynamic signatures governing changes in binding affin-
ity, which are both factors of major interest in the optimization process. In a second step, MD/FEP was applied 
prospectively to predict relative affinities for 12 fragment-sized compounds with unknown binding affinities, fol-
lowed by experimental evaluation of these in pharmacological assays. In light of the results, the feasibility of using 
MD simulations in combination with alchemical free energy methods as a tool in fragment-to-lead optimization 
will be discussed.

Results
Mapping binding site subpockets using free energy calculations for fragment ligands.  Analysis 
of available A2AAR crystal structures in complex with agonists18 and antagonists17, 24 revealed that the orthosteric 
site, i.e. the binding site of the native agonist, has several subpockets that could accommodate fragment-like 
ligands (Fig. 1). Hydrogen bonding to Asn253 has been identified as a key interaction for ligand recognition and 
this part of the binding site has also been demonstrated to be a hot-spot for fragment binding21, 24. Fragment-sized 
ligands occupying this region could be further optimized by extension into two additional buried subpockets of 
the orthosteric site (Fig. 1). The first of these is the ribose-recognizing site (pocket A) and the second is a pocket 
located below the adenine moiety of adenosine (pocket B). To explore if MD/FEP could guide fragment growth 
into the two different subpockets, relative binding free energies (ΔΔGbind) for 20 pairs of adenine-derived com-
pounds (Table 1) were calculated using the thermodynamic cycle shown in Fig. 2. The relative binding affinity for 
a compound pair was calculated from alchemical transformations of one ligand into another in complex with the 
receptor and in aqueous solution (Fig. 2)13. Experimental binding affinities from radioligand binding assays were 
available for 20 adenine derivatives (1–17, 19, 22–23)22, 23 and were determined in this work for three additional 
adenine-based compounds (18, 20, and 21, Supplementary Table 1). The compound pairs differed by one to five 
heavy atoms and spanned up to >500-fold changes in binding affinity. Adenine-based ligands devoid of a ribose-
like group are typically antagonists of the A2AAR, which was also confirmed for four selected compounds (5, 19, 
22, 23) by measuring inhibition of agonist-induced cAMP production (Supplementary Figure 1). Based on these 
results, a high-resolution structure of the A2AAR in an inactive conformation (PDB code 4EIY)17 was used in the 
simulations, and initial ligand binding modes were generated by aligning the adenine moiety to the adenine-like 
core of the co-crystallized antagonist. All MD simulations were performed in a spherical system centered on the 
binding site with explicit representation of protein, solvent, membrane, and ligand. Each MD/FEP calculation 
was divided into several steps, corresponding to transformations for electrostatics, Lennard-Jones, and relevant 
bonded force field energy terms. The number of steps and simulation length of each MD/FEP calculation were 
optimized to achieve convergence and the uncertainty of each step was <0.4 kcal/mol in all cases, with an average 
of 0.1 kcal/mol for all transformations. Three independent sets of simulations with an average total length of close 
to 100 ns were used to calculate the relative binding free energy for each compound pair (a total of 1.9 µs for the 
20 compound pairs).

The first set of 10 pairs of adenine derivatives (Table 1) probed opportunities for growing fragments into the 
ribose-recognizing site (pocket A, Fig. 1) and mainly involved substitutions in the N9-position of the adenine 
scaffold (Table 1). The average unsigned error for this set of relative binding free energies was 0.66 kcal/mol, 
resulting in strong correlation with experimental binding data (Fig. 3, R2 = 0.75). Relative free energies involving 
compounds 1 and 11 were not included in the analysis of correlation with experimental data as reliable Ki values 
could not be determined for these compounds due to their lack of binding at the highest tested concentration 
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(Ki > 100 μM). However, it should be noted that MD/FEP correctly predicted the direction of the shift in binding 
free energies in both cases. One example of successful fragment growth into pocket A was observed for addi-
tion of a methyl group in the N9-position of the adenine scaffold (compounds 3 and 4). This resulted in a large 
improvement of the binding affinity (2.0 kcal/mol), which was also reproduced by the calculated free energy 
change of 2.4 kcal/mol. Interestingly, substituents larger than two heavy atoms in pocket A typically reduced 
binding affinities. For example, replacement of a 9-ethyl substituent by 2-hydroxyethyl, isobutyl or propyl moie-
ties led to losses of binding affinity, which were also captured the MD/FEP calculations.

The second compound set explored the effects of substituents in the C8-position of the adenine scaffold, which 
extended into pocket B. A bromine in this position (compound 3) led to a 58-fold increase in affinity compared to 
the unsubstituted compound 2. This effect was also captured by the free energy calculations, which predicted an 
improvement in binding corresponding to 2.3 kcal/mol between compounds 2 and 3, in close agreement with the 
experimental value (2.4 kcal/mol). Interestingly, changes in affinity from addition of a bromine in the C8-position 

Figure 1.  (A) Orthosteric binding site of the A2AAR shown as white cartoon with Asn253 in sticks. The adenine 
group is shown in sticks with carbon atoms in gold and hydrogen bonds indicated with black dashed lines. 
Two adjacent subpockets are shown as spheres with yellow (pocket A, ribose group of endogenous agonist 
adenosine from the crystal structure with PDB code 2YDO)18 and cyan (pocket B, furan group of antagonist 
ZM241385 from the crystal structure with PDB code 4EIY)17 carbon atoms. (B) Two adenine-based and three 
fragment-sized ligands of the A2AAR. Ki values are provided for the fragment ligands21, 22, 24. (C) 2D structures of 
compounds 1–23. The R-groups are shown in Table 1.

Figure 2.  Thermodynamic cycle used to calculate relative free energies of binding (ΔΔGbind) from MD 
simulations. Alchemical transformations of the ligands L and L’ were performed in aqueous solution (ΔGaq, left 
panel) and bound to the receptor (ΔGprot, right panel). The protein is shown as green cartoon and the ligand is 
depicted in sticks. Water molecules are shown as red spheres and membrane carbon atoms are represented by 
grey spheres.
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were dependent on the substituent in the N9-position. This interdependency of the two substituents was also 
captured by the calculated binding free energies for this subset of four compound pairs (2–3, 5, 9, and 14–17). 
Another series of compounds with an ethyl group in the N9-position and varying substituents in C8-position (9 
and 18–23) was also considered. A 10-fold increase of binding affinity compared to compound 9 was obtained 
for the C8-methyl substituent (compound 18) and addition of a hydroxyl group in the same position (compound 
20) also resulted in improved binding. The relative binding free energies for a majority of the considered pairs 
exploring pocket B were within 1 kcal/mol of the experimental value (Fig. 3). However, for the pair consisting of 
8-alkoxy-9-methyladenine derivatives 23 and 21, there was a large discrepancy between the published experi-
mental affinity and relative binding free energy calculated from MD simulations. The experimentally determined 
values23 indicated a >1000-fold loss of binding affinity, as compound 23 showed no significant binding (reported 
Ki value > 100 μM), whereas the calculated value suggested that the two compounds had similar affinity. As this 
was a major outlier among the considered compound pairs, compound 23 was retested in a radioligand binding 
assay at the A2AAR. The Ki value was determined to be 95 nM for compound 23 (Supplementary Table S1), lead-
ing to a relative free energy of −0.8 kcal/mol, which was in better agreement with the prediction and resulted in a 
strong correlation with experiment for the second compound set (R2 = 0.75, Fig. 3).

The ability of MD/FEP to predict changes in affinity was further highlighted by the strong correlation between 
experimental and predicted binding free energies for the full set of 18 compound pairs (R2 = 0.78, Fig. 3). To 
assess the influence of experimental uncertainties on this result, the correlation was calculated for 1000 random 
selections of either the maximal or minimal Ki value obtained from the 95% confidence interval, which resulted 
in R2 = 0.75 with a standard deviation of 0.1. It should also be noted that the correlations between the exper-
imentally determined relative binding affinities and trivial size-descriptors, e.g. the difference in the number 
of heavy atoms (R2 = 0.10) or predicted 1-octanol/water partition coefficients (AlogP, R2 = 0.44), were low. In 
order to compare our results to an empirical scoring function, the adenine derivatives were also docked to the 
orthosteric site using the GLIDE docking program25 and binding free energies were calculated with the standard 
precision (SP) scoring function for the 18 compound pairs. All of the docked compounds reproduced the binding 
mode expected from crystal structures of the A2AAR in complex with adenine-based ligands. The correlation with 
experimentally determined relative binding free energies for GLIDE-SP (R2 = 0.42, Supplementary Figure 2) was 
similar to that obtained for ALogP and significantly lower than for MD/FEP.

Assessment of alternative binding modes and thermodynamic signatures of fragment bind-
ing.  The use of MD/FEP in fragment optimization could be limited by the uncertainty associated with ligand 
binding modes if a crystal structure of the complex is not available. As fragments are small, such compounds 
can bind in a large number of orientations and it may be challenging to rank these with more simplified models, 
e.g. molecular docking scoring functions12, 26. The calculations for 9-methyl adenine derivatives 2 and 3 were 
extended to explore two alternative binding modes identified by the molecular docking study carried out by 
Lambertucci et al.22 (Fig. 4A and B). Both proposed binding modes predicted a hydrogen bond between the exo-
cyclic nitrogen of the adenine moiety and the side chain oxygen of Asn253. The first binding mode involved an 
additional hydrogen bond between the N7 of the adenine-moiety and the side chain nitrogen donor of Asn253, 
leading to an orientation that was essentially identical to that observed in the crystal structure of the A2AAR 
in complex with adenosine (Fig. 1)18. In the alternative orientation, a hydrogen bond with the N1 atom of the 

Figure 3.  Comparison of calculated and experimental relative binding free energies (ΔΔGbind) for 18 
compound pairs. The solid line represents prefect agreement between calculated and experimental data whereas 
the dotted lines represent an absolute deviation of 1 kcal/mol. Experimental and computational error bars 
correspond to the data reported in Table 1.
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adenine moiety was instead obtained, resulting in a second distinct binding mode. The relative binding affinity of 
the two poses (Fig. 4A and B) was calculated by alchemically transforming one binding mode into the other via 
an intermediate compound (24) to assess their probability (Supplementary Figure 3). The calculated free energies 
suggested that the pose derived from the binding mode of adenosine in A2AAR crystal structures, which was also 
used in the MD/FEP calculations, was favored by 6.5 ± 0.1 kcal/mol. The population of the alternative binding 
mode was thus predicted to be very low and would not influence the experimentally measured binding affinity 
significantly.

The enthalpic and entropic components of the binding free energy are increasingly attracting interest in drug 
discovery as these can provide more information on the driving forces of ligand binding27. Although the exper-
imental binding free energy differences for compound 3 relative to compounds 2 and 4 were accurately repro-
duced by the MD/FEP calculations, it was not clear from visual inspection why the addition of a single heavy 
atom resulted in such a large change in binding affinity in both cases. To further quantify the change in binding 
free energy, it was decomposed into enthalpy and entropy components using a relationship analogous to the van’t 
Hoff equation. MD/FEP calculations were carried out for the two compound pairs at 13 different temperatures 
between 270 and 330 K. The enthalpy and entropy components could then be derived from the slope and inter-
cept of the relation between ΔΔGbind/T and 1/T (Fig. 4C and D)28. These calculations demonstrated that the pre-
dicted affinity increase for compound 3 relative to compound 2 was driven by entropy (−TΔΔSbind = −7.1 kcal/
mol), which was counteracted by an unfavorable enthalpy contribution (ΔΔHbind) of  +4.8 kcal/mol. In contrast, 
the gain in affinity for compound 3 relative to compound 4 was enthalpy driven (ΔΔHbind = −5.6 kcal/mol and 
−TΔΔSbind =  + 3.4 kcal/mol). Overall, there were only small differences in receptor structure between the three 
complexes based on the MD simulations, suggesting that changes in the solvent network could be responsible for 
the distinct thermodynamic profiles. MD snapshots of the water molecules in the binding site were clustered to 
identify hydration sites in the vicinity of the ligands using the algorithm developed by Young et al.29. Comparison 
of the solvent networks revealed that introduction of the 9-methyl group (compound 2) displaced an ordered 
water molecule in pocket A (Fig. 4E) whereas the 8-bromine (compound 3) replaced a different ordered water in 
pocket B (Fig. 4F). The large increases in binding affinity hence appeared to be connected to changes in binding 
site solvation in both cases, but were the result of different thermodynamic profiles.

Prospective predictions for three nonpurine fragment series.  To further challenge the MD/FEP 
method, calculations were extended to 12 fragment-sized nonpurine heterocycles of unknown affinity, which 

Figure 4.  (A) Binding mode of compound 3 based on an A2AAR crystal structure in complex with a related 
ligand (PDB code 4EIY). (B) Alternative binding mode for compound 3. (C,D) Determination of entropy and 
enthalpy components of the relative binding free energy from MD/FEP calculations at different temperatures 
for compounds 3 and 4 (C), and compounds 2 and 3 (D). (E,F) Maps of binding site solvent structure from 
clustering of snapshots from a simulation of compound 4 (E) and 2 (F) in complex with the A2AAR. The 
corresponding bromine and methyl substituents in compound 3 are represented as transparent grey sticks. In 
both cases, the water molecule displaced by compound 3 is shown as a red sphere. The orthosteric binding site 
of the A2AAR is shown as a white cartoon with a key residue in sticks. The binding modes of the ligands are 
shown in sticks with carbon atoms in gold and hydrogen bonds indicated with black dashed lines.
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represented three series with varying levels of modeling difficulty (Fig. 5). The first two compound series 
were adenine-like and had substituents that explored pocket B. Compound 25, [1,2,4]triazolo[1,5-a][1,3,5]
triazin-7-amine, was a substructure of the A2AAR antagonist ZM241385 (Fig. 1). Similar to the adenine deriv-
atives described in previous sections, this scaffold represented a case with high confidence regarding the frag-
ment binding mode and predictions were made for three compounds in this series (25–27). The second scaffold, 
derivatives of [1,2,4]triazolo[1,5-a]pyridin-8-amine 28, was less similar to adenine, but was assumed to maintain 
hydrogen bond interactions with Asn253 (Fig. 5), and relative affinities were predicted for three 2-alkyl analogs 
(29–31) that probed pocket B. The third series of five variously substituted derivatives of N-(benzo[d]thiazol-2-yl)
acetamide 32 was unrelated to adenine. This represented the most challenging series, as the binding mode of this 
scaffold was unknown. After the MD/FEP predictions had been completed, the 12 compounds were evaluated 
experimentally using radioligand binding assays, and Ki values were determined for the ligands that showed 
>50% displacement at 300 μM (Supplementary Table S2). The computational and experimental results for the 
three series of fragments are summarized in Fig. 5.

The relative binding affinities for substituted triazolo-triazin-amine derivatives 26 and 27 compared to unsub-
stituted 25 were calculated using the same protocol as for the series of adenine derivatives. The MD/FEP calcula-
tions predicted that both compound 26 (0.6 kcal/mol) and 27 (4.3 kcal/mol) had higher affinity than compound 
25, which was also confirmed experimentally. Compounds 26 and 27 had Ki values of 78.5 and 20 μM, respec-
tively, which were large improvements over compound 25 that only displayed 34% radioligand displacement at 
300 μM. For the second series of analogs, the calculated relative binding free energy (ΔΔGcalc = 0.4 kcal/mol) 
correctly predicted that the 2-methyl substituted triazolopyridine 29 (31% at 300 μM) had higher affinity than 
compound 28, which showed close to negligible radioligand displacement at 300 μM (17%). However, the 2-ethyl 
and 2-isopropyl substituted compounds 30 (49% at 300 μM) and 31 (223 μM) were incorrectly ranked relative to 
compound 29 (31% at 300 μM). Both compounds 30 and 31 were predicted to be weaker than compound 29 by 
0.9 and 2.2 kcal/mol, respectively. The discrepancies for triazolopyridines 30 and 31 were intriguing considering 
the close agreement with experiment for the adenine-like ligands. To understand the origin of these erroneous 
predictions, the MD simulation trajectories for the ethyl-substituted compound 30 and methoxy-substituted 
compound 21 were inspected visually. The main difference between compounds 30 and 21 was found to be the 
torsional angles of the substituents protruding into pocket B. For compound 21, the methoxy group primarily 
sampled angles that were within the plane of the adenine moiety, whereas the ethyl group did not align with the 
plane of the aromatic ring. Torsion angle scans for compound 30 using density functional theory (DFT) revealed 
large errors in the force field parameters both in the location of the minimum and the energy barrier height of 
the potential energy curve (Fig. 5E), whereas there was reasonable agreement between OPLSAA_2005 and DFT 
for compound 21 (Supplementary Figure 4). MD/FEP calculations were then repeated for compounds 30 and 31 
using a force field term for the torsion that reproduced the DFT calculations. The calculated relative binding free 
energies (to compound 29) changed from −0.9 to  + 0.1 kcal/mol for compound 30 and from −2.2 to + 0.7 kcal/
mol for compound 31. These shifts in calculated values resulted in accurate ranking of the two ligands relative to 
29 (Supplementary Table S2).

For the third series of compounds, 2-acetamido-benzothiazole (compound 32) was the core scaffold and 
had a Ki value of 79 μM. 4-Hydroxy-N-(4-methoxy-7-morpholinobenzo[d]thiazol-2-yl)-4-methylpiperidine- 
1-carboxamide (tozadenant), a compound that has been in clinical trials for the treatment of Parkinson’s disease30, 
could essentially be considered as a superstructure of this fragment. However, tozadenant could not be accom-
modated in the crystal structure used for the adenine derivatives in a manner that allowed for hydrogen bonding 
with residue Asn253. Hence, prior to experimental evaluation of this fragment series, an alternative binding site 
conformation based on a different A2AAR crystal structure24 was used. In this conformation, alternative side chain 
rotamers for His264 and Glu169 lead to a more open binding pocket, which could accommodate tozadenant and 
compound 32. This binding pose for compound 32 was found to be stable in MD simulations, and a representa-
tive snapshot was used as starting point for the FEP calculations (Fig. 5C). The effects of adding a methyl group at 
three different positions (4, 5 and 6) of the benzothiazole ring of compound 32 were evaluated computationally 
(Fig. 5C, compounds 33–35). Improvements of affinity corresponding to 0.3 and 0.4 kcal/mol were predicted 
by MD/FEP for compounds 33 and 34 respectively, whereas a large loss of binding was obtained for compound 
35. The predictions for compounds 33 and 34 agreed reasonably well with the subsequently determined 7-fold 
increases of affinity. Compound 35 was the weakest ligand of the three analogs with only a two-fold increase 
of affinity, but the MD/FEP calculations had predicted a loss of binding free energy in this case (2.7 kcal/mol). 
To further optimize compound 33, MD/FEP calculations were carried out for the 4-methoxy-substituted com-
pound 36. The experimentally determined 44-fold increase of affinity (corresponding to 2.3 kcal/mol, Fig. 5F) 
compared to compound 32 was partially captured by the MD/FEP calculations, which predicted a 0.8 kcal/mol 
improvement in binding free energy. Hence, whereas the direction of the change in binding affinity was correct, 
the magnitude of the improvement in affinity was underestimated. To investigate if prediction accuracy could be 
improved by increasing sampling, we retrospectively extended the simulations by doubling the production time 
for the transformation between compounds 36 and 32, which resulted in improved agreement with experimental 
data (ΔΔGbind = 1.3 kcal/mol).

Discussion
The focus of this work was to evaluate using MD simulations in combination with free energy calculations as a 
tool for fragment optimization. Three key results emerged from calculations of relative binding affinities for frag-
ments ligands of the A2AAR, a GPCR that has been intensively studied as a drug target14. First, there was a strong 
correlation between calculated and experimental relative binding free energies for ligands based on an adenine 
scaffold. Remarkably, the direction of the shift in binding free energy was correctly predicted for all of the adenine 
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derivatives that had an absolute experimental free energy change >0.5 kcal/mol. Second, the potential of MD/
FEP calculations to assess alternative binding modes and predict thermodynamic signatures of fragment binding 
was demonstrated, which could be used to tailor ligand properties during optimization. Finally, prospective pre-
dictions for three compound series and evaluation of these in pharmacological assays highlighted opportunities 
and challenges for the use of MD/FEP calculations in FBLD.

The potential of MD/FEP to guide fragment optimization was clearly demonstrated by the excellent results 
obtained for the series of adenine derivatives22, 23. Substantial changes in affinity could be achieved by intro-
duction of substituents in the C8- and N9-positions of this scaffold. These effects were not obvious by visual 
inspection of the complexes and changes in affinity did not correlate with trivial descriptors such as heavy atom 
count. The fact that addition of diverse substituents to the same subpocket improved binding affinities likely 
reflects a complex interaction network involving structural water molecules, polar and non-polar side chains. 
These effects were accurately captured by the MD/FEP calculations, but not by docking in combination with an 
empirical scoring function. As previously demonstrated by Warren et al., empirical scoring functions are more 
suitable for screening of large chemical databases to prioritize compounds for experimental testing rather than 
ranking closely related ligands by affinity31. The improved accuracy for MD/FEP may be due to explicitly tak-
ing into account water molecules, induced fit effects and associated entropic contributions to the binding9. The 

Figure 5.  (A–C) Binding modes and summary of MD/FEP predictions for three nonpurine compound series. 
The orthosteric binding site of the A2AAR is shown as a white cartoon with key residues in sticks. The predicted 
binding modes of the ligands are shown in sticks with carbon atoms in gold and hydrogen bonds indicated 
with black dashed lines. The experimental result for each fragment is shown as its Ki (μM) or % displacement 
of radioligand binding at 300 μM. The performed MD/FEP calculations are represented with arrows in red 
and green, which corresponds to accurate and erroneous predictions, respectively. (D) Summary of agreement 
of MD/FEP calculations with experimental data. The percentage of accurate predictions of the direction of 
the binding free energy change is shown. (E) Potential energy curve for the indicated torsion calculated from 
OPLSAA_2005, DFT (QM), and a molecular mechanics potential fitted to the DFT results (QM-Derived). (F) 
Concentration-effect curves for displacement of radiolabeled A2AAR antagonist [3H]ZM241385 by compounds 
27 and 36.
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performance of docking scoring functions can also be further improved for specific targets by considering the 
effects of specific water molecules22, 32, 33, but such protocols may not be readily transferred to other ligand series 
or targets. Consideration of the enthalpic and entropic components of the binding free energy has recently been 
suggested to be an important metric to guide fragment optimization8. In addition to improved predictions of 
relative affinities, MD/FEP calculations make it possible to characterize the driving forces behind a change in free 
energy, which has previously been applied successfully to study ion hydration28 and enzyme catalysis34. In this 
work, we used the same approach to investigate the large differences in binding observed for two compound pairs 
from the series of adenine-based ligands. The affinity gains obtained for a substituent in the C8-position of ade-
nine were found to be associated with a large increase of entropy and displacement of a binding site water mole-
cule in pocket B, which appeared to be a classic example of the hydrophobic effect. Interestingly, the same hotspot 
has previously been identified based on MD-derived maps of the solvent network in the A2AAR binding site35, 36. 
In contrast, the addition of methyl substituent in the N9-position, which involved displacement of a water mole-
cule from pocket B, led to a decrease of entropy and the improvement of the binding affinity was instead driven by 
enthalpy. Large improvements of affinity due to the addition of a single heavy atom, which has been referred to as 
the “magic methyl” effect, may hence have completely different thermodynamic origins. Although the predictions 
of the entropy and enthalpy contributions to the relative binding free energies will need to be further tested by 
comparison to experimental data, our results suggest that MD/FEP is not limited to guiding affinity optimization, 
but can also be used to tailor the thermodynamic profile of ligands.

Application of the MD/FEP technique to fragment-sized molecules has several advantages from a methodo-
logical standpoint. Molecular mechanics force fields are likely more accurate for fragment- than for drug-like com-
pounds as parameters are typically developed based on fragment-sized molecules37. Furthermore, it should be more 
feasible to reach convergence of the free energy calculations for fragments as such molecules typically have fewer 
degrees of freedom than drugs. Comparison of our results to a recent study that applied the MD/FEP technique to 
two series of lead-like A2AAR ligands supports this idea38. The lower correlation with experiment obtained for two 
series of adenine-derived ligands may reflect that these were of lead-like size and interacted with the flexible extra-
cellular loops whereas the fragments considered in this work had limited conformational flexibility and extended 
into a relatively rigid TM region. Interestingly, two recent benchmarks of binding free energy calculations for a large 
number of soluble targets showed a similar trend10, 39. It should be noted that access to information regarding the 
binding mode for a representative ligand was likely a key contributor to the accuracy of the MD/FEP calculations 
in all cases. Hence, if a high-resolution structure of a representative complex is available, MD/FEP calculations can 
be a valuable technique for ligand optimization and the approach appears to be particularly suited for fragments.

The prospective predictions carried out for three different fragment series revealed potential pitfalls for the use 
of MD/FEP to predict ligand binding affinities. In this case, the compounds had affinities in the high micromo-
lar to millimolar range, which closely mimicked the scenario encountered in fragment-to-lead optimization3. In 

Ligand 
pair  
(A → B)

cmpd A cmpd B ΔΔGbind (kcal/mol)

R1 R2 R1 R2 Experimentala Calculatedb

1 → 2

pocket A

— — H CH3 <−1.6 −3.9 ± 0.2

3 → 4 Br CH3 Br H 2.0 ± 0.3 2.4 ± 0.0

5 → 3 Br CH3CH2 Br CH3 0.5 ± 0.3 −1.2 ± 0.0

6 → 5 Br HOCH2CH2 Br CH3CH2 −1.5 ± 0.2 −2.5 ± 0.1

7 → 5 Br CH3CH2CH2 Br CH3CH2 −1.1 ± 0.2 −0.5 ± 0.1

8 → 5 Br (CH3)2CHCH2 Br CH3CH2 −2.9 ± 0.3 −2.3 ± 0.1

9 → 2 H CH3CH2 H CH3 0.7 ± 0.2 0.2 ± 0.0

10 → 9 H HOCH2CH2 H CH3CH2 −1.0 ± 0.2 −1.4 ± 0.1

11→ 9 H (CH3)2CHCH2 H CH3CH2 <−2.3 −3.2 ± 0.0

12 → 13 H HOCH2CH2CH2 H CH3CH2CH2 0.5 ± 0.2 0.6 ± 0.4

3 →2

Pocket B

Br CH3 H CH3 2.4 ± 0.2 2.3 ± 0.2

5 → 9 Br CH3CH2 H CH3CH2 2.2 ± 0.3 1.5 ± 0.0

14 → 15 Br cC5H9 H cC5H9 0.0 ± 0.3 −2.2 ± 0.2

16 → 17 Br CH2CHCH2CH2 H CH2CHCH2CH2 1.0 ± 0.2 0.3 ± 0.2

18 → 9 CH3 CH3CH2 H CH3CH2 1.4 ± 0.2 1.4 ± 0.0

19 → 9 furyl CH3CH2 H CH3CH2 3.8 ± 0.2 5.4 ± 0.2

20 → 9 OH CH3CH2 H CH3CH2 0.4 ± 0.2 0.1 ± 0.1

21 → 18 CH3O CH3CH2 CH3 CH3CH2 1.3 ± 0.1 2.7 ± 0.1

22 → 21 CH3CH2O CH3CH2 CH3O CH3CH2 −0.3 ± 0.2 −0.4 ± 0.0

23 → 21 (CH3)2CHO CH3CH2 CH3O CH3CH2 <−4.9/−0.8c 0.0 ± 0.1

Table 1.  Calculated and experimental relative binding free energies for 20 compound pairs based on adenine. 
2D structures of the compounds are shown in Fig. 1C. aUncertainties are calculated as the standard error of the 
mean based on the maximal and minimal affinities values obtained from the 95% confidence intervals of the 
experimentally determined Ki values. Experimental Ki values can be found in Supplementary Table 1. bAverage 
relative binding free energy from three independent trajectories with uncertainties estimated as the standard 
error of the mean. cKi value from reference 23/Remeasured Ki value in this work (Supplementary Table 1).
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http://1
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agreement with the results obtained for the adenine derivatives, the predictions were excellent for the fragments 
derived from a ligand co-crystallized with the A2AAR. The second fragment series illustrated the importance of 
high quality torsional force field parameters for small molecule ligands. The MD/FEP calculations based on 
OPLSAA_2005 parameters were not in agreement with experimental data, whereas a DFT-derived torsional poten-
tial resulted in correct ranking of the compounds. This result suggests that force field parameters should be used 
with caution even for fragment-sized molecules. As we focused only on congeneric series of compounds with mainly 
non-polar substituents, the performance of the partial atomic charges from OPLSAA_2005 was not assessed in this 
work. For example, consideration of different heterocyclic compounds could involve large changes in charge distri-
bution, which may not be accurately represented by empirical partial charges. Fortunately, as fragments will have a 
small number of atoms and rotatable bonds, torsions and partial charges could in principle be derived using ab initio 
methods prior to the MD/FEP calculations to further enhance modeling accuracy. In line with these ideas, particular 
focus was put on improvements of torsional potentials and partial atomic charges in the recently released OPLS3 
force field for organic molecules40. The last series of fragments illustrated challenges associated with lack of crystal 
structure information regarding fragment binding modes. Modeling of the binding mode involved consideration 
of several binding site conformations and required expert knowledge regarding ligand recognition by the target. 
Encouragingly, the direction of the change in binding free energy was correctly predicted in three out of four cases, 
but the magnitude of the shift in affinity was not always captured. Considering the many uncertainties involved in 
modeling of fragment binding modes, fragment optimization in the absence of a crystal structure should be con-
sidered to be very challenging. In these instances, the use of metadynamics41 and MD/FEP in combination with 
mutagenesis studies42, 43 to identify ligand binding modes hold promise. Binding modes that reproduce the initial 
structure-activity relationships could be used to guide compound selection in the following rounds of optimization.

The major advances made in molecular and structural biology for GPCRs44, 45 make it possible to apply FBLD to 
numerous targets of therapeutic interest. In the case of the A2AAR, fragment screening against stabilized receptor 
constructs by biophysical methods19, 20 and computationally using molecular docking21 have led to the discovery of 
diverse starting points for development of lead compounds. The determination of multiple high-resolution crystal 
structures of GPCRs in complex with fragments24, 46 provides exciting opportunities to apply computational meth-
ods in FBLD for GPCRs. Our results demonstrate that the MD/FEP approach can contribute to efficient optimiza-
tion of fragment hits, which is key for successful use of FBLD in drug development. The combination of molecular 
docking screening for fragment identification and efficient ligand optimization via MD/FEP has the potential to 
become a powerful addition to the toolbox of methods used in fragment-based drug discovery.

Methods
MD/FEP calculations.  The MD simulations were performed using a high-resolution crystal structure of the 
A2AAR (PDB accession code: 4EIY, 1.8 Å)17. In a first step, a hydrated 1-palmitoyl-2-oleoyl phosphatidylcholine 
(POPC) membrane bilayer was first equilibrated around the A2AAR structure with periodic boundary conditions 
using the 4.5.5 version of GROMACS47. These simulations were setup using the GPCR-ModSim protocol48 and 
the OPLS all atom (OPLSAA) force field37, TIP3P waters49, and Berger lipid parameters50. All protein atoms were 
tightly restrained to their initial coordinates and the hydrated membrane was equilibrated for a total of 40 ns at 
300 K. All MD/FEP calculations were carried out starting from the membrane equilibrated A2AAR system using 
the program Q51 with the same force field. Ligand parameters were obtained using the OPLSAA_2005 version 
implemented in the program hetgrp_ffgen (Schrödinger, LLC, New York, NY, 2017). The simulations were car-
ried out at 310 K in a sphere of 18 Å radius centered on the ligand. All protein, water, and ligand atoms within 
18 Å of the center of the sphere were explicitly included in the simulations. Atoms close to the sphere edge were 
restrained to their initial coordinates and atoms beyond the sphere edge were excluded from nonbonded interac-
tions. Asp, Glu, Lys, and Arg residues within 15 Å of the sphere center were protonated according to their most 
probable states at pH 7 and ionizable residues closer to the sphere edge were set to their neutral state. The proto-
nation states of the histidines in the binding site were set by manual inspection. His278, His250, and His264 were 
protonated at Nδ, Nε, and both nitrogen positions, respectively. The series of 2-acetamido-benzothiazole deriva-
tives (compounds 32–36) were simulated with conformations of His264 and Glu169 obtained from an alternate 
crystal structure of the A2AAR24. In these simulations His264 was protonated at the Nδ position. The SHAKE52 
algorithm was applied to constrain all solvent bonds and angles and the water molecules at the sphere surface 
were subjected to radial and polarization restraints according to the SCAAS model51, 53. A nonbonded cutoff of 10 
Å was used for all atoms except the ligand, for which no cutoff was applied. Long-range electrostatic interactions 
were treated with the local reaction field method54. The time step was set to 1 fs and nonbonded pair lists were 
updated every 25 steps. In the simulations of the ligands in aqueous solution, the compound was positioned in the 
center of the sphere and a weak harmonic restraint was applied to a central atom (e.g. C5 of the adenine scaffold) 
to prevent it from approaching the sphere edge. Clustering of the water network in the binding site was carried 
out based on a simulation of 8 ns with the receptor and ligand restrained to their starting coordinates, from which 
8000 snapshots were extracted and processed using the algorithm of Young et al.29.

The relative binding free energy for a pair of compounds was calculated in multiple steps using MD/FEP: (i) 
The transformation of partial charges and (ii) combined transformation of Lennard-Jones (LJ) and parameters 
involving covalent bonds in several MD/FEP calculations. If multiple heavy atoms were annihilated, a separate 
MD/FEP calculation was carried out to remove these in a step-wise manner. A soft-core potential was intro-
duced for the atom in a first step, followed by removal of the resulting van der Waals potential42, 55. The force field 
parameters describing angles, bonds, and improper torsions were retained for annihilated atoms whereas the 
torsional potential was removed in some cases to improve convergence. The total free energy was calculated as 
the sum of the results obtained in each step. Each MD/FEP calculation was divided into n intermediate states that 
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were equilibrated separately. The potential (Um) defining each state was a linear combination of energy functions 
describing the start- (A) and endpoint (B) of the transformation

λ λ= − +U U U(1 ) (1)m m A m B

where λm varies from 0 to 1. The FEP calculations involving partial charges were performed using 11 states 
whereas the number of λ values used to transform LJ and bonded parameters varied from 40 to 122 steps. Each 
receptor-ligand complex was equilibrated for 475 ps at each λ value. In this simulation, harmonic restraints on 
the protein and ligand atoms were released in several steps and the temperature was gradually increased to 310 
K. The equilibration step was followed by 250 ps of unrestrained simulation, from which potential energies were 
extracted. The same transformation was carried out in a spherical water droplet. In this case, the system was equil-
ibrated for 350 ps, followed by 100 ps of unrestrained simulation. The free energy difference between states A and 
B was calculated by summing up the free energy differences of the n intermediate states using

∑Δ = −→
=

−
− −+G kT eln

(2)A B
FEP

m

n
U U kT

m
1

1
( )/m m1

where 〈…〉m represents an ensemble average on the potential Um, which is calculated from the MD simulations13. 
Three replicates, which were initiated from different starting velocities for the atoms in the system, were per-
formed for each state and these were exponentially averaged in calculations of the free energy. The uncertainty 
of a transformation was quantified as the difference in free energy obtained by applying the FEP formula in the 
forward and reverse direction and was optimized by increasing the number of λ values or simulation length until 
convergence was obtained. The uncertainty of a calculated relative binding free energy was estimated as the stand-
ard error of the mean of three independent trajectories.

The enthalpy (ΔΔHbind) and entropy (ΔΔSbind) contribution to the relative binding free energy were calcu-
lated from a relationship analogous to the van’t Hoff equation28. Each FEP transformation was carried out at 5 
K intervals between 270 and 330 K to calculate the temperature dependence of the relative binding free energy 
(ΔΔGbind). The entropy and enthalpy components were then calculated from the slope and intercept of the rela-
tion between ΔΔGbind/T and 1/T:

ΔΔ
= ΔΔ − ΔΔ

G
T T

H S1
(3)

bind
bind bind

Molecular docking and ALogP calculations.  The docking calculations were carried out with GLIDE25 
(version 6.0, Schrödinger, LLC, New York, NY, 2017) using the standard precision (SP) protocol and default set-
tings. The same A2AAR crystal structure (PDB code 4EIY17) and protonation states for the ionizable residues as 
in the MD simulations were used. Prior to docking, all non-protein atoms (e.g. water molecules) were removed 
and the binding site was defined based on the co-crystallized ligand. ALogP values were calculated using Maestro 
(Release 2017–1: Maestro, Schrödinger, LLC, New York, NY, 2017).

Torsion scans.  Potential energy profiles for the ethyl and methoxy substituents of compounds 21 and 30 were 
calculated using Gaussian0956. The torsional scans were performed using B3LYP/DFT with the 6-311++G(d,p) 
basis set57–60 and a full geometry optimization was carried out at each point. The corresponding force field poten-
tial energies were calculated based on the geometries obtained from the DFT optimization.

Radioligand binding and functional assays.  Radioligand binding assays for compounds 25–36 were 
performed as previously described61 using membrane preparations from Chinese hamster ovary (CHO) or 
human embryonic kidney (HEK)293 cells stably expressing the human A1, A2A or A3AR. The following radioli-
gands: antagonist [3H]DPCPX (0.5 nM); antagonist [3H]ZM241385 (1.0 nM); and agonist [125I]AB-MECA (0.2 
nM) were used for A1, A2A, and A3ARs, respectively. Binding parameters were calculated using Prism 6 software 
(GraphPAD, San Diego, CA, USA). IC50 values obtained from competition curves were converted to Ki values 
using the Cheng-Prusoff equation. Data were expressed as mean ± standard error. The radioligand binding assays 
for compounds 18, 20, 21, and 23 were performed as previously described23. Each Ki value was determined from 
at least three independent experiments.

Four adenine derivatives (compounds 5, 19, 22, and 23) were evaluated in functional assays. CHO cells, stably 
transfected with the human A2AAR and transiently with firefly luciferase biosensor, were grown adherently and 
maintained in Dulbecco’s Modified Eagles Medium with nutrient mixture F12 (DMEM/F12 with phenol red), 
supplemented with 10% FBS (Fetal Bovine Serum), 100 U/mL penicillin, 100 µg/mL streptomycin, 2.5µg/mL 
amphotericin, 1 mM Sodium pyruvate, and 0.1 mg/mL Geneticin (G418) at 37 °C, and aerated with 5% CO2: 
95% O2. Cells were harvested in CO2 independent media and counted in a Neobauer chamber. The desiderate cell 
number was incubated in equilibration medium containing a 3% v/v GloSensor cAMP reagent stock solution, 
10% FBS and 87% CO2 independent medium. After 2 hours of incubation cells were dispensed in wells of 384 well 
plate and when a steady-state basal signal was obtained, different concentrations of antagonists were added. After 
10 min, 1 µM of 5′-N-ethylcarboxamidoadenosine (NECA), the reference agonist, was injected. Responses were 
expressed as percentage of the Maximal Relative Luminescence Units (RLU). Inhibition-response curves were 
fitted by a non-linear regression using a Prism 4.0 program (GraphPad Software, San Diego, CA, USA).
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