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A Cryosectioning Technique 
for the Observation of 
Intracellular Structures and 
Immunocytochemistry of Tissues in 
Atomic Force Microscopy (AFM)
Eiji Usukura1, Akihiro Narita1, Akira Yagi2, Nobuaki Sakai2, Yoshitsugu Uekusa2, Yuka Imaoka2, 
Shuichi Ito2 & Jiro Usukura   1

The use of cryosectioning facilitates the morphological analysis and immunocytochemistry of cells 
in tissues in atomic force microscopy (AFM). The cantilever can access all parts of a tissue sample in 
cryosections after the embedding medium (sucrose) has been replaced with phosphate-buffered saline 
(PBS), and this approach has enabled the production of a type of high-resolution image. The images 
resembled those obtained from freeze-etching replica electron microscopy (EM) rather than from 
thin-section EM. The AFM images showed disks stacked and enveloped by the cell membrane in rod 
photoreceptor outer segments (ROS) at EM resolution. In addition, ciliary necklaces on the surface of 
connecting cilium, three-dimensional architecture of synaptic ribbons, and the surface of the post-
synaptic membrane facing the active site were revealed, which were not apparent using thin-section 
EM. AFM could depict the molecular binding of anti-opsin antibodies conjugated to a secondary 
fluorescent antibody bound to the disk membrane. The specific localization of the anti-opsin binding 
sites was verified through correlation with immunofluorescence signals in AFM combined with confocal 
fluorescence microscope. To prove reproducibility in other tissues besides retina, cryosectioning-AFM 
was also applied to elucidate molecular organization of sarcomere in a rabbit psoas muscle.

Atomic force microscopy (AFM) displays structures by tracing the surface of a sample with the sharp needle of a 
cantilever. The vertical movement following lateral scanning with the cantilever is not stable for long periods of 
time. Thus, the practical resolution is reduced compared to the theoretical potential resolution. Nevertheless, this 
technique has continued to be used in cell biology because AFM enables the observation of samples in liquid envi-
ronments. Increases in scanning speed and stability and hardware improvements have gradually increased the 
practical resolution of the technique. Surprisingly, the movements of motor proteins and molecular shapes were 
captured using recent high-speed AFM techniques, although they were detected in a reconstituted system using 
purified molecules1, 2. AFM has not been widely used in cell biology, perhaps because unlike other microscopy 
techniques, intracellular structures are not usually observed directly in AFM. This limitation is because the cell 
membrane prevents access for the cantilever. Only the external surfaces of native or fixed cells had been observed 
using AFM until the development of the unroofing technique to prepare AFM samples. This technique was a 
breakthrough for the use of AFM because it enabled the direct visualization of part of the cytoskeleton at EM res-
olution in cultured cells3–5. However, the unroofing technique is effective only in cultured cells and does not work 
in tissues. For AFM to become a key type of microscopy in cell biology, it will need to achieve similar imaging 
capabilities as EM in terms of being able to display fine intracellular structures in tissues and having the capacity 
to be used to identify constituent proteins, which is similar to the process for immunohistochemistry. A cryo-
sectioning technique was applied to solve this problem. To observe fine structures in tissues with AFM, several 
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previous studies have used conventional plastic sections6–12. However, only the cell contours and some organelles 
were faintly detected because the cutting surface of the resin-embedded sample was flat without removing the 
resin. In EM, electrons that are scattered, absorbed and interfered by the samples form the image contrast. AFM 
forms images by touching and scanning the sample with a needle, but structures never appear unless the resin is 
removed. One study using plastic sections successfully embossed the inside structures by dissolving the surface of 
thin sections with alcohol7. Unfortunately, however, the contrast was not sufficient because there was insufficient 
embossing with alcohol. In fact, the complete removal of the resin without damaging the sample appears to be 
difficult after resin polymerization, even if the resin monomer is water-soluble. In many cases of choosing plastic 
sections, the specimens were fixed strongly with OsO4 and stained with lead citrate. The advantage of AFM, i.e., 
that it can be used in water and close to the native state, was wasted. Therefore, it is important to consider how the 
embedding medium is removed. This study focused on cryosections prepared using the Tokuyasu method13–15 
in which samples are fixed slightly with glutaraldehyde and embedded in sucrose. Sucrose was expected to dis-
solve easily from the sample when soaked in buffer. The Tokuyasu method was originally developed for effective 
immunolabelling rather than structural analysis. Therefore, a capacity for immunocytochemistry in AFM would 
also be possible when using this method.

Results
Using the Tokuyasu method to prepare cryosections, the samples were fixed with 2% glutaraldehyde in the 
buffer and embedded in sucrose prior to freezing. Accordingly, the fine structures in tissues were well preserved 
throughout the preparation procedures, from freezing to sectioning and warming up. Whether the embedding 
medium can be removed easily after slicing is an essential point. As expected, sucrose could be dissolved and dis-
persed over time by immersing a section in phosphate-buffered saline (PBS). This removal enabled the cantilever 
to make direct contact with both the inside and outside surfaces of the cell membrane, organelles and cytoplasm 
in cells of tissues, as illustrated in Fig. 1. Cryosections from 150 nm to 400 nm in thickness were used, but the 
thickness was not appropriate for use in EM. Rather, the thickness was better for AFM because the membrane 
surface was exposed after removing the sucrose. A three-dimensional structure of membrane surfaces was never 
observed in conventional thin-section EM. After removing the embedding media, even if the sections were thin, 
AFM provided unique structural information different from that obtained from conventional thin-section EM. 
Several findings concerning the desmosome, Golgi apparatus, endoplasmic reticulum, mitochondria and addi-
tional structures have been obtained from analysis of the constituent cells in the retina. However, the present 
study evaluated chiefly the fine structures of photoreceptor cells, especially in the outer segments, the connecting 
cilium, and the synaptic regions that we are interested in. In order to assess reproducibility and availability of this 
technique, AFM imaging of muscle cells prepared by cryosectioning were described. To aid interpretation and 
compare this approach to alternate techniques, electron micrographs of thin sections are provided as insets in 
Figs 2, 3 and 4.

Rod outer segments (ROS) of photoreceptor cells.  The overview of ROS that the disk membrane piled 
up is enveloped by a cell membrane resembling a thin-section EM image but was different in the observations 
made by AFM at various points in detail. As a whole, the disk membrane appeared to be more three-dimensional 
with AFM (Fig. 2A,B and C). In the cases of grazing sections, the external surface of the cell membrane envelop-
ing the disks was exposed widely because the embedding medium (sucrose) was removed (Fig. 2C). Although 
the disk is a flat sacculus, the lumen of the disk was mostly collapsed, except at incisures and marginal regions. 
Generally, the cell and organelle membrane appears as a unit structure (a tri-lamellar structure containing dark, 
light and dark layers), similar to a line drawing in thin-section EM (Fig. 2D). Therefore, the situation of the 
luminal space is understood at a glance in thin-section EM, even if it is very narrow or tightly collapsed. It was 

Figure 1.  An illustration showing the difference in imaging between resin sections (A) and cryosections (B) 
with AFM. A: Polymerized resin is hard to remove; therefore, the cantilever just traces the flat surface of the 
resin section. B: For the cryosection, the embedding medium (sucrose) was removed by immersing the sections 
in PBS. The fine structures in cells and tissues were then exposed, which enabled the cantilever to trace along 
any undulations that appeared.
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considerably difficult to recognize that a disk was a flat sacculus with AFM, but the lumen was barely registered 
as a groove at high magnification (Fig. 1B). The unit structure was not observed, regardless of magnification. 
Visual pigments (opsin) that are major intrinsic membrane proteins of the disks span the full thickness of the 
lipid bilayer of the disk membrane. Therefore, the unit structure found in conventional thin-section EM may be 
a staining effect with osmium tetroxide and lead citrate. Rather, granularity was represented in a disk membrane 
at high magnification with AFM (Fig. 2B). The arrangement of disks in the outer segments was quantified by 
Fourier transform. The periodicity of disk piling (approximately 28 nm) was preserved well in thin-section EM 

Figure 2.  AFM images of the cryosections of photoreceptor rod outer segments after removing the sucrose 
embedding medium (A,B,C). Double-headed arrows indicate the scanning direction of the cantilever. (A) 
Highly ordered piling disks were observed, but the luminal spaces of the disks were almost collapsed, except 
at the incisures and the peripheral region (compared to the thin section EM image, D). (B) When enlarging 
the images of part of the disks, the luminal spaces look like slits. The unit membrane structure of the disks that 
appeared in D was not observed, but the structure appears to contain globular substances. (C) The marginal 
surfaces of the disk membranes are exposed but partially covered with cell membrane (asterisk) when the 
sections were near the peripheral region. (D) Thin-section EM image of the ROS inserted for a comparative 
analysis and better understanding of the ROS structure. The insets in A and D are Fourier transforms of A and 
B, respectively. The inset in A shows periodicity of disks piling up, but a high-resolution zone was obscured 
by another random structure, and there seems to be subtle information in the lateral direction of the disk 
membranes (arrows). Although the inset in D shows highly ordered periodicity of disks due to the contrast 
enhanced by the staining effect as though it were a line drawing, there is no information in the lateral direction 
of the disks.

Figure 3.  The AFM images of the connecting region between the outer and inner segment showing the 
outside and inside of the connecting cilium (CC). (A) The ciliary necklaces (an arrow) are exposed to the 
external surface of the connecting cilium because of the removal of sucrose. The upper section area contained 
microtubules (MT) that should be doubled in size. The finer structure of the microtubules is not observable. 
(B) The same image from A at a higher magnification. The external surfaces of the connecting cilium and 
microtubules are coloured in green and yellow, respectively. (C) A conventional thin-section EM image 
included as a reference.
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compared to AFM. In thin-section EM, however, the Fourier pattern in the vertical direction (piling direction) 
was emphasized as though it were a line drawing. It is thought that the osmium fixation and lead citrate stain-
ing enhanced the contrast and, inevitably, that the vertical periodicity of the disks was emphasized. In contrast, 
the Fourier diffraction image of the AFM contained a substantial halo, which hid a vertical reflection of the 
high-resolution zone. However, diffraction halo in AFM means, to some degree, that many random structures 
were contained in the arrangement of the disk membrane. Under careful observation, subtle spots seem to be 
found at the high-resolution (approximately 6 nm) zone in a direction perpendicular to disk piling.

Connecting region between the outer and inner segments.  The vertebrate photoreceptor is a highly 
polarized cell that is divided into three regions: the outer segment, the inner segment and the synaptic region. 
The connecting cilium bridges the outer and inner segments, as shown in Fig. 3A,B,C. The surface of the con-
necting cilium has been never observed three-dimensionally when using thin-section EM (compare Fig. 3A,B 
with Fig. 3C). However, the cantilever could access this surface in the extracellular space after the sucrose was 
removed. Thus, AFM could visualize ciliary necklaces (ciliary membrane specialization)16, 17 on the surface and 
inside the connecting cilium (Fig. 3A,B). This is the first AFM observation using PBS. Microtubules extending to 
the ROS inside the connecting cilium were also detected. However, the proto-filaments were not discernible in the 
microtubules because the microtubules in this area formed doublets and seemed to be modified by many associ-
ated proteins. Small granular substances filled the cytoplasm of the connecting cilium. It is still unclear whether 
such granularity reflects the real appearance of soluble components in cytoplasm or whether micelles of protein 
and/or sucrose remained behind the fine structures. Therefore, additional washes using PBS may be required to 
enable the detection of finer microtubule structures.

Synaptic region.  The photoreceptor cells form a recessing type of compound synapse, unlike the types found 
in the central nervous system. Special systems for recruiting synaptic vesicles to the synaptic release site (or 
active zone), the so-called synaptic ribbons18–20, are found in the synaptic region of the photoreceptor cells. The 
AFM displayed these synaptic ribbons three-dimensionally and further depicted the cytoplasmic surface of the 
pre-synaptic membrane as well as the outer surface of the post-synaptic membrane (Fig. 4A,B,C). The synaptic 
ribbons were tethered onto the cytoplasmic surface of the membrane at the active zone with short filaments, 
and a bilayer of globular substances was observed that was approximately 4 nm in diameter (Fig. 4A). This result 
was consistent with the results of previous experiments of freeze-etching EM21. Circular arrangements of small 
particles were observed on the cytoplasmic surface of the pre-synaptic membrane in active zones (Fig. 4A). This 
finding suggests that the synaptic vesicles dock in a structure similar to the mark of a kiss. In addition, cryosection 
AFM revealed an array of highly ordered particles on the outer surface of the post-synaptic membrane (Fig. 4C). 
After careful observation, these particles seemed to be trans-membrane proteins, as shown in Fig. 4B and C.

Immunocytochemistry in AFM.  Currently, the AFM is a microscope measuring undulation of the spec-
imen surface and/or force to receive data on the surface with a scanning needle. Therefore, AFM cannot distin-
guish whether detected particles are antibodies or other original binding proteins, even if a specimen is labelled 
specifically with an antibody. This is the first report on immunocytochemistry with AFM. ROS labelled with 
anti-opsin antibody was used in this study to make labelling easier to identify and because opsin (visual pig-
ment) is a major intrinsic membrane protein. This is why the retina was chosen as the material for this study. To 

Figure 4.  Atomic force micrographs of the synaptic active zone of photoreceptor cells (A,B,C). (A) The synaptic 
ribbons (SR) are tethered onto the cytoplasmic surface (green) of the pre-synaptic cell membrane with short 
filaments (arrow). The arrowheads indicate the characteristic circular structure on the cytoplasmic surface. (B) 
The post-synaptic membrane facing the pre-synaptic active zone contains several trans-membrane particles 
(arrow). An asterisk shows the cytoplasmic surface of the post-synaptic membrane. SR: synaptic ribbon. (C) The 
external surface of the post-synaptic membrane facing the active zone contains highly ordered particles (arrow). 
(D) A conventional thin section EM image in the synaptic active zone is provided in the inset for comparison. 
SR: synaptic ribbon.
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verify the immunolabelling in AFM, correlative analysis with confocal laser scanning microscopy (CLSM) was 
performed. An AFM (BIXAM) used in this experiment was combined with CLSM for simultaneous imaging 
through AFM and CLSM at a single location. The anti-opsin antibody was visualized using a secondary anti-
body conjugated with fluorescent dye (Alexa Fluor 568) for use with CLSM. Fluorescent signals for anti-opsin 
were specifically located at the ROS, and the ROS debris were shed and internalized into pigment epithelial cells 
(Fig. 5A). AFM successfully detected antibodies that were bound to the disk membrane along with fluorescent 
signals at the same time and location. CLSM detecting fluorescent signals emitted from the dye conjugated with a 
secondary antibody displayed the piling appearance of disks (Fig. 5A inset), even if the ROS was highly labelled. 
This occurred because fluorescence is emitted only from dye (small point in whole antibody). In contrast, in AFM 
images, piling disks in ROS were covered completely with irregularly shaped blobs while overlapping and fusing 
with each other (Fig. 5B), which is a feature of primary antibodies modified with secondary antibodies. Under 
careful observation at higher magnifications, however, the disks that were piled up were partially found behind 
the antibodies (Fig. 5B inset). Correlative observations with CLSM and control experiments consequently verified 
the specificity of the labelling. In principle, any antibody can be used in any tissue for this cryosectioning method. 
An evaluation of the AFM immunocytochemistry is discussed further below.

Sarcomere of rabbit psoas muscle.  Muscle fibres permeabilized with glycerination were observed by 
AFM after cryosectioning. This additional experiment was performed to prove reproducibility and the universal 
use of this preparation method in other tissues besides retina. As shown in Fig. 6, AFM displayed successfully 
the fine structure of the sarcomere at a resolution equivalent to EM. Cross bridges between thin (actin) and 
thick (myosin) filaments were recognizable in the anisotropic band (A band) (Fig. 6B,C). The myosin filament 
in the centre of the H zone (M-line) was modified by some blobs and was clearly thickened. Future experi-
ments should resolve whether such blobs are represent to the M-line constituent protein. AFM also described 
the three-dimensional architecture of the Z-disk, but it remained ambiguous as to how actin filaments were 
organized in the Z-disk (Fig. 6D). Freeze-etching EM of the sarcomere is presented in the inset of Fig. 6E as a ref-
erence, which resembles the AFM images. Under careful observation of the high-power image of the Z-disk and 

Figure 5.  AFM immunocytochemistry identifying anti-opsin antibody binding (A,B). The anti-opsin antibody 
was used to evaluate whether AFM visualized the antibody binding because opsin is the major constituent 
protein that localizes to ROS. A: Immunofluorescence images of ROS labelled with the anti-opsin antibody 
and the secondary antibody conjugated to Alexa 568. The inset shows an enlargement of the white box. (B) 
Correlative AFM images of the green boxed area in A. Compared with the control (C), the anti-opsin antibodies 
conjugated with the secondary antibodies appear to have a complicated shape and bind heavily to disks in the 
ROS. The disk arrangement is also apparent behind the labelling at higher magnifications (inset). (C) Control 
AFM image incubated with non-immune IgG.
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M-line, and by considering that AFM measures structures in water without metal deposition, AFM images seem 
to include more structural information than offered by EM. In any case, AFM combined with this cryosectioning 
technique was useful for structural analysis of muscle cells and retinal tissue.

Discussion
The structural information provided by AFM is different in principle from the information obtained by both EM 
and light microscopy (LM). Images that are obtained using LM and EM are formed by the scattering, interference 
and absorption of electrons or photons, but AFM produces an image by touching the surface of the specimen 
with a scanning needle. Therefore, AFM provides a different quality of structural information that is important 
for understanding fine structures. For example, the AFM of cryosections has revealed many tubular networks of 
membranous structures within the cytoplasm of pigment epithelial cells, as shown in Fig. 7, and these structures 
are mostly smooth endoplasmic reticulum (ER). In thin-section EM, these structures are observed as an assem-
bly of small vesicles and are occasionally difficult to interpret because electron scattering is weak and similar to 
scattering from the embedding medium (resin). The network of the cytoplasmic ER has also been observed by 
using high-resolution CLSM22, although this technique could not discriminate rough ER from smooth ER. CLSM 
does not reveal the surface of the ER because the image is formed by fluorescence emitted from the dye labelling 
the membrane lipids.

The AFM images resembled freeze-etching EM images because both techniques provide the topography of the 
surface structure. In freeze-etching EM, ice in the tissue is sublimated in a vacuum to expose fine structures after 
the frozen samples are cut. Then platinum and carbon are evaporated to replicate the surface structure. Thus, the 
observation of a freeze-etching replica by transmission EM means visualizing the cutting surface. In our AFM 
technique, a cantilever scanning with a needle recorded the undulations of the surface of the cryosections after 
the embedding sucrose was removed. Removal of sucrose corresponds to etching (freeze dry). The major point 
of difference is whether the observation is performed in a vacuum with a transmission electron microscope after 
metal shadowing or in water with AFM without a metal deposit. Accordingly, the practical resolution of AFM 
seems to be higher than freeze-etching EM, as described in a previous study5, but the observation stability may 
be better for freeze-etching EM. Nevertheless, it is very important that AFM can be used to provide supplemental 
data for freeze-etching EM.

AFM has been exclusively used to observe the external surface of the cell or in vitro systems using puri-
fied proteins23–27. The use of cryosections in this study has enabled the use of AFM to depict fine intracellular 
structures in tissues, as opposed to the analysis of in vitro cultured cells. Several investigators have previously 
attempted to observe intracellular structures in tissue using AFM. However, suitable images were not acquired 
because these researchers used resin-embedded samples6–12. It is difficult to remove or dissolve the polymerized 

Figure 6.  Atomic force micrograph of the cryosection of a rabbit psoas muscle. (A) Phase contrast light 
microscopic image of cryosections placed on a glass slide and soaked in PBS. Striations consisting of the 
anisotropic band and isotropic band were found. (B) AFM images of the anisotropic band in a sarcomere (a 
part of A) showing the interaction between thin (actin) and thick (myosin) filaments clearly. (C) High power 
AFM image of the anisotropic band showing thick filaments swelled in the centre of the H zone (M-line) and 
cross bridges (an arrow) between thin and thick filaments. (D) High magnification image of the Z-disk showing 
attachment of actin filaments. The main feature of the Z-disk remains ambiguous. (E) A freeze-etching EM 
image for reference. Half-length of a sarcomere is depicted. Z: Z-disk; I: isotropic band; A: anisotropic band.
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resin, even if the monomer is water-soluble. In a previous study, the surface of the resin section was treated with 
alcohol to emboss the fine structure7. The image becomes clearer than other AFM images of resin sections, but 
the image quality is not comparable to EM images. When embedding specimens into resin, specimens are usually 
fixed strongly with OsO4 to endure dehydration, heat-treatment and shrinkage in the polymerization process. 
Therefore, AFM observation using resin sections throws away an advantage of AFM in that AFM can be used to 
observe fine structures close to the cell’s native state in water. In contrast, in sucrose-embedded frozen sections, 
sucrose was removed easily from samples without using organic solvent. Unlike EM, observation in AFM does 
not depend on the thickness of the section. Rather, in thicker sections, the surfaces of the cell and the organelle 
membranes were detected widely and with three-dimensional properties. This is a finding that has not been 
obtained in thin-section EM. Additionally, immunolabelling was possible because the sample was fixed only 
slightly with 2% glutaraldehyde. The key goal of this study was the emphasis placed on sample preparation, which 
made it possible to remove the embedding medium (sucrose) used for cryosectioning. We hope that AFM will 
become a useful tool for histology and cell biology studies.

Therefore, important points of cryosection-AFM in cell biology are the universal use and reproducibility of 
this technique. To prove whether this method is useful in other tissues besides retina, cryosection-AFM was used 
to analyze the structure of muscle cells. In the present study, the M line and cross bridges between thin (actin) 
and thick (myosin) filaments were found in the anisotropic band (A band). The architecture of the Z line was 
also revealed at high resolution by cryosection-AFM. Accordingly, the cryosectioning technique offers sufficient 
reproducibility and universal use in histology and cell biology. This study excluded reproducibility arising from 
the skillfulness of the cryosectioning technique and the performance of the AFM hardware used. However, the 
cryosectioning technique should be straightforward for people who are familiar with microtome operation.

Another important aspect of this study is that immunocytochemistry is also possible for cryosectioned tissues 
and can be observed by using AFM combined with CLSM. AFM showed many irregularly shaped blobs covering 
ROS in cryosections labelled with the anti-opsin antibody. Such blobs were judged to be antibody binding only 
in AFM by comparing the images of control samples (compare Fig. 5B with Fig. 5C). In a strict sense, however, 
this is not conclusive evidence of the structure of an antibody, even if such blobs observed in labelled samples 
were not found in control samples. AFM cannot detect signals directly from the mark tagged to the antibody, 
such as fluorescence in LM immunocytochemistry or immuno-gold in EM. Therefore, the specific localization of 
antibody labelling cannot be evaluated with AFM only. Correlative analysis with CLSM and control experiments 
was necessary to verify the specific localization of the antibody. Several studies have tried to correlate materials 
with structures by comparing AFM images with the corresponding fluorescence images28–34. In this study, immu-
nofluorescence was recorded together with the AFM images. Our AFM (named as BIXAM) is clearly correlated 
with CLSM.

In recent years, correlative EM and LM (CLEM) have become increasingly popular in cell biology, although 
the difference in resolution between EM and LM is too large to strictly correlate the difference between them. In 
other words, the fluorescence in LM shows the same distribution of labelled proteins in a given area compared to 
the distribution visualized when using EM. In such an area, numerous proteins exist that can be visualized using 
EM, and such target proteins cannot be identified unless they are double labelled with fluorescent dye and colloi-
dal gold. In addition, computer-assisted matching is necessary to merge EM images with LM ones. In contrast, in 
AFM combined with CLSM, fluorescence and surface scanning imaging can be recorded simultaneously in water. 
Therefore, AFM images and correlative CLSM images can be merged exactly and more easily than they can in 
CLEM. A new type of correlative microscopy known as correlative atomic force and light microscopy (CALM) 
exists for this purpose. CALM is essential if immunocytochemistry is to be performed in AFM. Because AFM 
cannot detect the properties of materials, such as the signals from colloidal gold and fluorescent dyes, one cannot 
conclude that a structure displayed in an image is an antibody, despite the visualization of the molecule itself.

Figure 7.  Atomic force imaging of the cryosections of a pigment epithelial cell in retina. The cytoplasm in the 
perinuclear region is occupied by a complicated network of membranous structures (likely smooth endoplasmic 
reticulum). A similar expanse of membranous structures has been not detected with thin-section or freeze-
etching EM.
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Methods
The retinas used as samples in this study were isolated from 8 eyes of frogs (Xenopus laevis; supplied by a local 
animal dealer and another laboratory in Nagoya University) anesthetized by MS222 (Tricaine methanesulfonate, 
Wako Pure Chemical Industries, Ltd.; Osaka, Japan) (1 g/1 L), which is the most popular anaesthesia for fish and 
frogs.

Small parts of a rabbit psoas muscle were gifted from another laboratory, which was isolated under deep anes-
thetization just before experiments on actin purification were carried out in another laboratory. The provided 
muscle was immediately divided into several strips and tied to thin sticks in surgical sutures. The muscle strips 
attached to thin sticks were soaked in 50% glycerol in PBS to remove soluble components and stored for 2 days at 
−20 °C (so called glycerinated muscle).

All experiments were performed in according to Nagoya University regulations for the use of animals in 
research. The experimental protocol was proposed in advance and approved by the Institute of Laboratory 
Animals at Nagoya University (see the statement below).

The isolated 8 retinas were fixed with 2% glutaraldehyde in NaHCa buffer35–37 containing 30 mM HEPES, 
100 mM NaCl, and 2 mM CaCl2 at pH 7.4, adjusted with NaOH, for 10 min and were then dissected into small 
pieces (approximately 1 mm2). The pieces were fixed for 2 hr with 2% glutaraldehyde in KHMgE buffer35–37 con-
taining 30 mM HEPES, 70 mM KCl, 5 mM MgCl2, 3 mM EGTA at pH 7.4, which was adjusted with KOH. The 
fixed samples were washed three times (for 10 min each) with the same buffer and then moved to PBS without 
Ca (Ca free PBS).

Grycerinated muscles were warmed up to the room temperature, and washed three times (for 10 min each) 
with Ca free PBS, and then fixed with 2% glutaraldehyde in the same PBS. After fixation, samples were washed 
again three times (for 10 min each) with PBS to remove fixative.

The samples were prepared for cryosectioning according to the original Tokuyasu method8–10, except for the 
final steps. Fixed and washed samples were equilibrated with 2.3 M sucrose solution overnight. Subsequently, 
the samples were mounted on circular specimen carriers that are consumable parts of the Leica EM FC 7 cry-
omicrotome (Leica Microsystems, Vienna, Austria). The samples mounted on the carrier were quickly frozen by 
plunging them into liquid ethane cooled with liquid nitrogen.

Cryosections that were 200 nm to 300 nm thick were cut at −100 °C with a Leica EM FC 7 cryomicrotome and 
then transferred onto a glass slide using 2.3 M sucrose droplets on a perfect loop (Electron Microscopy Science, 
Hatfield, PA, USA). The glass slides used in this experiment were custom-made and consumable parts of the 
newest version of AFM (BIXAM; Olympus Corporation, Hachioji, Tokyo). These slides contain circular windows 
attached to thin glass covers surrounded by a frame printed using hydrophobic black ink (Matsunami Glass 
Industry, Ltd., Osaka, Japan). Cryosections placed on the circular window in this glass slide were warmed at room 
temperature and soaked in PBS immediately. To remove the sucrose completely, the sections were washed three 
times with PBS (for 10 min each) and left in PBS overnight. Finally, the samples were observed using AFM.

For immunocytochemistry, the sections were soaked in blocking solution containing 2% BSA (bovine serum 
albumin, fraction V) (Sigma-Aldrich; St. Louis, MO, USA) in PBS for 5 min after removing the sucrose. Then, the 
sections were washed once with fresh PBS. The sections were then incubated overnight with the primary anti-
body solution in a refrigerator. This study used the rabbit anti-opsin IgG raised against isolated bovine opsin. The 
anti-opsin antibody was diluted 1:250 with PBS containing 1% BSA and applied to the samples. For the negative 
control, samples were incubated with normal (non-immune) rabbit IgG (Santa Cruz Biotechnology, Inc., Dallas, 
TX, USA) diluted 1:200 in 1% BSA in PBS instead of the primary antibody, which was the anti-opsin antibody. 
Sections for both the labelling experiment and the control were washed six times with PBS (for 5 min per wash). 
Then the sections were incubated with goat anti-rabbit IgG conjugated to Alexa Fluor ® 568 (Invitrogen, Thermo 
Fisher Scientific, Inc.; Waltham, MA, USA) diluted 1:200 with PBS containing 1% BSA for 2 hr at room temper-
ature. The sections were then washed six times with PBS (5 min each wash). The sections were observed with the 
new AFM technique combined with CLSM.

AFM observations.  The glass slide containing the sections soaked in PBS was mounted in a tip-scan type 
AFM (BIXAM)38, which was newly combined with CLSM (FV 1200; OLYMPUS CORPORATION; Hachioji, 
Tokyo, Japan). The cantilever precisely approached the target region of the retinal tissue as observations were 
made with CLSM. The images were recorded in the phase-modulation mode in which the amplitude domain 
was approximately 1–5 nm39. This AFM technique is characterized by a small and soft cantilever (2 μm wide, 9 
μm long, and 0.1 μm thick in size) with a spring constant of 0.1 N/m (USC-F0.8-k0.1-T12-10: NanoWorld AG, 
Neuchatel, Switzerland). The radius of the scanning tip was approximately 8–10 nm. The resonance frequency 
of the probe tip was 0.8 MHz in the air and approximately 400 kHz in water. The maximum scanning range of 
the device was 4 μm (x axis) × 3 μm (y axis), and a range of 200–600 nm was scanned in this study. The scanning 
resolution was 320 pixels (x axis) × 240 lines (y axis).

Thin section EM images inset in Figs 2, 3 and 4.  These EM images are freeze-substitution thin sections. 
Frog retinas frozen rapidly were soaked in 1% OsO4 in absolute acetone cooled at −80 °C for two days21. Then, the 
samples were gradually warmed to room temperature and washed three times with fresh absolute acetone (5 min 
each). The samples were then embedded and sectioned in the conventional way. All sections were observed after 
staining with uranyl acetate and lead citrate.

Freeze etching replica image inset in Fig. 6 for reference.  Glycerinated muscles were heated to room 
temperature, washed three times (for 10 min each) with Ca-free PBS and fixed with 2% glutaraldehyde in PBS 
for 2 h. The fixed samples were washed again three times (for 10 min each) with PBS, assembled on the specimen 
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holders and then frozen quickly by slamming the samples onto a copper block cooled with liquid helium. Frozen 
specimens were processed as described previously40.

Animal experiments.  E.U., A.N., J.U have licenses for experimental animal use in Nagoya University, 
which were issued after the authors received training on guidelines and regulations for animal use in research. 
Experimental protocols must be proposed in advance to the Institute of Laboratory Animals in Nagoya University. 
Experiments were performed with approval of the protocol in this study.
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