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Human amniotic membrane as 
newly identified source of amniotic 
fluid pulmonary surfactant
Angela Lemke   1,2, José Carlos Castillo-Sánchez3, Florian Prodinger4, Asja Ceranic4, Simone 
Hennerbichler-Lugscheider2,5, Jesús Pérez-Gil   3, Heinz Redl1,2 & Susanne Wolbank1,2

Pulmonary surfactant (PS) reduces surface tension at the air-liquid interface in the alveolar epithelium 
of the lung, which is required for breathing and for the pulmonary maturity of the developing foetus. 
However, the origin of PS had never been thoroughly investigated, although it was assumed to be 
secreted from the foetal developing lung. Human amniotic membrane (hAM), particularly its epithelial 
cell layer, composes the amniotic sac enclosing the amniotic fluid. In this study, we therefore aimed to 
investigate a potential contribution of the cellular components of the hAM to pulmonary surfactant 
found in amniotic fluid. We identified that cells within the native membrane contain lamellar bodies 
and express all four surfactant proteins as well as ABCA3. Lipidomic profiling by nanoESI – MS/MS 
revealed the presence of the essential lipid species as found in PS. Also, the biophysical activity of 
conditioned cell culture supernatant obtained from hAM was tested with captive bubble surfactometry. 
hAM supernatant showed the ability to reduce surface tension, similar to human PS obtained from 
bronchoalveolar lavage. This means that hAM produces the essential PS-associated components and 
can therefore contribute as second potential source of PS in amniotic fluid aside from the foetal lung.

Pulmonary surfactant (PS) is known to be produced and secreted by alveolar epithelial type II cells as a 
surface-active lipid-protein complex. Its function relies on minimizing surface tension at the air-liquid interface 
and therefore enabling the gas exchange in the lung by preventing the collapse of alveoli during expiration1, 2. 
The predominant component of PS are lipids (90%), mainly comprising dipalmitoylphosphatidylcholine (DPPC; 
40%) and other phospholipids (40%). The latter ones include unsaturated PC species and around 15% of anionic 
phosphatidylglycerol (PG) and phosphatidylinositol (PI)2, 3. These lipids changed evolutionary to enhance sur-
factant activity4 and to enable extreme minimization of surface tension5. Only a minor part of PS is composed of 
plasma proteins (5%) and surfactant-associated proteins (SP-A, B, C and D, 5%), which are playing an important 
role irrespective of their minor presence6.

In general, if the function of PS is disturbed or if it is present at insufficient amounts, the consequences can be 
fatal. Surfactant deficiency can occur in babies from immature lung development during foetal growth, leading 
to infant respiratory distress syndrome (IRDS). This occurs in approximately one per cent of all newborns and is 
the leading cause of death in preterm babies7, 8. But also acquired PS failure, emerging from acute lung injury, can 
lead to acute respiratory distress syndrome (ARDS), chronic lung diseases and even lung failure, also in the adult9.

Therapeutic options to improve complications associated with these diseases are limited. One therapeutic 
strategy is the exogenous application of surfactant formulations, such as synthetically produced or animal-derived 
surfactants. This can increase the chances of survival8, 10, 11, although beneficial effects in ARDS are limited12, 13.

During foetal development, PS does not form until the end of gestation, which is the reason why insufficient 
surfactant is a major problem in preterm neonates4. An indication of the foetal pulmonary maturity is the exam-
ination of amniotic fluid for levels of surfactant14, 15. However, so far the origin of this surfactant had not been 
ultimately determined, though it was supposed to be secreted by the foetal developing lung16. The amniotic fluid 
is surrounded by the human amniotic membrane (hAM), the innermost of the foetal membranes. hAM is of 
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foetal origin and is derived from the embryonic epiblast prior to gastrulation17. The cells of the hAM as well as 
the membrane itself exhibit immunoregulatory18, 19, anti-fibrotic20, 21, and non-tumorigenic22, 23 characteristics. 
Also, the membrane has for centuries been used as allograft because of its low immunogenicity18, 23 and beneficial 
effects in wound healing and corneal damage22, 24. Furthermore, hAM and cells thereof have proven stem cell 
characteristics and were successfully differentiated into cell types of all three germ layers23, 25.

Since hAM and especially amniotic epithelial cells directly envelop the amniotic fluid, we investigated hAM 
isolated from term placenta including cells derived thereof for the expression and secretion of PS components. 
This would indicate a potential contribution of hAM to the surfactant found in the amniotic fluid.

Material and Methods
Preparation and cultivation of hAM.  Human placentae were obtained at term pregnancy during 
Caesarean sections with written and informed maternal consent and collection approved by the local ethical 
board (Ethikkommission des Landes Oberösterreich). All methods were performed according to the relevant 
guidelines and regulations of the local ethical board. Until processing, placentae were stored in sterile bags 
(Websinger, Austria) in Ringer solution (Fresenius, Austria).

hAM was peeled off by blunt dissection and separated into the placental and reflected subregion, each com-
prising both epithelial and mesenchymal layer. The reflected region of hAM represents the part of the amniotic 
sac that is not attached to the placenta, while the placental hAM is loosely connected with the placenta26. After 
several washing steps in 1x phosphate buffered saline (PBS, Lonza, Switzerland), 8 mm biopsy punches (Kai 
medical, Germany) were taken. These were either directly processed for ultrastructural and (immuno)histological 
analysis or transferred into 96-round bottom well plates containing 200 µL culture medium (Dulbecco’s Modified 
Eagle’s Medium (DMEM) high glucose, 10% FBS, 200 mM glutamine, and 1% Penicillin-Streptomycin, all from 
Sigma-Aldrich, USA). Medium was changed every 2–3 days.

Isolation and cultivation of human amnion-derived epithelial (hAE) and mesenchymal stromal 
(hAMS) cells.  hAE cells were isolated according to a protocol similar to Stadler et al.27. Briefly, hAM (placen-
tal and reflected) was cut into small pieces (3–4 × 2 cm²) and placed into digestion solution. hAE cells were seg-
regated from the basal membrane during 3 digestion steps, each comprising 10–20 min, using 0.05–0.1% trypsin/
EDTA (Sigma-Aldrich, USA). Cell suspensions of the second and third digestion step were filtered through a 
100 µm cell strainer (BD, Austria). Then they were centrifuged at 400 g for 9 min, and either directly fixed for flow 
cytometry or seeded at a density of 3 × 104 cells/cm² onto gelatine-coated glass cover slips (Carl Roth, Germany) 
in 24-well culture plates containing cell culture medium for immunofluorescence staining. After reaching conflu-
ence of approximately 80%, the cells were analysed.

The other cell type found in hAM, hAMS cells, were isolated by shaking in 0.1% collagenase (Biochrome, 
Germany) in DMEM (low glucose, Sigma-Aldrich, USA) for 2 hours in an incubator. After filtration through a 
100 µm cell strainer, the cell suspension was centrifuged at 400 g for 9 min, the cells counted and afterwards fixed 
for flow cytometer analysis or cultured on glass cover slips until immunofluorescence staining.

Transmission electron microscopy.  hAM explants directly taken after isolation were fixed at 4 °C for 
2 hours in 2.5% glutaraldehyde in 0.1 mol/l sodium phosphate buffer, pH 7.4. The samples were then rinsed with 
the same buffer, postfixed in 2% osmium tetroxide in ddH2O, washed in ddH2O, dehydrated in a graded series of 
acetone, and embedded in Agar 100 resin. 70-nm sections were post-stained and examined with an FEI Morgagni 
268D (FEI, Eindhoven, The Netherlands) operated at 80 kV. Images were acquired using an 11 megapixel Morada 
CCD camera (Olympus-SIS).

Scanning electron microscopy.  hAM explants were washed in 1x PBS, then fixed in 2.5% glutaraldehyde 
in PBS (AppliChem, Germany) for 60 min at room temperature and afterwards dehydrated in an ascending eth-
anol series. After incubating in an ascending hexamethyldisilazane (HMDS, Sigma-Aldrich, USA) series, the 
membranes were air dried under the fume hood overnight. Then the biopsies were mounted onto double-sided 
sticky tape on top of an aluminium stub and sputter coated with Pd-Au using a Polaron SC7620 sputter coater 
(Quorum Technologies Ltd, GB). Afterwards they were analysed using a JEOL JSM-6510 scanning electron 
microscope (Jeol GmbH, Germany).

Nile red (NR) staining.  NR specifically stains intracellular neutral lipids (450–500 nm excitation wave-
length) and phospholipids (515–560 nm excitation wavelength). Stock solution of NR (1 mg/mL in EtOH abso-
lute, Sigma-Aldrich, USA) was prepared and stored under light protection. Staining was performed on hAM 
explants prior fixed in 10% neutral buffered formalin (VWR, USA) for 30 min. Explants were incubated in NR 
staining solution for 15 min after dilution to a final concentration of 500 ng/mL and kept in PBS afterwards. 
Nuclei were counterstained with DAPI. Analysis was carried out with an Axio Observer.A1 microscope (Zeiss, 
Germany) immediately afterwards using the 450–500 nm and 515–560 band pass excitation filters to detect intra-
cellular neutral and phospholipid droplets, respectively.

Immunohistological staining of hAM explants.  Fixed hAM explants were rinsed in water and dehy-
drated in an ascending alcohol series. The tissue was embedded in paraffin and 4 µm thick sections were sliced 
in a rotary microtome. Sections were dried at 40 °C overnight, deparaffinised in xylene and rehydrated in a 
graded series of alcohol. Immunohistochemistry against pro- and mature surfactant protein B (SP-B) and prosur-
factant protein C (pro-SP-C) was performed and sections were stained in Lab Vision Autostainer 360 (Thermo 
Fisher Scientific, UK). In the case of pro-SP-C, antibody retrieval was performed for 20 min at 95 °C using HIER 
T-EDTA pH 9.0 buffer (Zytomed, Germany) and for SP-B proteinase K (DAKO, Denmark) was used for 8 min. 
Afterwards, sections were washed in Tris-buffered saline and Tween (TBS, Thermo Fisher Scientific, UK). In 
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order to deactivate endogenous peroxidase, sections were treated with UltraVision™ Hydrogen Peroxide Block 
(Thermo Fisher Scientific, UK) for 10 min and rinsed with the same buffer again. Subsequently, sections were 
exposed to the primary antibody against SP-B (working dilution 1:200, Abcam, UK) and pro-SP-C (working 
dilution 1:500, Abcam, UK) for 1 hour at room temperature. Afterwards, sections were rinsed with TBS and 
incubated with EnVision™ HRP anti-rabbit detection system (DAKO, Denmark) as a secondary antibody for 
30 min at room temperature. Visualization was performed with ImmPACT™ NovaRED™ peroxidase substrate 
kit (Vector Laboratories, USA) and sections were counterstained with haematoxylin. Finally, slides were dehy-
drated and mounted with permanent mounting medium.

Flow cytometric analysis of hAM-derived cells.  hAE and hAMS cells were fixed immediately after iso-
lation with 1% formaldehyde in PBS for 10 min. After two washing steps in 1% BSA (Sigma Aldrich, USA) in PBS, 
cells were either prior permeabilised for 20 min in Permeabilization Buffer (Affymetrix, USA) for intracellular 
staining or directly incubated with the respective primary antibodies for 45 min. Cells were washed and incubated 
with polyclonal Alexa Fluor 488-conjugated goat anti-rabbit or Alexa Fluor RPE-conjugated goat anti-mouse IgG 
secondary antibodies (1:750, Thermo Fisher Scientific, USA) for 30 min. Isotype controls were incubated with 
rabbit and mouse IgG. After washing, cells were analysed on a flow cytometer (Cytoflex, Beckman Coulter, USA). 
SP-A, Oct-4 and pan-CK were obtained from Santa Cruz Biotechnology (USA) and were used in a dilution of 
1:100, all the other antibodies (SP-B, pro-SP-C, ABCA3, SSEA-4) were purchased from Abcam (UK) and were 
diluted 1:250. Every incubation step was performed on ice.

Immunofluorescence staining of hAM-derived cells.  Cells were fixed in 10% neutral buffered formalin 
for 15 min (VWR, USA) after reaching approximately 80% confluence, washed in PBS and non-specific binding 
was blocked with Roti®-ImmunoBlock (Carl Roth, Germany) for 45 min at room temperature. Subsequently, 
cells were permeabilised and incubated with primary antibodies against SP-B (1:250, Abcam, UK) and pro-SP-C 
(1:250, Abcam, UK) over night at 4 °C. After washing, cells were incubated with Alexa Fluor-conjugated goat 
anti-rabbit IgG secondary antibodies (1:750, Thermo Fisher Scientific, USA) for 60 min. For negative controls, 
IgG isotypes were applied. After washing in PBS, nuclei were counterstained and mounted with DAPI-containing 
anti-fading mounting medium (Roti®-Mount Fluor Care DAPI, Carl Roth, Germany). Staining was analysed with 
an Axio Observer.A1 microscope (Zeiss, Germany).

Quantification of SP-D by ELISA.  Conditioned cell culture supernatant of hAM biopsy punches and iso-
lated hAE cells was collected within the first week of culture (hAM) or after reaching 80% confluence (hAE cells). 
After three to four days without medium change, the supernatant was frozen and kept at −80 °C until analy-
sis. Subsequent to centrifugation to remove cell debris, SP-D was measured by ELISA (Hycult Biotechnology, 
The Netherlands) following the manufacturer’s instructions. As a positive control, bronchoalveolar lavage fluid 
(BALF) from male pigs was collected similar to Gushima et al.28. Briefly, 15 mL of sterile PBS was infused into 
each lung and gently aspirated. Afterwards the fluid was sterile filtered and centrifuged at 200 g for 10 min to 
remove debris and mucus clumps. BALF was stored at −80 °C until analysis and diluted 1:5 in PBS for ELISA.

Extraction of lipids for mass spectrometric (MS) analysis.  Cell culture supernatant of hAM explants 
was withdrawn and stored as described above. Extraction of lipids from hAM-derived supernatant and porcine 
BALF was carried out by liquid-liquid extraction using methyl-tert-butyl ether (MTBE) according to Matyash  
et al.29. For this, 400 µL of sample was mixed with 320 µL of methanol (VWR, USA) and 1 mL of MTBE (Honeywell 
Specialty Chemicals Seelze GmbH, Germany) and shaken for 1 h at 24 °C and 180 g. 250 µL of MS-grade water 
(Merck Millipore, USA) was added afterwards to induce phase separation. Following 10 min shaking at 24 °C and 
180 g, centrifugation at 1500 g for 1 min was applied and the top organic layer carefully collected. Samples were 
then stored at −20 °C until MS analysis.

Qualitative lipid profiling using shotgun MS.  The MTBE extracts derived from hAM supernatants 
were measured using a Triversa Nanomate (Advion, USA) coupled to a LTQ Velos Orbitrap mass spectrometer 
(Thermo Fisher Scientific, USA). 8 μL of sample were mixed with 80 μL of measurement mix (70% (v/v) meth-
anol, 30% (v/v) chloroform, 7.5 mM ammonium acetate); chloroform and ammonium acetate were purchased 
from Sigma-Aldrich, USA. Triversa Nanomate settings included 0.3 psi as backpressure and 1.4 kV spray voltage 
with a pick-up volume of 5 µL. The mass spectrometric analysis was conducted in the negative ion mode with an 
m/z window from 350–1,000 and normalised collision energy applied for fragmentation of 35. Data-dependent 
acquisition was chosen along with an isolation width for the precursor ion of 1 m/z and a dynamic exclusion m/z 
width of previously fragmented peaks of 0.5 m/z. Only singly charged ions were allowed for fragmentation, which 
was accomplished by collision induced dissociation (CID). Porcine BALF was used as a positive control and 
for comparison. Data analysis of the acquired raw files was carried out applying the free software LipidXplorer 
(Version 1.2.7).

Quantitative analysis of lipids with supercritical fluid chromatography coupled with tandem 
mass spectrometry (SFC-MS/MS).  The SFC analyses were carried out using the Agilent 1260 SFC System 
directly coupled to the electrospray ionisation (ESI) source followed by a 6490 triple quadrupole mass spectrome-
ter (Agilent Technologies, USA). The separation was performed on a 150 × 3 mm Luna HILIC separation column 
(Phenomenex, UK) employing a flow rate of 2 mL/min. Gradient mode was used for elution of the phospho-
lipids. As mobile phase A supercritical carbon dioxide (Messer, Austria) and as mobile phase B methanol with 
0.1% formic acid and 0.05% ammonium formate (both from Sigma-Aldrich, USA) were used. The gradient was 
started at 5% mobile phase B and increased to 40% B in 6 min. Mobile phase constitution was kept constant at 
40% B for 1 min and reduced to 5% at 7.1 min. The chromatographic run was finished after a total measurement 
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time of 9 min. The backpressure was set to 150 bar and the column temperature to 40 °C. For the targeted mass 
spectrometric analysis of DPPC the multiple reaction monitoring (MRM) transitions and the collision energies 
were optimized during the experiments. For the final analysis as quantifier the transition from m/z 734.4 to 184.1 
occurring from the head group was used and as qualifiers m/z 734.4 to 86.1 (N,N,N-trimethyletheneaminium), 
m/z 734.4 to 478.32 (cleavage from the SN2 and H2O) and m/z 734.4 to 551.3 (cleavage from the SN1). For all 
transitions, the collision energies of 40 eV were used. Positive ionization mode was applied and the ESI spray 
voltage was 4000 V, gas flow 11 L/min, sheath gas temperature 400 °C, sheath gas flow 12 L/min, gas temperature 
250 °C, and nebulizer gas pressure 35 psi. For quantification, an external calibration was performed.

Biophysical activity assay: Captive Bubble Surfactometer (CBS).  Supernatants of placental and 
reflected hAM explants were collected as described above to isolate PS-like complexes. Samples were concen-
trated by consecutive ultracentrifugation at 120,000 g until getting a phospholipid concentration of 10 mg/mL, 
quantified using a commercial kit (Spinreact, Spain). Then, surface activity of the different surfactant samples 
were tested using the CBS30.

The assay is based on introducing a small amount of surfactant sample (typically 0.5 µl) below the surface 
of an air bubble floating against an agarose cap located in a chamber containing a buffer solution (Tris 5 mM, 
NaCl 150 mM, 10% sucrose, pH 7) (Supplementary Fig. S1). The agarose cap is attached to a piston, which allows 
performing compression-expansion cycles into the chamber. The resulting changes in surface tension can be 
deduced from the changes in bubble shape (Supplementary Fig. S1). First, the adsorption of a surfactant added 
to a clean air-liquid interface is recorded for 5 min. Then, the chamber is closed and the bubble is subjected to a 
quick expansion to register post-expansion adsorption for 5 min. Finally, the bubble is exposed to consecutive 
slow (quasi-static cycles) or fast (dynamic cycles) compression-expansion cycles (at 20 cycles/min) mimicking 
respiratory dynamics in the lung. The different parts of the CBS experiment are recorded with a camera focusing 
the bubble throughout the experiment. Surface tension values are calculated from bubble dimensions with a Data 
Analyses Software, according to a model published elsewhere31. PS isolated from BALF of porcine lungs (native 
surfactant, NS) was used as a reference of an optimal surface active agent.

Evaluation and statistical analysis.  ELISA results and flow cytometric analysis as well as DPPC quanti-
fication were expressed as mean and S.D.

Data availability.  The data generated during and/or analysed during the current study are available from the 
corresponding author on reasonable request.

Results
Amniotic epithelium ultrastructure differs between placental and reflected region.  The ultra-
structure of the epithelial layer of hAM from term placenta separated into placental and reflected region was 
analysed by transmission (TEM) and scanning electron microscopy (SEM) (Fig. 1). hAE cells from both subre-
gions showed cell membrane protrusions covering the apical surface resembling microvilli, which are generally 
associated with secretion and typically found on PS-secreting pulmonary epithelial cells32. In general, the majority 
of cells from the placental region exhibited a columnar phenotype and a lower cell frequency on the membrane 
surface. In comparison, cells from the reflected area showed a dense and regular morphology, cuboidal appear-
ance and a considerable amount of secretory vesicles inside the cytoplasm, indicating a strong secretory nature 
of the cells.

Distinct expression of PS-associated components in hAM explants.  To characterize hAM for 
intracellular lipid vesicles, explants from both amniotic regions were stained for lipid droplets with NR immedi-
ately after isolation. As shown in Fig. 2a, epithelial cells from the reflected area stained with great intensity also in 
the red spectrum suggesting a high content of phospholipid vesicles. hAE cells of the placental region were also 
homogenously stained, but at both wavelength ranges to a lower degree than cells of reflected amnion.

The next step was to identify specific PS protein components within the cells of hAM. For this, histologi-
cal sections of hAM explants were stained for pro-SP-C and SP-B (Fig. 2b). The majority of epithelial cells of 
the reflected and the placental amnion exhibited a distinct intracellular staining for both surfactant proteins. 
Furthermore, the membrane of the reflected area demonstrated SP-B positive parts distributed in the extracellular 
matrix. In contrast, fewer (pro-SP-C) or hardly any (SP-B) of the hAMS cells expressed PS proteins in both hAM 
subregions (Supplementary Fig. S2).

hAE cells are main source of PS proteins.  In order to examine the cellular origin of PS proteins in 
hAM, hAE and hAMS cells were isolated from the two different subregions of the membrane and analysed for 
the production of surfactant proteins and ATP binding cassette subfamily A member 3 (ABCA3, Fig. 3a). This 
is a lamellar body membrane protein required for the formation of PS, which is expressed in alveolar epithelial 
type II cells. As summarized in Table 1, hAE cells analysed immediately after isolation via flow cytometry showed 
a high expression of three of the four surfactant proteins (SP-A, SP-B and pro SP-C) as well as ABCA3, whereas 
only a minor fraction of hAMS cells was positive for PS proteins (Supplementary Table S1). Fewer epithelial cells 
were positive for SP-D and almost none of the mesenchymal cells. In general, a higher percentage of hAE cells 
derived from reflected hAM expressed the surfactant-associated proteins, whereas cells from placental amnion 
showed higher percentages of cells positive for Oct-4 (8.1% ± 7.8 vs. 3.3% ± 2.8), a marker expressed in pluripo-
tent stem cells. Almost all of the hAM-derived epithelial cells of both subregions expressed stage-specific embry-
onic antigen-4 (SSEA-4), in contrast to the mesenchymal cells, of which approximately half of the population 
was positively stained. The expression of SPs was further confirmed via immunofluorescent staining of cultured 
hAM-derived cells (Fig. 3b, Supplementary Fig. S3).

http://S1
http://S1
http://S2
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http://S3
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SP-D is actively secreted by hAM.  To confirm the potential of hAM to actively secrete PS-associated 
proteins, the conditioned supernatant of both isolated placental and reflected hAM explants was examined for 
SP-D by ELISA and compared with porcine BALF (Fig. 4a). SP-D was detectable in the supernatant of both subre-
gions, but at considerably higher concentrations in reflected hAM-derived medium. Notably, SP-D concentration 
decreased moderately over time (Supplementary Fig. S4a), but was still detectable after a three-week culture 
period and was also secreted from isolated and cultured hAE cells (Supplementary Fig. S4b). The expression of 
surfactant proteins was sustained in hAE cells over several passages (Supplementary Fig. S4c). Moreover, ultra-
structural analysis of these cells exhibited lamellar granular vesicles, strongly resembling lamellar bodies, which 
are crucial in storage and secretion of PS in the lung33 (Fig. 4b).

hAM secretome exhibits main PS-associated lipids.  Four individual lipid species were identified in 
supernatants of explants of both amniotic subregions and of porcine BALF, namely the two ethanolamine plas-
malogens PE-O [16:1/20:4] and PE-O [18:1/20:4], phosphatidylcholine (PC [16:0/16:0]) and phosphatidylserine 
(PS [18:1/18:0]). PC [16:0/16:0], also referred to as DPPC, is the most important phospholipid species for bio-
physical function of PS5. While a plethora of other signals associated with lipids were detected on the MS1 level, 
these four could also be identified on the MS2 level with satisfactory confidence (Fig. 5).

Quantitative DPPC analysis of hAM-derived supernatants.  DPPC as important player for surfactant 
functionality was examined on a quantitative level. Therefore, a targeted SFC-MS/MS method was developed 
for the exact quantitative analysis of DPPC. While DPPC could be found in all supernatants derived from hAM 
explants at concentrations ranging from 7.5 to 10.3 µg/mL, no differences in DPPC levels were detected between 
supernatants from the two distinct amniotic subregions (Fig. 6).

PS-like material secreted by hAM shows limited functional activity.  Lung surfactant is synthesized 
to reduce surface tension along respiratory cycles allowing respiratory dynamics and avoiding alveoli collapse. 
Because of that, biophysical properties of tissue culture supernatants derived from placental and reflected hAM 
explants were tested using CBS. Supernatants of both amniotic subregions did not reduce surface tension below 
50 mN/m once injected to an air-liquid interface (Fig. 7a). This behaviour was not improved after subjecting the 
system to a quick expansion (Fig. 7b). However, compression of the surface films reduced surface tension down 
to around 20 mN/m, which required more than 60% area reduction, either under slow (quasistatic, Fig. 7c) or fast 
(dynamic “breathing-like”, Fig. 7d) compression-expansion cycles. Surface activity did not improve to yield lower 
activity after repetitive compression-expansion cycling of the films. No obvious differences in surface activity 
were observed between the supernatants of placental and reflected hAM.

Figure 1.  Ultrastructure of hAM differs between placental and reflected region. Epithelial cells of placental 
hAM display predominantly a columnar appearance covered with microvilli. Gaps between the cells are visible. 
Reflected hAM-derived epithelial cells are cuboidal and exhibit regular cell morphology, microvilli and longer 
cell protrusions (arrow) and are present at a high density covering the basal membrane. In this subregion of 
hAM, secretory vesicles are abundant. Upper row: Representative TEM pictures of amnion-derived epithelial 
cells, 3500x magnification; lower row: Representative SEM pictures of epithelial side of hAM, scale bars: 100 µm.

http://S4a
http://S4b
http://S4c
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Discussion
hAM, as the innermost of the foetal membranes, encloses the growing foetus and the amniotic fluid, in which 
PS, consisting mainly of lipids and specific proteins, can be found as an indication of the foetal pulmonary matu-
rity14, 15. As origin of this amniotic fluid-derived PS, the developing foetal lung has been reported but not been 

Figure 2.  hAM explants show distinct expression of PS-associated components. (a) Visualization of 
intracellular (phospho-)lipid vesicles with NR staining. Explants of placental hAM display moderate numbers of 
neutral (upper row, green) and phospholipid vesicles (middle row, red), whereas cells of reflected hAM contain 
a considerable amount of both lipid classes covering the whole amniotic epithelium. n = 6. Upper row: neutral 
lipid vesicles (green, 450–500 nm excitation); middle row: phospholipid vesicles (red, 515–560 nm excitation); 
lower row: merge; counterstaining was performed with DAPI (blue). Scale bars: 50 µm. NR = Nile red. (b) 
Representative anti-SP-B and anti-pro-SP-C staining of hAM explants immediately after isolation. Placental-
associated hAM shows strong SP-B expression (n = 4) in epithelial cells and fainter staining in mesenchymal 
cells, whereas in the reflected region of hAM even extracellular matrix exhibits specific SP-B staining. Pro-SP-C 
(n = 5) is similarly distributed in cells of both amniotic subregions. Scale bars: 50 µm.
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Marker Placental Reflected n

SSEA-4 95.4 ± 2.5 96.6 ± 1.1 3

Oct-4 8.1 ± 7.8 3.3 ± 2.8 5

SP-A 87.0 ± 4.8 91.7 ± 7.6 4

SP-B 67.1 ± 18.0 74.4 ± 19.2 4

pro-SP-C 89.0 ± 11.2 93.2 ± 7.0 4

SP-D 15.6 ± 8.4 28.7 ± 12.7 4

ABCA3 82.8 ± 11.4 90.8 ± 5.5 3

Table 1.  Flow cytometric analysis of hAE cells immediately after isolation: Percentages of hAE cells isolated 
from the placental and reflected hAM region, positive for the respective marker. Illustrated are mean ± S.D. of 
given biological replicates.

Figure 3.  Expression of PS-associated proteins in isolated hAE cells. (a) Flow cytometric analysis of surfactant-
associated proteins and stem cell markers immediately after hAE cells isolation. Cells show similar expression 
between both amniotic subregions, whereas in general hAE cells of the reflected region show moderately higher 
PS-associated protein expression and the placental area higher Oct-4 staining. n = 3–5. (b) Immunofluorescence 
staining of pro-SP-C and SP-B. The predominant part of hAM-derived epithelial cells exhibit distinct staining of 
both surfactant proteins in the cytoplasm, comparable in both amniotic subregions. Scale bars: 50 µm. n = 4.
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exclusively defined so far. We have therefore investigated hAM and cells thereof as potential additional source 
of PS, as the presence of the two hydrophilic proteins SP-A and SP-D in hAM was already described34. For these 
proteins expressed in hAM, an immunoregulatory and anti-pathogenic function has been proposed35, however 
no direct relation to the amniotic fluid PS.

We identified that cells within the native hAM of term placenta express all four surfactant-associated proteins 
in both amniotic subregions, which have crucial functions regarding surfactant: Aside from its biophysical prop-
erties lowering surface tension, surfactant also has an important function in pulmonary host defence mediated by 
SP-A and SP-D. These two hydrophilic proteins are involved in clearance of bacteria, fungi, dying cells and viruses 
through binding, thus initiating phagocytosis; also, they stimulate chemotaxis and have an anti-inflammatory 
effect36, 37. SP-B and SP-C are hydrophobic proteins required for the proper biophysical function and consequently 
indispensable for breathing4, 38, 39. Lack of functional SP-B, such as for genetic reasons, leads to respiratory failure 
unless lung transplantation is performed40, 41. SP-C deficiency is not as critical, but leads to a decreased stabiliza-
tion of surfactant and affected patients usually develop severe and chronic lung diseases42.

Figure 4.  hAM explants actively secrete PS components. (a) SP-D is secreted into cell culture medium by hAM. 
Conditioned medium of reflected hAM explants shows higher SP-D concentrations (83.4 ± 21.5 ng/mL, n = 5) 
compared to placental hAM (57.8 ± 16.9 ng/mL, n = 5). As positive control, porcine BALF (34.0 ± 6.7 ng/mL, 
n = 2) was used. Illustrated are mean + S.D. (b) Ultrastructural analysis of hAM reveals lamellar body-like 
structures inside the cytoplasm, crucial for PS transportation and secretion. Magnification: 8900x and 18000x.

Figure 5.  Lipidome analysis of hAM supernatant. Comparison of lipid species between porcine BALF (left) and 
hAM secretome (right) reveals secretion of the main PS-associated lipids by both subregions of hAM. Among 
others, dipalmityolphosphatidylcholine (DPPC, top) and phosphatidylserine (PS [18:1/18:0]), bottom) were 
detected. Illustrated are representative mass spectra supernatants of porcine BALF (left) and hAM supernatant 
(right) as analysed by nanoESI-MS/MS.
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SP-A, SP-B and SP-D are primarily produced by alveolar epithelial type II cells, and in lower amounts by other 
cell types of the distal lung, such as the Club cells43, 44. While SP-A and SP-D are also present in other organs45, 46, 
SP-C is found exclusively in surfactant-producing cells47, which is a clear indication of a relation between hAM 
and the surfactant found in amniotic fluid. Moreover, we identified lamellar body-like structures, which are cru-
cial for PS storage and secretion48 and the expression of ABCA3, required for the lamellar body biogenesis49, in 
amnion-derived cells. Also, secretory capability was demonstrated via ELISA, for which SP-D could be identified 
in hAM-derived cell culture supernatant over several weeks. These results show that foetus-derived PS proteins 
do not only adsorb on hAM, but demonstrates that they are actively produced and secreted by hAM cells.

The main part of PS consists of lipids; therefore, we analysed hAM-derived supernatant for lipids and com-
pared it with porcine BALF. We identified four lipids in supernatant of both placental and reflected hAM explants, 
hence representing mostly the same lipid class constitution as BALF. The lipids included phosphatidylcholine, 
ethanolamine plasmalogen, sphingomyelin and phosphatidylserine, with the exception of phosphatidylglyc-
erol, which was not identified in the hAM-derived surfactant-like material. Yet the phospholipid class, especially 
DPPC, is responsible for the extreme reduction of surface tension at the air-water interface5, a lipid that was 
definitely identified as major component in our hAM-derived supernatants. However, proper PS function is also 
conferred by their protein components5 rendering natural PS usually more efficient compared to most of the 
synthetically-produced ones50.

Native surfactant has the ability to extremely reduce surface tension at the air-liquid interface at the end 
of expiration in the lung2, 3. We tested the biophysical activity of our hAM-derived surfactant-like material 
with a captive bubble surfactometer. Although we could not reach the level of reduction of surface ten-
sion during initial and post-expansion adsorption as native surfactant5, we could demonstrate a certain 
functional activity of the hAM-derived surfactant-like material during quasistatic and dynamic cycling. 
It resembled the biophysical behaviour obtained with human non-bronchoscopic BALF51. This indicates 
at least some functional activity of the surfactant components secreted by hAM. One explanation for the 
lower biophysical activity of hAM-derived supernatant could be associated with the exposure of secreted 
surfactant to a medium enriched with FBS. Serum proteins, such as albumin, are potent PS inhibitors52, 53, 
which could have limited the functionality of the PS secreted by hAM. Moreover, the stimulation of secre-
tion with β-adrenergic agents or secretagoges, such as ATP (adenosine triphosphate) and PMA (phorbol 
12-mirystate 13-acetate) might be essential to induce substantial levels of PS secretion from hAM, as the PS 
exocytosis is tightly regulated54. This could also be the reason why we could not detect any significant differ-
ences in biophysical activity and DPPC concentration between the supernatants from the two subregions of 
hAM. Yet, a distinctly higher amount of lipid droplets was found in the cytoplasm of cells of reflected hAM 
compared to those of the placental region. Stimulation of hAM could increase secretion of lipid vesicles and 
consequently disclose a higher surfactant lipid concentration in reflected amnion-derived supernatant. This 
might then potentially lead to an improved PS function, for which a high phospholipid, most of all DPPC, 
concentration is required. Such experiments, including a direct extraction of PS from homogenized or 
secretion-stimulated hAM, could be part of future studies. Recently a difference in mitochondrial activity55 
as well as in gene expression26 between the two subregions of hAM was demonstrated. Within this study, 
we identified an overall higher percentage of cells expressing the pluripotency marker Oct-4 in placental 
hAM-derived cells compared to those of the reflected area. Although not really relevant in regard to PS, this 
result might be interesting for differentiation and stem cell studies.

Cells isolated from hAM have previously been considered as a potential cell therapy for human lung dis-
eases. For both hAE as well as mesenchymal decidual cells, the development of an alveolar epithelial cell phe-
notype, secreting PS proteins upon in vitro differentiation, has been reported21, 54. Moodley et al. did however 

Figure 6.  Evaluation of DPPC concentration in hAM-derived supernatants. Analysis of cell culture supernatant 
obtained from the two subregions of hAM revealed comparable amounts of DPPC, which is the predominant 
lipid in PS. Displayed are mean + S.D. Placental: n = 7; Reflected: n = 6.



www.nature.com/scientificreports/

1 0SCIEnTIFIC RePortS | 7: 6406 | DOI:10.1038/s41598-017-06402-w

not find these characteristics in undifferentiated hAE cells21. Moreover, the cells have proven promising in 
several pulmonary pathologic conditions in vivo without prior differentiation. They reduced inflammation and 
fibrosis and partially restored the physiological lung function after bleomycin-induced lung injury in mice21, 56  

Figure 7.  Biophysical behaviour of hAM supernatant tested using Captive Bubble Surfactometry. (a) Initial 
adsorption, (b) post-expansion adsorption and isotherms obtained during (c) slow (quasistatic) and (d) 
fast (dynamic) compression-expansion cycling of aqueous suspensions of PS-like material isolated from 
supernatants of placental and reflected hAM explants. Initial and post-expansion adsorptions are represented as 
average of three replicates. A representative replicate of three experiments is typified for quasistatic and dynamic 
cycles. All quasistatic cycles are illustrated (first in black, second in red, third in blue and fourth in green). Only 
first (black), tenth (red) and twentieth (blue) cycles are shown for dynamic cycles.
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or after inflammation- or ventilation induced lung injury in sheep57, 58 and resulted in an engraftment into the 
lung in some cases21, 58. The reason for these beneficial effects in those studies could at least partially be hAM’s 
ability to produce surfactant-like material. In vitro differentiation of hAM or hAM-derived cells similar to 
Moodley et al.21 towards an alveolar epithelial cell type might be helpful and increase surfactant production. 
Both, isolated amniotic cells59, as well as the whole membrane60, 61, have already been transplanted in human 
patients for diverse therapeutic reasons, without eliciting major adverse immune reactions. Therefore, the 
application of hAM and hAM-derived cells is considered to be safe, despite an allogeneic usage62. Formulations 
derived from human amnion, such as a PS-enriched secretome, may represent a novel therapeutic approach for 
surfactant-related diseases. These could include respiratory distress syndrome, asthma or surfactant metabo-
lism dysfunction, as potential therapeutic targets. However, substantial improvements, including an increase 
of PS concentration and a potential enhancement of the biophysical activity of hAM-derived PS, would be a 
prerequisite.

We showed that hAM-derived cells from term placenta already produce and secrete components similar to 
PS secreted by alveolar epithelial type II cells in the lung. All in all, this study demonstrates that hAM from term 
placenta has the potential to serve at least as a second source of PS in amniotic fluid aside from foetal lung. The 
functional relevance, such as a possible role of hAM in foetal lung maturation or in pulmonary host defence of the 
growing fetus, remains however to be determined.
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