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The minimum resting-state fNIRS 
imaging duration for accurate 
and stable mapping of brain 
connectivity network in children
Jingyu Wang1,2, Qi Dong1,2 & Haijing Niu1,2

Resting-state functional near-infrared spectroscopy (fNIRS) is a potential technique for the study of 
brain functional connectivity (FC) and networks in children. However, the necessary fNIRS scanning 
duration required to map accurate and stable functional brain connectivity and graph theory metrics in 
the resting-state brain activity remains largely unknown. Here, we acquired resting-state fNIRS imaging 
data from 53 healthy children to provide the first empirical evidence for the minimum imaging time 
required to obtain accurate and stable FC and graph theory metrics of brain network activity (e.g., nodal 
efficiency and network global and local efficiency). Our results showed that FC was accurately and stably 
achieved after 7.0-min fNIRS imaging duration, whereas the necessary scanning time for accurate and 
stable network measures was a minimum of 2.5 min at low network thresholds. These quantitative 
results provide direct evidence for the choice of the resting-state fNIRS imaging time in children in brain 
FC and network topology study. The current study also demonstrates that these methods are feasible 
and cost-effective in the application of time-constrained infants and critically ill children.

Resting-state functional near-infrared spectroscopy (fNIRS) is an emerging area of interest and is currently 
attracting increasing attention as a promising imaging tool for the study of resting-state brain function1. By meas-
uring the brain’s low-frequency concentration fluctuation of hemoglobin, fNIRS provides chances to explore 
functional interactions between segregated brain regions in the resting brain. Such functional interactions are 
defined as resting-state functional connectivity (FC) and are reported to form resting-state networks. A wealth of 
research has demonstrated that human functional brain networks can be constructed using resting-state fNIRS 
imaging data1, 2.

As a newly developed optical imaging tool, fNIRS uses light in the near-infrared spectrum (670–900 nm) to 
noninvasively monitor hemodynamic responses evoked by brain activity and to obtain quantitative concentration 
changes in two chromophores of oxygenated hemoglobin (HbO) and deoxygenated hemoglobin (HbR) in tissue1, 3.  
Relative to the widely used functional magnetic resonance imaging (fMRI), the fNIRS technique displays some 
unique advantages such as high portability, quietness, data acquisition in a natural environment and high robust-
ness to head motion4. These special advantages are facilitating the use of fNIRS as a great potential tool for human 
brain function studies in children with normal neural development or a clinical diseased state5. Specifically, recent 
advances in main brain regions (e.g., frontal, temporal, parietal and occipital lobes of the cerebral cortex) data 
acquisition have allowed fNIRS to construct entire cortical connectivity networks and obtain the topological 
organizational features of the constructed brain network. These quantitative brain connectivity and topological 
properties have been found to change during normal development6 or in the context of diseases5, 7–9, enhancing 
our understanding of organizational principles of central nervous system development in healthy and diseased 
populations.

However, to facilitate the use of the fNIRS-based imaging technique in the study of brain networks in children, 
one critical step is to determine the minimum data acquisition duration that is capable of providing accurate and 
stable functional brain connectivity and graph theory metrics. Regrettably, the current resting-state fNIRS field 
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is lacking such evidence, and the general scanning duration for the calculation of brain connectivity networks in 
children is approximately 2.0–20.0 min8. An overly short fNIRS imaging data acquisition duration will possibly 
decrease the accurate characterization of the brain connectivity network, whereas a long duration for data acqui-
sition is commonly problematic and a challenge for infants and young normal or critically ill children. However, 
how the duration of fNIRS signal scanning is related to stable functional brain connectivity and graph theory 
metrics of the brain connectivity network remains largely unknown. The empirical conclusions will provide crit-
ical information for the brain connectivity network in children with normal brain development and the clinical 
implementation of the fNIRS technique.

In the present study, functional brain network connectivity and graph theoretical analyses were applied to 
a series of incrementally longer temporal windows of resting-state fNIRS imaging data. We hypothesized that 
functional brain connectivity and the corresponding network metrics would stabilize after a certain number of 
expanding windows, requiring different durations of resting-state fNIRS imaging signal acquisition for optimal 
characterization. Here, fNIRS data were collected from 53 healthy children at their resting state. We evaluated the 
influence of fNIRS imaging time on the accuracy and stability of brain functional connections and graph theory 
metrics of the brain connectivity network.

Results
FC maps.  For each participant, we measured hemodynamic signal changes from multiple regions of the cere-
bral cortex (Fig. 1) and then calculated the individual FC at different fNIRS signal acquisition durations. Figure 2a 
shows the group-level FC maps associated with an increasing fNIRS signal acquisition duration, which were 
calculated by averaging all of the functional correlation matrixes for every acquisition duration across subjects. 
Visually, the spatial patterns of these FC maps exhibited high similarity across the variable data collection lengths. 
Quantitatively, when compared to the relatively longer 10.0-min data acquisition duration, these results revealed a 
significant (P < 0.001) and strong correlation across each fNIRS signal duration (the mean correlation coefficient 
r = 0.98 ± 0.03; Fig. 2b). This suggests that the short fNIRS signal acquisition duration, i.e., 1.0 min, can result in 
FC maps with as high an accuracy as those calculated with a 10.0-min scanning duration. However, in respect 
to FC stability, the statistical analysis of the correlation coefficient SD (one-way ANOVA and Dunnett post hoc 
analysis) showed that FC maps computed using an fNIRS signal acquisition duration longer than 7.0 min were 
no different than those computed using a 10.0-min fNIRS data acquisition duration (Fig. 2c, Table 1). This indi-
cated that FC remained stable only when the fNIRS imaging data acquisition duration was sufficiently long, e.g., 
≥7.0 min.

Network nodal efficiency.  The plots of nodal efficiency (Fig. 3a) showed approximately horizontal lines 
with little difference between the magnitudes of measured values across the scanning duration for each spar-
sity threshold value, and the magnitudes of the nodal efficiency showed obvious increases with sparsity thresh-
old values. For evaluation of nodal efficiency accuracy, the correlation analysis of network measures calculated 
between the short and the relatively long 10.0-min data acquisition duration revealed significant (P < 0.001) and 
strong correlations (Fig. 3b) for all threshold conditions, indicating an almost immediate accuracy of the nodal 
efficiency.

For the evaluation of nodal efficiency stability, statistical analysis (two-way ANOVA) revealed no significant 
interaction between the fNIRS signal acquisition duration and sparsity (F [72, 4275] = 0.613, P = 0.996, partial 
η2 = 0.010), but there was a significant but relatively small main effect of the fNIRS signal acquisition duration on 
the magnitude of nodal efficiency (F [18, 4275] = 1.636, P = 0.044, partial η2 = 0.007). Dunnett post hoc analyses 
further revealed significant differences associated with the fNIRS signal data collection duration only at a spar-
sity of 0.1, as follows: There was a significant 6.3% difference (95% confidence interval [CI]: −0.0652, −0.0094; 
P = 0.005) between the magnitude of nodal efficiency computed using 10.0 min and that using 1.0 min of fNIRS 

Figure 1.  Schematic of fNIRS channel localization. (a) Photograph of fNIRS measurement of a participant. (b) 
The schematic of the imaging pad (12 sources, red circle and 24 detectors, blue cross). The sources and detectors 
were symmetrically placed on the left and right hemispheres and constituted 46 measurement channels, which 
allowed for the most brain regions (i.e., frontal, temporal, parietal, and occipital lobes) on two half-hemispheres 
to be measured. (c) The anatomical position of each measurement channel.
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data, a significant 3.3% difference (95% confidence interval [CI]: −0.0387, −0.0021; P = 0.036) between that 
computed using 10.0 min and 1.5 min of fNIRS data, and a significant 6.6% difference (95% confidence interval 
[CI]: −0.0684, −0.0064; P = 0.005) between that computed using 10.0 min and 2.5 min of fNIRS data (Fig. 3c).

Network global efficiency.  For the evaluation of global efficiency accuracy, the correlation analysis of 
network measures calculated between the short and the relatively long 10.0-min data acquisition duration also 
revealed significant (P < 0.001) and strong correlations for several threshold conditions, such as 0.3 and 0.4 
(Fig. 4a), which indicated an almost immediate accuracy of the network global efficiency. However, when the 
global efficiency was calculated at sparsity threshold values of 0.1 and 0.2, the correlation of the global efficiency 
calculated between the short and the relatively long 10.0-min data acquisition duration was significant only for 
scanning durations longer than 3.0 min and 2.5 min, respectively.

Figure 2.  Effect of the fNIRS signal acquisition duration on the accuracy and stability of the spatial FC 
pattern. (a) The FC maps calculated by Pearson correlation for fNIRS signal acquisition durations ranging 
from 1.0 to 10 min with 30-sec bins. Visually, the spatial patterns of these FC maps exhibited high similarity 
across variable data collection lengths. (b) Accuracy curve. The plots of the correlation strength calculated for 
the spatial patterns of FC maps (transferred to z score before calculation) between short and long (10.0 min) 
signal durations. The red-filled circles indicate significant correlation of the spatial FC maps associated with a 
given fNIRS signal acquisition duration with the FC map when computed using 10.0 min of fNIRS data. The 
analysis revealed significant (P < 0.001) and strong correlations for all acquisition durations, indicating almost 
immediate accuracy of the FC maps. (c) Stability curve. The plots of the correlation coefficient associated 
with the standard deviation (mean ± SD) plotted according to the duration of the fNIRS signal acquisition 
(1.0~10.0 min in 30-sec bins). The blue-filled circles indicate a significant difference in the magnitude of the 
computed value associated with a given fNIRS signal acquisition duration compared with the magnitude 
when computed using 10.0 min of fNIRS data. The magnitude of the correlation coefficient standard 
deviation decreased as the fNIRS signal acquisition duration increased, with little change in magnitude after 
approximately 7.0 min of data collection.
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For the evaluation of global efficiency stability, the two-way ANOVA revealed no significant interaction 
between the fNIRS signal acquisition duration and sparsity (F [72, 4940] = 0.254, P = 1.000, partial η2 = 0.004), 
and there was also no significant main effect of the fNIRS signal acquisition duration on the magnitude of the 
global efficiency at any network sparsity threshold value (F [18, 4940] = 0.676, P > 0.050, partial η2 = 0.002) 
(Fig. 4c). This indicated that global efficiency values computed using 1.0 min of fNIRS signal acquisition were no 
different than those computed using 10.0 min of fNIRS data acquisition.

Network local efficiency.  Similar to global efficiency, the correlation analysis of network local efficiency 
calculated between the short and the relatively long 10.0-min data acquisition duration also revealed significant 
(P < 0.001) and strong correlations for almost all threshold conditions (Fig. 4b), indicating an almost immediate 
accuracy of the network local efficiency. Meanwhile, the local efficiency was noted to be accurate when the scan-
ning duration was longer than 1.5 min and 3.0 min at the sparsity threshold conditions of 0.1 and 0.2, respectively.

For the evaluation of local efficiency stability, the two-way ANOVA revealed a significant interaction between 
the fNIRS signal acquisition duration and sparsity (F [72, 4940] = 1.903, P < 0.001, partial η2 = 0.027). The simple 
effect test found that the main effect of the fNIRS signal acquisition duration was significant at a sparsity of 0.1 (F 
[18, 4998] = 2.91, P < 0.001). The longer the acquisition duration, the greater the local efficiency value. However, 
at a sparsity of 0.5, the main effect of the fNIRS signal acquisition duration was not significant, F < 1. Dunnett 
post hoc analyses further revealed significant differences associated with the fNIRS signal data collection duration 
at sparsities of 0.1, 0.2, 0.3 and 0.4, as follows: At a sparsity of 0.1, there was a significant 6.4–12.6% difference 
between the magnitude of local efficiency calculated using 10.0 min of data and that using short acquisition dura-
tions ranging from 1.0 to 5.0 min (Fig. 4d, Table 2). At a sparsity of 0.2, there was a 3.4–7.6% significant difference 
between that calculated using 10.0 min of data and that using short acquisition durations ranging from 1.0 to 
4.0 min (Fig. 4d, Table 2). At a sparsity of 0.3, there was a 2.4–3.4% significant difference between that calculated 
using 10.0 min of data and that using short acquisition durations ranging from 1.0 to 2.0 min (Fig. 4d, Table 2). 
At a sparsity of 0.4, there was a 1.6–1.8% significant difference between that calculated using 10.0 min of data 
and that using short acquisition durations ranging from 1.0 to 1.5 min (Fig. 4d, Table 2). Table 2 didn’t show the 
P values of the differences after 5.0 min of data acquisition because they were all not significant at these sparsity 
threshold values.

Discussion
Evidence has shown that functional brain connectivity and the network topological features are highly dynamic 
even in the resting brain10, 11. Image acquisition protocols that minimize the temporal variability of connectivity 
patterns and network topological architectures can facilitate the discovery of imaging biomarkers in both healthy 
and diseased children. This is the first study to demonstrate the effect of resting-state fNIRS scanning duration 
on functional brain connectivity and graph theoretical metrics in data from children, as assessed by accuracy 
and stability when comparing these metrics calculated from short and relatively longer 10.0-min data acquisition 
durations. We found that accuracy of FC was achieved after 1.0 min of fNIRS imaging duration (Fig. 2b), whereas 
the FC was stabilized after 7.0 min of fNIRS imaging acquisition (Fig. 2c). As such, to obtain both accurate and 
stable FC requires a minimum of 7.0 min of resting-state fNIRS data acquisition. For accurate and stable network 
measures, we found that the necessary scanning time of resting-state fNIRS data was a minimum of 2.5 min at 
low network thresholds (Figs 3b,c and 4). These findings are consistent with our hypothesis that the functional 
brain connectivity networks become stable along increasing temporal trajectories, and they suggest that different 
resting-state fNIRS scanning durations may be used depending on the outcome of interest. Although these data 
were consistent with our proposed hypothesis, the magnitude of the difference in the fNIRS collection duration 
required for data stability between FC (Fig. 2c) and graph theory metrics (Figs 3c and 4c,d) showed obvious 
differences. Furthermore, our findings also showed good compatibility with the previous fMRI results12, 13 that 
demonstrated the scanning time required to achieve stable FC was longer (5.0 min) than that required to achieve 

1.0 minute fNIRS 
Signal Acquisition

1.5 minute fNIRS 
Signal Acquisition

2.0 minute fNIRS 
Signal Acquisition

2.5 minute fNIRS 
Signal Acquisition

3.0 minute fNIRS 
Signal Acquisition

3.5 minute fNIRS 
Signal Acquisition

4.0 minute fNIRS 
Signal Acquisition

P <0.001 (0.1266, 
0.1598)

<0.001 (0.0819, 
0.1151)

<0.001 (0.0618, 
0.0949)

<0.001 (0.0467, 
0.0799)

<0.001 (0.0365, 
0.0697)

<0.001 (0.0271, 
0.0603)

<0.001 (0.0207, 
0.0539)

MD 0.1432 (0.0101) 0.0985 (0.0088) 0.07835 (0.0086) 0.0633 (0.0077) 0.0531 (0.0075) 0.0437 (0.0075) 0.0373 (0.0078)

4.5 minute fNIRS 
Signal Acquisition

5.0 minute fNIRS 
Signal Acquisition

5.5 minute fNIRS 
Signal Acquisition

6.0 minute fNIRS 
Signal Acquisition

6.5 minute fNIRS 
Signal Acquisition

7.0 minute fNIRS 
Signal Acquisition

7.5 minute fNIRS 
Signal Acquisition

P <0.001 (0.0151, 
0.0483)

0.001 (0.0120, 
0.0452)

0.005 (0.0070, 
0.0402)

0.018 (0.0035, 
0.0367)

0.022 (0.0029, 
0.0361)

0.044 (0.0003, 
0.0329) 0.133

MD 0.0317 (0.0078) 0.0286 (0.0078) 0.0236 (0.0077) 0.0201 (0.0077) 0.0195 (0.0077) 0.0163 (0.0076) 0.0127 (0.0075)

8.0 minute fNIRS 
Signal Acquisition

8.5 minute fNIRS 
Signal Acquisition

9.0 minute fNIRS 
Signal Acquisition

9.5 minute fNIRS 
Signal Acquisition

10.0 minute fNIRS 
Signal Acquisition

P 0.303 0.452 0.629 0.841 >0.99

MD 0.0087 (0.0075) 0.0064 (0.0074) 0.0041 (0.0075) 0.0017 (0.0075) 0

Table 1.  Dunnett Post Hoc Analysis Data for Measures of Correlation Coefficient Stability Associated with 
fNIRS Signal Acquisition Duration. Note—Dunnett post hoc analysis data using the longest fNIRS signal 
acquisition duration (10.0 min) as the control group for pairwise comparisons. Data are P values (data in 
parentheses are 95% CIs) and Mean Difference (STD Error).
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stable topological metrics of the brain network (e.g., 2.0 min of fNIRS signal acquisition for local efficiency and 
global efficiency). One possible explanation for the relatively rapid stabilization of the graph theory data is that 
the intrinsic relationships between the regional cerebral regions that underlie the graph theory output are present 
within the connectivity network at the earliest time points12. It was also possible that the signal used to calculate 

Figure 3.  Effect of fNIRS signal acquisition duration on the accuracy and stability of nodal efficiency. (a) 
Magnitude of nodal efficiency at different sparsity values (0.1, 0.2, 0.3, 0.4 and 0.5) plotted according to the 
duration of the fNIRS signal acquisition ranging from 1.0 to 10.0 min. Curves with the same color represent 
measurement channels from 1 to 46. Different colors represent nodal efficiency calculated at different sparsity 
threshold values. (b) The plots of the correlation strength calculated for the spatial pattern of nodal efficiency 
between short and long (10.0 min) signal durations. The red-filled circles indicate a significant correlation of 
the nodal efficiency map associated with a given fNIRS signal acquisition duration with the nodal efficiency 
computed using 10.0 min of fNIRS data. The analysis revealed significant (P < 0.001) and strong correlations for 
all threshold conditions, indicating almost immediate accuracy of the nodal efficiency. (c) The plots of the nodal 
efficiency-associated standard deviation (mean ± SD) plotted according to the duration of the fNIRS signal 
acquisition (1.0–10.0 min in 30-sec bins). The blue-filled circles indicate a significant difference in the magnitude 
of the computed value associated with a given fNIRS signal acquisition duration compared with the magnitude 
when computed using 10.0 min of fNIRS data. These data approximately correspond to horizontal lines, with 
little difference between the magnitudes of the computed graph metrics for each fNIRS collection duration.
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the graph metrics might be much higher than the noise within the connectivity network across all data collection 
durations. Certainly, further studies based on large samples of data sets from children are expected to provide 
valid evidence in the future on the temporal dynamics underlying the differences in stability between FC and 
network metrics.

In the current study, we adopted several specific network sparsity threshold values (e.g., from 0.1 to 0.5 with 
an interval of 0.1) to construct child brain networks and calculate specific network measures. Human brain func-
tional networks are known to exhibit economical small-world properties at low threshold conditions14, 15. As such, 
the application of low network threshold values in our study was useful since it was able to allow human brain 
network properties, such as small-world properties, to be properly estimated and guaranteed that the number of 
spurious edges in each network was minimized. Meanwhile, the choice of threshold approach in our study also 
provided convenient comparisons of data across individual subjects by constructing comparable networks of 
equivalent size. Notably, there is currently no definitive way to select a single threshold during the construction 
of brain network, and a general strategy is to threshold each correlation matrix repeatedly using several threshold 
values (e.g., 3%, 5% and 7% in the study by Cao et al.16 and 1%, 5%, 10% and 20% in the study by Dai et al.17) or 
over a range of sparsity values (e.g., 6% ≤ sparsity ≤ 40% in the study by He et al.18 and 5% ≤ sparsity ≤50% 
in the study by Martijn et al.19) and then estimate the properties of the resulting graphs at each threshold value. 
In the current study, nodal efficiency and network local and global efficiency increased as the network sparsity 
threshold values increased. The magnitude of nodal efficiency and network local and global efficiency at each 
network sparsity threshold value was similar to values in those prior studies in which these graph theory metrics 
were used12. Specifically, for nodal efficiency and network global efficiency, our results (Figs 3 and 4) demon-
strated that the effects of the fNIRS data collection duration on the magnitude of efficiency were independent 
of the network sparsity threshold values that were adopted in the study. As such, the network sparsity threshold 
values from 0.1 to 0.5 might be an appropriate choice to be applied in future studies on children in which graph 
theoretical analyses are utilized. However, the results of the local efficiency analyses showed a relatively larger 
dependence on network sparsity threshold values, e.g., the minimum fNIRS scanning duration to reach stable 
local efficiency decreased from 5.0 min to 1.5 min with the increasing of network sparsity threshold values from 
0.1 to 0.4 (Fig. 4d). As such, network sparsity threshold values larger than 0.4 might be appropriate for local 
efficiency analysis in studies on children in the future when considering a relatively shorter fNIRS data scanning 
duration. However, further studies are required to determine the optimal network sparsity threshold values for 
examining the brain networks of clinical children using fNIRS data.

A few issues need to be further addressed. First, the sources and detectors used in the current study were only 
placed on main brain regions (e.g., frontal, temporal, parietal and occipital lobes of the cerebral cortex) on bilat-
eral hemispheres, which limited the whole-brain network analysis performed by fNIRS and further inhibited the 
evaluation of topological connectivity among multiple cortical neural systems. Second, the current methodology 

Figure 4.  Effect of fNIRS signal acquisition duration on the accuracy and stability of global efficiency and 
local efficiency. The plots of the correlation strength calculated for global efficiency (a) and local efficiency 
(b) between short and long (10.0 min) signal durations. The red-filled circles indicate a significant correlation 
between global/local efficiency calculated with short and long (10.0 min) fNIRS signal acquisition durations. 
For both global and local efficiency, the analyses revealed significant (P < 0.001) and strong correlations for 
almost all threshold conditions. Magnitudes of the global efficiency (c) and local efficiency (d) plotted according 
to the duration of the fNIRS signal acquisition (1.0~10.0 min with 30-sec bins). The blue-filled shapes indicate a 
significant difference in the magnitude of the computed value associated with a given fNIRS signal acquisition 
duration compared with the magnitude when computed using 10.0 min of fNIRS data.



www.nature.com/scientificreports/

7SCIeNtIfIC ReporTS | 7: 6461 | DOI:10.1038/s41598-017-06340-7

for processing fNIRS signals is far from standardized20, especially in regard to removing effects of typical noise 
sources, e.g., motion artifacts. However, head motion noise is considered to be a primary noise source in data 
from children. Although the ICA approach was adopted in our study to remove the typical noise component in 
the hemoglobin signals, whether there were potential noise components contaminating the accurate evaluation 
of the fNIRS scanning time on FC and network metrics remained undetermined. Certainly, the other technical 
details involved in fNIRS brain network construction could also affect the network properties and their accu-
racy or stability characterization; for example, whether a global signal regression exists and how to select the 
frequency band during preprocessing is beyond the scope of this paper and is worth conducting separate stud-
ies in the future. Third, we only evaluated three commonly used network measures associated with increasing 
fNIRS collection durations, and thus, whether the current findings were valid for other network metrics remains 
largely unknown. Fourth, we observed temporal stability of graph metrics based on several specific chosen spar-
sity threshold values, but it would also be interesting to introduce some objective methods for network sparsity 
threshold selection to further evaluate the effect of fNIRS scanning time on the accuracy and stability of graph 
metrics. Finally, the resting-state fNIRS imaging data used in this study were from healthy child participants. 
As such, the current results have not been validated in children with neurologic or psychiatric abnormalities, 
where immaturity in the brain and abnormalities of the central nervous system in those children may change the 
current conclusion of the FC and network efficiency evaluation, possibly requiring longer fNIRS data collection 
durations. Therefore, exploring possible specificities for such populations with respect to specific fNIRS imaging 
durations is necessary, which may have important implications in the application of network analyses in healthy 
and diseased children.

In summary, for studies of children, as little as 1.0 min of resting-state fNIRS imaging signals may be sufficient 
to obtain accurate FC and both accurate and stable graph theory metrics for dynamic brain network analysis. This 
finding indicates that it is feasible and cost-effective to apply these methods to brain imaging studies for normal 
and disease-associated brain development, even in populations in which routine imaging is highly challenging, 
such as infants and critically ill children.

Sparsity 1.0 minute fNIRS 
Signal Acquisition

1.5 minute fNIRS 
Signal Acquisition

2.0 minute fNIRS 
Signal Acquisition

2.5 minute fNIRS 
Signal Acquisition

3.0 minute 
fNIRS Signal 
Acquisition

0.1
P <0.001 (−0.1124, 

−0.0505)
<0.001 (−0.1124, 
−0.0504)

<0.001 (−0.1015, 
−0.0040)

<0.001 (−0.0984, 
−0.0364)

<0.001 
(−0.0938, 
−0.0318)

MD −0.0771 (0.0163) −0.0814 (0.0166) −0.0705 (0.0160) −0.0674 (0.0164) −0.0628 (0.0152)

0.2
P <0.001 (−0.0673, 

−0.0256)
<0.001 (−0.0643, 
−0.0225)

<0.001 (−0.0606, 
−0.0189)

0.001 (−0.0568, 
−0.0150)

0.002 (−0.0543, 
−0.0125)

MD −0.0464 (0.0106) −0.0434 (0.0114) −0.0397 (0.0108) −0.0359 (0.0102) −0.0334 (0.0094)

0.3
P 0.001 (−0.0426, 

−0.0114)
<0.001 (−0.0455, 
−0.0143)

0.018 (−0.0345, 
−0.0033) 0.057 0.139

MD −0.0270 (0.0082) −0.0299 (0.0088) −0.0189 (0.0084) −0.0166 (0.0085) −0.0118 (0.0079)

0.4
P 0.021 (−0.0274, 

−0.0023)
0.044 (−0.0255, 
−0.0004) 0.062 0.112 0.075

MD −0.0149 (0.0062) −0.0129 (0.0065) −0.0120 (0.0063) −0.0102 (0.0065) −0.0114 (0.0065)

0.5
P 0.053 0.119 0.094 0.118 0.204

MD −0.0098 (0.0050) −0.0081 (0.0052) −0.0087 (0.0053) −0.0082 (0.0052) −0.0066 (0.0052)

Sparsity 3.5 minute fNIRS 
Signal Acquisition

4.0 minute fNIRS 
Signal Acquisition

4.5 minute fNIRS 
Signal Acquisition

5.0 minute fNIRS 
Signal Acquisition

0.1
P <0.001 (−0.0884, 

−0.0264)
0.002 (−0.0801, 
−0.0181)

0.010 (−0.0715, 
−0.0095)

0.013 (−0.0701, 
−0.0081)

MD −0.0574 (0.0156) −0.0491 (0.0158) −0.0405 (0.0160) −0.0391 (0.0161)

0.2
P 0.043 (−0.0424, 

−0.0006)
0.018 (−0.0461, 
−0.0044) 0.089 0.395

MD −0.0215 (0.0102) −0.0253 (0.0105) −0.0181 (0.0108) −0.0091 (0.0102)

0.3
P 0.373 0.562 0.270 0.651

MD −0.0071 (0.0078) −0.0046 (0.0081) −0.0088 (0.0080) −0.0036 (0.0079)

0.4
P 0.259 0.293 0.506 0.487

MD −0.0072 (0.0065) −0.0067 (0.0063) −0.0043 (0.0064) −0.0045 (0.0065)

0.5
P 0.333 0.482 0.484 0.849

MD −0.0050(0.0051) −0.0037(0.0052) −0.0036(0.0051) −0.0010(0.0053)

Table 2.  Dunnett Post Hoc Analysis Data for Local Efficiency Stability Associated with fNIRS Signal 
Acquisition Duration. Note—Dunnett post hoc analysis data using the longest fNIRS signal acquisition 
duration (10.0 min) as the control group for pairwise comparisons. Data are P values (data in parentheses are 
95% CIs) and Mean Difference (STD Error).
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Materials and Methods
Participants and Protocol.  Fifty-three healthy right-handed children (38 males; age range: 6.9–8.21 years, 
mean age 7.38 ± 0.34 years) participated in this study. Written informed consent was obtained from each child and 
his/her parents prior to the experiment. Data collection was carried out according to the protocols approved by the 
Review Board at the State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University. 
The time duration for resting-state fNIRS data acquisition was approximately 11.0 min for each subject. During the 
scanning, the subjects were required to relax and remain still with their eyes closed without falling asleep.

Data acquisition.  A continuous-wave near-infrared optical imaging system (CW6, TechEn Inc., MA, USA) 
was used to measure the time course of HbO and HbR concentrations at a sampling rate of 50 Hz. The system 
included 12 laser sources and 24 detectors, with each source including two wavelengths (690 and 830 nm) of 
near-infrared light21, 22. The sources and detectors were systematically placed on the left and right hemispheres of 
the participant’s head, with spatial separation between adjacent sources and detectors at 3.2 cm. This probe design 
was also exactly the same as that in our previous series of fNIRS studies1, 3, 23. The configuration resulted in 46 
measurement channels that covered the frontal, temporal, parietal and occipital lobes (Fig. 1) of the cerebral cor-
tex. The positions of the probes were determined according to the international 10–20 system of electrode place-
ment, and the external auditory canals and vertex of each participant were referenced as landmarks. Specifically, 
the detectors below channels 17 to 24 in both hemispheres were set along a coronal line from the vertex to the 
external auditory pores; thus, their midline was localized in Cz, and the leftmost and rightmost detectors were 
fitted around T3 and T4, respectively.

Data preprocessing.  We used the modified Beer-Lambert law (MBLL)24 to calculate changes in hemoglobin 
concentrations from the attenuation of light entering the head at two wavelengths. The time course of the hemo-
globin concentration was subsequently subjected to a temporal ICA analysis to remove typical motion-induced 
artifacts and systematic noise and was further band-pass filtered (0.01~0.1 Hz) to obtain low frequency hemo-
dynamic fluctuations25–27. To examine the effect of the resting-state scanning duration on functional brain con-
nectivity and topological network metrics, we truncated the motion-corrected 10-min data into 30-second time 
epochs that ranged from 1.0 to 10.0 min.

Functional Network Connectivity and Graph Theoretical analysis.  Functional connectivity (FC) 
definition.  In fNIRS study, the nodes were defined as measurement channels, and edges were defined as func-
tional connectivity between nodes. Functional connectivity was quantified by computing Pearson correlation 
coefficients for the hemoglobin concentration time series between any two nodal brain regions. For an arbitrary 
given participant, the Pearson correlation was separately calculated to generate a 46 × 46 correlation matrix at 
each acquisition duration.

Network thresholding.  To obtain a binarized network, each correlation matrix was thresholded into a binarized 
matrix with a fixed sparsity threshold value, which is also similar to the process performed in our previous stud-
ies1, 3 that defined sparsity as the number of existing edges divided by the maximum possible number of edges 
within a network. Because there is currently no definitive way to select a single threshold, we thresholded each 
correlation matrix repeatedly over a wide range of sparsity values (0.1~0.5) and then estimated the properties of 
the resulting graphs at each threshold value. The range of sparsity values was chosen here to allow small-world 
network properties to be properly estimated and the number of spurious edges in each network to be minimized 
as indicated in previous studies28.

Network measures.  In graph theory, network efficiency has often been proposed to describe the information 
communication ability within a network29, 30. The corresponding network efficiency metrics have also generally 
been found to characterize normal brain development16, 31, 32 and some clinically related brain diseases33–36 and 
have been confirmed to have numerous conceptual and technical advantages14, 37. We, therefore, chose these 
measures as the network measures of interest when assessing the optimal fNIRS data acquisition duration. 
Specifically, nodal efficiency, network global efficiency and local efficiency were separately calculated for each 
of the constructed networks using different fNIRS data acquisition durations. Of note, an in-house FC-NIRS 
package38 was adopted for the network metric calculation. Specifically, the definitions of these efficiency metrics 
are summarized as follows:

Nodal efficiency.  Nodal efficiency (Enodal) characterizes the capacity of a node to exchange messages with the 
other nodes of the network G, and it is generally defined as follows:

∑=
− ≠ ∈

E i
N d

( ) 1
1

1

(1)
nodal

i j G ij

where dij is the shortest path length between node i and node j, and N is the quantity of nodes in the network.

Network global efficiency.  Global efficiency is a global metric that characterizes the ability to transfer infor-
mation in the entire brain network, and it is computed as the mean of nodal efficiency across all nodes of the 
network29:
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where dij is the shortest path length between node i and node j, and N is the quantity of nodes in the network.

Network local efficiency.  Network local efficiency characterizes the efficiency of information flow within local 
networks, and it reflects the ability of a network to tolerate faults29. The local efficiency of network G is computed 
as follows:

∑=
∈

E G
N

E G( ) 1 ( )
(3)

loc
i G

glob i

where Eglob(Gi) is the global efficiency of Gi, the subgraph of the neighbors of node i.

Accuracy evaluation.  We used accuracy to quantify the effect of scanning time on FC and network efficiency 
metrics. “Accuracy” was defined as the similarity strength between patterns from the relatively short and relatively 
long 10.0-min time series, as assessed using the Pearson correlation coefficient between the measure computed 
from the full-length time series and that computed from a given temporal window. For instance, for FC and the 
nodal efficiency metric, the Pearson correlation was calculated between group-level spatial maps from each short 
scanning window and that of the relatively longer 10.0-min scanning window. For local and global efficiency 
metrics, since there was only one number given to each network, the Pearson correlation between each short and 
relatively long temporal window was calculated across all subjects. Of note, the Fisher’s z-transformation was first 
conducted on each FC matrix before conducting the accuracy analysis.

Stability analysis.  We also adopted a stability measure to examine the effect of scanning duration on FC and 
network efficiency metrics. “Stability” was defined as no significant differences between measures calculated 
from the relatively short and the relatively long 10.0-min time series12. For the FC metric, the measure was 
selected to be the correlation coefficient-associated standard deviation (SD). This is because the SD associated 
with the correlations of all nodal fNIRS time series provides a global measure of stability of the correlation val-
ues as opposed to the mean correlation values, which would merely approach zero. Specifically, the correlation 
coefficient-associated SD was generated as follows: the SD was first computed for each subject’s correlation coef-
ficient matrix at each fNIRS signal acquisition duration. This generated 19 SDs (one per time bin) for each of the 
53 subjects. The SD was then averaged across subjects at each time bin, leading to 1SD per time bin (19 time bins) 
for graphing. This enabled assessment of the changes in correlation coefficient variability (SD) as a function of 
the increasing fNIRS signal data collection duration. Subsequently, a one-way ANOVA was adopted to examine 
whether there was a significant difference between SD measures calculated from the relatively short and the rel-
atively long 10.0-min time series. Post hoc analyses using the Dunnett test were also adopted to further examine 
significant effects revealed by ANOVA using the longest fNIRS signal acquisition duration (10.0 min) as the con-
trol group for pairwise comparisons.

A similar analysis was used for the stability evaluation of nodal efficiency. Of note, the nodal 
efficiency-associated standard deviation (SD) was selected to be the statistical measure in the statistical analysis. 
The calculation of the nodal efficiency-associated standard deviation was generated in a similar manner to the 
correlation coefficient-associated standard deviation (SD).

For network global and local efficiency metrics, a two-way ANOVA was conducted to explore the effect of 
fNIRS imaging acquisition duration on the magnitude of the computed network metrics at different sparsity val-
ues. The fNIRS signal acquisition duration (1.0~10.0 min in bins incrementally larger by 30 seconds) and sparsity 
(0.1, 0.2, 0.3, 0.4 and 0.5) were used as independent variables. Graph theory network metrics (local efficiency and 
global efficiency) were used as dependent variables. Notably, for local and global efficiency metrics, since only one 
number was given to each network, the statistical analysis between the full-length time series and a given tempo-
ral window was calculated across all subjects. Post hoc analyses using the Dunnett test were conducted to further 
examine significant effects revealed by ANOVA using the longest fNIRS signal acquisition duration (10.0 min) as 
the control group for pairwise comparisons.
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