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ABSTRACT Antimicrobial susceptibility testing (AST) is a fundamental mission of
the clinical microbiology laboratory. Reference AST methods are based on bacterial
growth in antibiotic doubling dilution series, which means that any error in the ref-
erence method inherently represents at least a 2-fold difference. We describe the or-
igins of current AST reference methodology, highlight the sources of AST variability,
and propose ideas for improving AST predictive power.
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Dilution-based antimicrobial susceptibility testing (AST) methods have been used to
assess antimicrobial activity since the discovery of penicillin. In fact, Alexander

Fleming himself used a tube-based dilution method for quantifying penicillin activity of
different fungal culture filtrates (1) and even earlier had performed both diffusion- and
dilution-based experiments to quantify the activity of lysozyme (2). Initially, perfor-
mance of AST assays varied significantly in terms of composition of media, inoculum
size, incubation conditions, and antibiotic purity (3, 4). However, over the past several
decades, AST has undergone a significant degree of procedural standardization.

Use of a variety of antimicrobial dilution series (e.g., subdoubling dilutions) was
described in early investigations of AST (5), but laboratories soon settled on a 2-fold
dilution series. This geometric interval was chosen both for ease of performance and
because of the observation that gradual, progressive inhibition around the MIC made
determination of an exact MIC in finer dilution series challenging (4, 5). Inherently,
however, any error in a doubling dilution series represents at minimum a 2-fold difference,
a point that was recognized as early as the 1940s (5).

The emergence of antibiotic resistance decreased the probability that an empirical
antimicrobial regimen will be effective and thereby drove widespread implementation
of AST in clinical laboratories. This practice was further expanded after establishment of
correlations between in vitro susceptibility and clinical efficacy (6, 7). In the first decades
of antibiotic use, the broth macrodilution method was commonplace for performing
doubling dilution testing (3). However, as AST use increased, this cumbersome method
was supplanted by a standardized broth microdilution assay. This miniaturization was
facilitated by the introduction, in the 1960s, of microtitration equipment that allowed
efficient, reproducible serial dilutions of antibiotics in 96-well plate format (8).

Early systematic evaluation of the broth microdilution method showed that 90% to
95% of MIC results were �1 dilution from the median or mode for most antimicrobial/
organism combinations (9). However, some clinical strains may exhibit even greater
variability. For example, investigations in our laboratory have found that the proportion
of repeat broth microdilution MIC values that fall within �1 dilution of the modal MIC
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ranges from 76% to 97% among different Enterobacteriaceae clinical isolates in a highly
resistant strain set (unpublished data). For clinical isolates whose MICs fall near a
susceptibility breakpoint, this variability results in categorical interpretive differences
(that is, differences in classification of an isolate as susceptible, intermediate, or
resistant) on repeat testing. This fact may be underappreciated by clinicians and
laboratorians and is not obvious in the absence of repeated testing, which is not
generally performed in a clinical setting. Clinical AST methods that are currently in use
are too time-consuming to allow routine repeat testing of isolates, but if new auto-
mated methods sufficiently increase the speed and efficiency of AST, such replicate
testing may become practical and may be applied in a targeted fashion to isolates and
antimicrobials which, based on underlying resistance patterns, may be at increased risk
for variable AST results. If such replicate testing were to be performed, it would be
possible to report a result such as the mode of replicate MIC assays. Furthermore, the
finding that a particular strain shows greater-than-expected variability on replicate
assays for a given antibiotic could be included in a report to alert clinicians of potential
decreased predictability in antibiotic responses. The lower reproducibility for different
types of clinical strains may not reflect the common experience with standard quality
control strains (for example, Escherichia coli ATCC 25922 or Staphylococcus aureus ATCC
29213), which are specifically chosen for testing consistency and typically show �95%
of values falling within �1 dilution of a modal MIC (10–12).

To date, few studies have systematically evaluated the sources of AST variability,
which likely has both biological and technical underpinnings. For example, biological
variability may be introduced through use of different growth phases (13), inoculum
densities, incubation conditions (e.g., duration, temperature, humidity, and oxygen and
carbon dioxide concentrations), or media (14). However, some proportion of biological
variability is uncontrollable, as individual organisms within clonal populations display
phenotypic heterogeneity (15), likely related to stochastic epigenetic effects.

Significant progress has been made in reducing technical variation in AST through
both procedure standardization and development of new technologies for panel
preparation. Specifically, organizations such as the CLSI and EUCAST now provide
guidance in terms of standards for media, incubation conditions, and assay perfor-
mance (11). Furthermore, systematically quality-controlled broth microdilution panels
prepared using automated liquid handling (rather than manual dilution) are now
commercially available (16), minimizing, if set up properly, the cumulative error inher-
ent in manual preparation of a 2-fold dilution series.

However, some components of the AST process have proven more difficult to
standardize. One procedure for which there is significant variability is the preparation
of bacterial suspensions to match a 0.5 McFarland standard (17). Furthermore, 0.5
McFarland suspensions of organisms with different sizes, shapes, and clustering char-
acteristics may yield CFU counts that differ by severalfold. This variability, reflected in
the 4-fold range of acceptable CFU inocula outlined in CLSI guidelines (11), may
hypothetically further contribute to MIC variability for antimicrobials that display an
inoculum effect (18, 19). As such, there is a need for improved, accessible methods of
inoculum standardization, such as automated spectrophotometric analysis and inocu-
lum preparation, as well as for further investigation to elucidate the effect of inoculum
density on MIC results for different organisms and the potential application of differing
inoculum density standards for different species.

The relative lack of MIC precision undoubtedly has clinical consequences. In addition
to guiding treatment decisions on a per-patient basis, AST and resultant MIC values are
also used to investigate and define pharmacodynamic (PD) parameters that predict in
vivo response to therapy. MIC breakpoints are established based on these PD studies,
which correlate in vitro organism susceptibility, achievable levels of antibiotic in vivo,
and clinical outcomes. Paradoxically, techniques for quantifying the levels of antimi-
crobials in blood and tissue are very precise, with typical coefficients of variation being
�20% (20), while MIC assays, as mentioned previously, may have 2-fold errors. Of note,
an error of one 2-fold dilution represents a greater absolute difference at higher
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antibiotic concentrations with the correspondingly wider spacing of dilutions. This
intrinsic error represents a significant and well-recognized limiting factor in the clinical
applicability of PD analyses (21).

Therefore, AST assays that are more precise and accurate would provide several
benefits. They would improve PD modeling, support better clinical AST calls on
individual patient isolates, and allow “personalized” antimicrobial dosing. More specif-
ically, as organisms develop significant resistance and become effectively untreatable
with available antimicrobials, salvage therapy becomes a more pressing need. It has
been recognized that, for some antimicrobials, dosages or dosing frequencies may be
increased while skirting the abyss of unacceptable toxicity. This concept has been
codified in the new dose-dependent susceptibility criteria recently promulgated by
the CLSI for the drug cefepime (22). Here, alternative dosing regimens are proposed
to treat organisms with elevated MICs (4 or 8 �g ml�1) that might otherwise not be
considered treatable and which are in fact considered resistant at an MIC of 8 �g
ml�1 by current EUCAST criteria (http://www.eucast.org/clinical_breakpoints/). Im-
portantly, the trade-offs between the potential for enhanced therapeutic effect and
increased risk of toxicity might be acceptable only if we are confident that the MICs
measured are accurate and reflect true potential for cure. Such critical assessments are
of particular importance for drugs with narrow safety margins such as aminoglycosides
and colistin (23, 24).

One approach to improving accuracy of MIC determinations is to use a dilution
series with dilution intervals that are finer than 2-fold. The availability of automated
liquid handlers and other programmable antibiotic dispensing systems means that the
previously time-consuming and error-prone process of preparing subdoubling dilutions
is no longer a true impediment. Finer dilutions could be discontinuous and concentrate
around critical decision points, such as cutoffs bordering safety margins and break-
points, and could include finer gradations bracketing quality control strain ranges to
allow greater sensitivity to detect subtle drift in panel performance (25, 26). While
decreasing dilution intervals will not reduce the biological variability that may play a
role in inconsistent MIC results, it will provide increased data about the true location of
the MIC within the dilution series. Initially, subdoubling dilution results would likely be
rounded up to the nearest doubling dilution to allow interpretation by standard
susceptibility criteria. In time, however, the widespread adoption of finer dilution series
could facilitate development of new, more precise breakpoints that would not be
required to fall on doubling dilutions.

It is also possible that the standard MIC is not the ideal measure for predicting
response to therapy for individual patients or for PD modeling. Although the current
AST reference standard is visual inspection for complete inhibition of bacterial growth,
it is clear that many antimicrobials exert effects below the MIC that cannot be
quantified by eye. Correspondingly, substantial therapeutic effect is often observed
even for organisms that are categorized as resistant by standard MIC measurements
(27). To gain more information regarding sub-MIC-based inhibitory effects of antibiotics
and to support further exploration of the relevance of these effects during therapy,
bacterial growth inhibition can be modeled as a dose-response curve using spectro-
photometric measurements (28) to yield MIC, the IC50 (the concentration required to
reduce final cell absorbance by 50%), and Hill slope parameters (28, 29). The data on
sub-MIC effects provided by the IC50, for example, are expected to provide a more
robust measure of antibiotic effect than a single MIC value (29), although standardized
interpretive criteria like those used for evaluation of MICs would need to be developed
before the IC50 could be used in the clinical laboratory. Future in vivo and clinical
studies could determine whether dose-response parameters such as IC50 and Hill slope
have implications for therapeutic parameters such as antibiotic dosing. Another po-
tentially informative variable is the dimension of time. Growth kinetic assessments are
already used in clinical systems such as Vitek2 (bioMérieux, Durham, NC) to extrapolate
MICs from a limited number of antimicrobial concentrations (30). However, the full
potential of kinetic measurements in predictive AST determination is likely underex-
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plored. Lastly, newer techniques for real-time assessment of bacterial viability, in
addition to bacterial growth inhibition assessed by standard testing, may provide
additional prognostic value. Ultimately, a multiparameter analysis that includes several
or all of these measures may provide the most informative readout.

With the development of new technologies such as automated liquid handling and
the adoption in clinical settings of algorithms that can incorporate numerous compo-
nents of a multidimensional readout, we expect that the predictive capabilities of AST
will be improved significantly in the future. Clearly, much research and dedicated work
lie ahead. However, the antimicrobial resistance threat is looming, and it is a challenge
that we must embrace.
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