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ABSTRACT Public health microbiology laboratories (PHLs) are on the cusp of un-
precedented improvements in pathogen identification, antibiotic resistance detec-
tion, and outbreak investigation by using whole-genome sequencing (WGS). How-
ever, considerable challenges remain due to the lack of common standards. Here,
we describe the validation of WGS on the Illlumina platform for routine use in PHLs
according to Clinical Laboratory Improvements Act (CLIA) guidelines for laboratory-
developed tests (LDTs). We developed a validation panel comprising 10 Enterobacte-
riaceae isolates, 5 Gram-positive cocci, 5 Gram-negative nonfermenting species, 9
Mycobacterium tuberculosis isolates, and 5 miscellaneous bacteria. The genome cov-
erage range was 15.71X to 216.4X (average, 79.72X; median, 71.55X); the limit of
detection (LOD) for single nucleotide polymorphisms (SNPs) was 60X. The accuracy,
reproducibility, and repeatability of base calling were >99.9%. The accuracy of phy-
logenetic analysis was 100%. The specificity and sensitivity inferred from multilocus
sequence typing (MLST) and genome-wide SNP-based phylogenetic assays were
100%. The following objectives were accomplished: (i) the establishment of the per-
formance specifications for WGS applications in PHLs according to CLIA guidelines,
(i) the development of quality assurance and quality control measures, (i) the de-
velopment of a reporting format for end users with or without WGS expertise, (iv)
the availability of a validation set of microorganisms, and (v) the creation of a mod-
ular template for the validation of WGS processes in PHLs. The validation panel, se-
quencing analytics, and raw sequences could facilitate multilaboratory comparisons
of WGS data. Additionally, the WGS performance specifications and modular tem-
plate are adaptable for the validation of other platforms and reagent kits.

KEYWORDS bacteria, whole-genome sequencing, performance specifications,
laboratory-developed test, quality management, validation, CLIA, public health,
bioinformatics pipeline, WGS

linical microbiology laboratories and public health microbiology laboratories (PHLs)

are undergoing transformative changes with the adoption of whole-genome se-
quencing (WGS) (1, 2). For several years, leading laboratories have reported proof-of-
concept studies on WGS-enabled advances in the identification of pathogens, antibiotic
resistance (ABR) detection, and disease outbreak investigations (3-6). Technologies also
referred to as next-generation sequencing (NGS) have yielded more detailed informa-
tion about the microbial features than was possible by using a combination of other
laboratory approaches. Further developments of WGS platforms allowed remarkable
in-depth inquiry of pathogenic genomes for the discovery of genetic variants and
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genome rearrangements that could have been missed by using other DNA methods (3,
7, 8). Enhanced investigations of disease outbreaks have led to a new understanding of
routes of transmission of infectious agents (9-11). WGS-enabled metagenomics and
microbiome discoveries have revealed a new appreciation for the role of microbes in
health and disease (12-15). The innovations are continuing at such an unprecedented
pace that WGS is expected to become an alternative to culture-dependent approaches
in clinical and public health microbiology laboratories (16-18).

Notwithstanding its promises, several challenges remain for the adoption of WGS in
microbiology laboratories (19-22). The accelerated obsolescence of sequencing plat-
forms presents several obstacles in bridging the gap between research and routine
diagnostics, including standardization efforts (23). The downstream bioinformatics
pipelines are also unique challenges for microbiology laboratories regarding both
infrastructure and skilled operators (24-27). Overall, WGS “wet-bench” and “dry-bench”
workflows represent integrated processes, which are not easily amenable to the
traditional quality metrics used by microbiology laboratories (27-29). The capital
investments and recurring costs of WGS for clinical laboratories, although rapidly
declining, remain relatively high to allow multilaboratory comparisons for the stan-
dardization of analytical parameters. Finally, regulatory agencies have not yet proposed
standard WGS guidelines for clinical microbiology (30), and external proficiency testing
(PT) programs for clinical and public health microbiology laboratories are still in
development (31, 32).

There are a few notable developments toward the standardization and validation of
next-generation sequencing in clinical laboratories. The U.S. Centers for Disease Control
and Prevention (CDC) sponsored the Next-Generation Sequencing: Standardization of
Clinical Testing (Nex-StoCT) workgroup to propose quality laboratory practices for the
detection of DNA sequence variations associated with heritable human disorders (33,
34). This workgroup developed principles and guidelines for test validation, quality
control, proficiency testing, and reference materials. Although not focused on infec-
tious diseases, these guidelines provide a valuable roadmap for the implementation of
WGS in clinical microbiology and public health laboratories. The College of American
Pathologists (CAP) reported 18 requirements in an accreditation checklist for next-
generation sequencing analytic (wet-bench) and bioinformatics (dry-bench) processes
as part of its molecular pathology checklist (30). These “foundational” accreditation
requirements were designed to be broadly applicable to the testing of inheritable
disorders, molecular oncology, and infectious diseases. Along the same lines, the
feasibility of in silico proficiency testing has been demonstrated for NGS (35). Recently,
high accuracy and reproducibility were shown for WGS-based microbial strain typing
performed in a ring trial study involving five laboratories; the results suggested that a
proficiency testing program for WGS is feasible in clinical microbiology laboratories
(36). The Clinical and Laboratory Standards Institute (CLSI) updated its guidelines for
nucleic acid sequencing methods in diagnostic laboratory medicine with consider-
ations specific to the application of next-generation sequencing in microbiology (37).
Thus, a broad technical framework is now available to design WGS validation protocols
that will be most relevant for clinical and public health laboratories. Our aims for the
present study were to establish performance metrics for the typical workflow in public
health microbiology laboratories, design modular templates for the validation of
different platforms and chemistries, finalize a user-friendly report format, and identify
a set of bacterial pathogens that could be used for WGS validation and performance
assessments.

RESULTS

Accuracy of WGS. A number of Clinical Laboratory Improvements Act (CLIA)-
required performance parameters were adopted, with modifications for the validation
of WGS (Table 1). The modular validation template and a summary are presented in
Fig. 1. The quality assurance (QA) and quality control (QC) measures are described in
detail later in Results.
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Validation Set
34 bacterial isolates

WHOLE GENOME SEQUENCING VALIDATION IN
PUBLIC HEALTH MICROBIOLOGY LAB SETTINGS

Analytical Diagnostic
sensitivity and J| sensitivity and
specificity specificity

Reproducibility/
Repeatability

MiSeq Illumina Test Bioinformatics
platform accuracy pipeline triplicates Limit of SNP detection [J0)%4
accuracy ] accuracy

Specificity
of SNP detection

(I {13/ [, /:HM within run / between run:
S E Il 99.02% / 97.05%
S ERNEIIE 99.9999997% / 99.999998%

Genotyping I0[0}A
16S rRNA

gene ID 100%

100%

Antibiotic resistance
genes detection

16S rRNA
gene ID

100%

FIG 1 Summary of WGS validation. The estimated performance parameters are shown in blue boxes. The components of WGS accuracy
determined in this study are shown in purple boxes. The WGS assays evaluated in order to deduce the corresponding performance
parameters are shown in green boxes. Percentages alongside the boxes represent values measured during this validation for the
corresponding parameters.

The accuracy of WGS was divided into three components: platform accuracy, assay
accuracy, and bioinformatics pipeline accuracy.

Platform accuracy. Platform accuracy was assessed as the accuracy of the identi-
fication of individual base pairs (“base calling”) in the bacterial genome. The accuracy
of the platform was established by determining the proximity of agreement between
base callings made by the MiSeq sequencer (measured value) and the NCBI/CDC
reference sequence (the true value). We determined the accuracy of the MiSeq lllumina
platform by mapping generated reads to the corresponding reference sequence and
identifying single nucleotide polymorphisms (SNPs) throughout the genome. A few
validation samples differed from the reference genome by several SNPs. However, 99%
(324 out of 327) of these SNPs were reproducible among all five replicates sequenced
for each sample. Since amplification and sequencing errors were random between
different library preparations, it was unlikely that the same erroneous SNP would occur
in all five replicates. Therefore, we concluded that these discrepancies were not caused
by sequencing errors but most likely were the result of the accumulation of mutations
in the reference strains or previous sequencing mistakes in the reference sequence.
Sanger sequencing confirmed the SNPs found in WGS results for the selected isolates
(see Appendix 14 in Document S1 in the supplemental material). However, in several
instances, it was impossible to design specific primers within reach of Sanger sequenc-
ing read lengths because SNPs were found in the repeat regions. In one case, the results
of Sanger sequencing matched the results of mapping, but upon comparison with de
novo assemblies, the same sequence was found in two variants, with and without the
SNP detected by mapping. This highlighted the limitation of the short-read sequencing
technology and the underlying caution that must be exercised in the interpretation of
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the SNPs called in the repeat regions of the genomes. In both cases, whether we took
into account all SNPs detected between validation and reference sequences or only
those SNPs that did not appear in all of the replicates (true sequencing errors), we
observed >99.999% agreement of the generated whole-genome sequences with
the reference sequences for each tested sample.

Assay accuracy. Assay accuracy was defined as the agreement of the assay results
for the validation sequences with the assay results for the reference sequences of the
same strains. Four applications of WGS were used to validate the accuracy of the assay:
an in silico multilocus sequence typing (MLST) assay, a 16S rRNA gene species identi-
fication assay, an assay for the detection of ABR genes, and a genotyping assay using
high-quality SNPs (hqSNPs).

The definition for a correct result for MLST corresponds to the correct identification
of each of the MLST alleles in the validation sequence as well as in the reference
sequence analyzed in parallel. For all validation samples, each of the sequences of the
seven housekeeping genes used in the typing scheme (or six genes for Aeromonas
hydrophila) were identified correctly, resulting in 100% allele identification accuracy.

For ABR gene detection, the sequences of the ATCC susceptibility control strains
generated during validation were analyzed by using ResFinder. Data analysis using
ResFinder implies comparison of the sequence against each entry in the ResFinder
database, which at the moment of validation contained sequences of 1,719 antibiotic
resistance genes, resulting in a total of 1,719 tests performed for each validation
sample. The results of ResFinder detection were compared to the resistance genes
known to be present in the ATCC strains. Two of the sequenced isolates contained one
resistance gene each, which were also detected by ResFinder, with no additional genes
being identified. No resistance genes were detected by ResFinder in the samples
suggested to be negative susceptibility controls and lacking resistance determinants.
Thus, the accuracy of the assay for ABR gene detection was 100% (see the section on
detection of resistance genes in ATCC strains using ResFinder in Document S1 in the
supplemental material). Moreover, 13 reference sequences of Gram-negative (7 se-
quences) and Gram-positive (6 sequences) bacterial isolates with various resistance
genes from the U.S. Food and Drug Administration (FDA)-CDC Antimicrobial Resistance
Isolate (AR) Bank were used for in silico testing of ABR gene detection accuracy using
ResFinder. The resistance genes in the AR Isolate Bank isolates were previously detected
by the CDC using PCR-based methods (for primary resistance types) and by ResFinder
(database last updated 2 June 2016). Our analysis of reference sequences with
ResFinder (last updated 17 February 2017) confirmed the presence of all genes that
were detected by PCR-based methods (n = 8), resulting in 100% accuracy. At the
moment of analysis, ResFinder did not have the ability to detect the truncation of porin
genes; therefore, porin-related resistance mechanisms mentioned in the CDC database
could not be detected with ResFinder. Upon ResFinder analysis at the CDC, the isolates
harbored a total of 83 resistance genes (representative of 57 different alleles). The
detection of the genes by the CDC using ResFinder was replicated in this study, with
few discrepancies (see the section on in silico detection of resistance genes in FDA-CDC
isolates using ResFinder and Appendix 15 in Document S1 in the supplemental
material). In the case of Gram-negative bacteria, all discrepancies were represented by
additional genes detected in comparison with CDC ResFinder results, and these dis-
crepancies were most likely caused by the database update; e.g., the aph(3')-la gene
was not on the list of the genes detected with ResFinder by the CDC but was detected
in the same sequences using ResFinder in this study. This particular gene discrepancy
could be explained by the use of a later version of ResFinder, which was updated with
additional aminoglycoside resistance genes. In the case of Gram-positive bacteria,
several discrepancies were also caused by the additional genes detected in this study,
but two genes that were present in the CDC results were missing from our results.
These false-negative genes were detected by us but possessed <99% identity or an
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TABLE 2 Summary of data from previous studies used for validation of the bioinformatics pipeline

Study parameter

Value for study

MRSA study“

Salmonella study®

Microorganism
Source of isolates
No. of isolates analyzed

Type of outbreak
Samples used for validation

GenBank accession no. of corresponding
samples

No. of clusters in the study tree
No. of clusters in the validation tree
No. of outbreak isolates in each cluster in

Methicillin-resistant Staphylococcus aureus

Human

7 outbreak isolates (1 outbreak cluster) + 2
epidemiologically unrelated isolates

Hospital-associated outbreak

P1, P2, P3, P4, P16, P21, and P25; an isolate
identified by infectious control investigation
as belonging to nonoutbreak ST1; a MRSA
isolate identified by searching a
microbiology database as belonging to
nonoutbreak ST772

ERR070045, ERR070042, ERR070043,
ERR070044, ERR124429, ERR124433,
ERR128708, ERR070041, ERR072248

1
1
7 for cluster 1

the study tree
No. of outbreak isolates in each cluster in
the validation tree

7 for cluster 1

No. of epidemiologically unrelated isolates 2
in the set
No. of epidemiologically unrelated isolates 0

that clustered with outbreak isolates

% agreement {[(no. of outbreak isolates
clustered correctly in the validation
tree) X 100]/(total no. of outbreak
isolates that clustered together in the
study tree)}

(7 X 100/7) = 100

Salmonella enterica serovar Typhimurium

Human

9 outbreak isolates (4 outbreak clusters) + 2
epidemiologically unrelated isolates

Foodborne outbreaks

0803T57157, 0808561603, 0808F31478,
0903R11327, 0811R10987, 0804R9234,
0810R10649, 0901M16079, 0110717035,
1005R12913, and 1006R12965

ERR277220, ERR277226, ERR277223,
ERR277222, ERR277224, ERR277221,
ERR277227, ERR277228, ERR277203,
ERR277233, ERR277234

4

4

2 for cluster 1, 3 for cluster 2, 2 for cluster 3,
and 2 for cluster 4

2 for cluster 1, 3 for cluster 2, 2 for cluster 3,
and 2 for cluster 4

2

0

(9 X 100/9) = 100

aSee reference 38. ST1, sequence type 1; ST772, sequence type 772.
bSee reference 39.

incomplete sequence and therefore were excluded from the final result. Nevertheless,
the agreement between CDC ResFinder results and our ResFinder results was 99.97%.

For the 16S rRNA identification assay, variations in one gene were detected, so the
species identification results as a whole (e.g., “Escherichia coli") were considered a single
test. The identity of the 16S rRNA sequences extracted from validation samples showed
100% matches with the 16S rRNA sequences extracted from the reference sequence.

To assess the accuracy of the genome-wide hqSNP-based genotyping assay, phy-
logenetic trees were built by using reference sequences and validation sequences, and
the resulting trees were compared. For better comparison, we used at least five strains
of the same species in the phylogenetic tree. The accuracy of the genotyping assay was
determined by using two approaches: (i) topological similarity between the reference
tree and the validation tree using Compare2Trees software and (ii) comparison of the
clustering patterns of the validation tree and the reference tree. Therefore, in addition
to the detection of SNP differences between the validation sequences and reference
sequences, their effect on the final tree topology was also estimated to determine the
accuracy of the genotyping assay. Phylogenetic trees were generated for five bacterial
species (Escherichia coli, Salmonella enterica, Staphylococcus aureus, Enterococcus faeca-
lis, and Stenotrophomonas maltophilia). All five validation trees had matching clustering
patterns and 100% topological similarity with the corresponding reference trees (see
Table S2 in the supplemental material).

Accuracy of the bioinformatics pipeline. The accuracy of the bioinformatics
pipeline for hgSNP-based genotyping by itself was assessed by the recapitulation of
previously reported results using WGS raw reads of bacterial isolates included in two
previous studies (Table 2). This was an additional assessment of the accuracy of the
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FIG 2 Bioinformatics pipeline validation with outbreak isolates from two previously published studies. (A) Phylogenetic tree of outbreak
isolates reported in the “MRSA study” by Harris et al. (38). The isolates from the MRSA study that were picked for validation are indicated
by arrows and numbers assigned for purposes of validation (1 to 7). (B) Phylogenetic tree validation using the samples from the MRSA
study and the validation bioinformatics pipeline. The same isolates in the original tree and the validation tree are marked with the same
numbers. (C) Comparison of the group of related isolates (isolates 1 to 7) from the MRSA study with epidemiologically unrelated isolates
from the same study using the validation bioinformatics pipeline. (D) Phylogenetic tree combining epidemiologically related and
nonrelated isolates reported in the “Salmonella study” by Leekitcharoenphon et al. (39). The isolates from the Salmonella study that were
picked for validation are marked with green node circles and have the numbers 1 to 11 assigned for purposes of validation. Epi,
epidemiologically. (E) Validation phylogenetic tree generated for the samples from the Salmonella study using the in-house bioinformatics
pipeline. The same isolates in the tree from the Salmonella study and the validation tree are marked with the same numbers.

genotyping pipeline apart from the accuracy of base calling from in-house sequencing
of the isolates. Phylogenetic analyses of isolates associated with outbreaks caused by
a Gram-positive pathogen in the first study (MRSA [methicillin-resistant Staphylococcus
aureus] study) (38) and a Gram-negative pathogen in the second study (Salmonella
study) (39) were performed for the validation of the bioinformatics pipeline (Fig. 2). The
clustering of the validation tree completely replicated the clustering of the tree from
the MRSA study (38) (Fig. 2A and B); e.g., isolates 4 and 5 were identical and clustered
together according to the MRSA study, and the same results were shown in the validation
tree, with isolates 4 and 5 sharing the same node. All conclusions with regard to the
genetic relatedness of the isolates that can be drawn from the tree reported in the
MRSA study could also be made for the analysis of the corresponding validation tree.
The group of outbreak isolates from the MRSA study was compared with epidemio-
logically unrelated isolates suggested by the same study (no tree was available from
that report). Phylogenetic analysis using the in-house bioinformatics pipeline showed
that epidemiologically unrelated isolates did not cluster with the group of outbreak
isolates and appeared to be genetically distant (Fig. 2C). Thus, the resulting phyloge-
netic tree produced by our bioinformatics pipeline showed complete concordance with
the epidemiological data.
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From the Salmonella study (39), we selected nine isolates that were representative
of four independent outbreaks and two isolates that were epidemiologically unrelated
controls (Fig. 2D). The clustering of the validation tree was identical to the clustering of
the tree from the Salmonella study. For example, isolates 6 and 7 were part of the same
outbreak, while isolate 8 was an epidemiologically unrelated control used in that study.
In agreement with the epidemiological data and the tree from the Salmonella study, the
validation tree showed that isolates 6 and 7 clustered together but not with isolate 8
(Fig. 2E). All observations about the genetic relatedness of the isolates drawn from the
tree from the Salmonella study could be replicated from the analysis of the validation
tree. In summary, based on in silico analysis of data from both studies, 100% accuracy
of our bioinformatics pipeline was established for phylogenetic analysis.

WGS repeatability and reproducibility. Repeatability (within-run precision) was
established as the concordance of the assay results and quality metrics obtained for a
sample tested multiple times within the same sequencing run. Reproducibility (between-
run precision) was assessed as the consistency of the assay results and quality metrics
for the same sample sequenced on different occasions. Thirty-four validation samples
each were sequenced three times in the same sequencing run (for repeatability) and
three times in different runs (for reproducibility). For within-run replicates, one DNA
extract was used, but independent library preparations were done, with the final
samples being included in a single sequencing run. Therefore, for each sample, the
numbers of within-run replicates and between-run replicates were 3 each, and the total
numbers of repeated results were 5. All quality parameters (depth of coverage, unifor-
mity of coverage, and accuracy of base calling [Q score], etc.) did not change signifi-
cantly for within- and between-run replicates, as determined by a two-tailed t test. For
the quality values for all sequenced samples, see the section on inter- and intra-assay
agreement and Appendix 8 in Document S1 in the supplemental material.

The reproducibility and repeatability of the WGS assay were evaluated with two
methods: evaluation of base calling reproducibility and repeatability per replicate and
evaluation of base calling reproducibility and repeatability relative to genome size. All
validation samples except C50 yielded identical whole-genome sequences for all three
within-run replicates. One out of three within-run replicates for isolate C50 (Pseudomo-
nas aeruginosa ATCC 27853) had one SNP difference from other within-run replicates
(Table S3). The repeatability per replicate was 99.02%. Three validation samples had one
out of three between-run replicates that differed from the other two between-run
replicates. Sample C47 (Staphylococcus epidermidis ATCC 12228) had one between-run
replicate with two SNPs that differed from the other replicates. Samples C49 (Strepto-
coccus pneumoniae ATCC 6305) and C55 (Escherichia coli ATCC 25922) each had one
between-run replicate that differed from other replicated sequences by one SNP. The
reproducibility of base calling per replicate was 97.05%. Both the reproducibility and
repeatability of base calling relative to the genome size (in relation to the total number
of base pairs of the covered genome size) were >99.9999%.

We also estimated the reproducibility and repeatability of MLST and 16S rRNA
identification assays. For MLST, a total of 441 alleles were analyzed for within- or
between-run replicates. Each single allele in all validation samples was identified
consistently among within- and between-run replicates. Within- and between-run
replicates had repeatable/reproducible sequences of 16S rRNA genes and resulted in
the consistent identification of the species. The reproducibility and repeatability of
allele detection and species identification within and between runs were 100%.

WGS sensitivity and specificity. The sensitivity of WGS was assessed as (i) analytical
sensitivity (minimum coverage that allows accurate SNP detection) and (ii) diagnostic
sensitivity (the likelihood that a WGS assay will detect sequence variation when it is
present) (this value reflects the false-negative rate of the assay).

The specificity of WGS was determined as (i) analytical specificity (the ability of an
assay to detect only the intended target in the presence of potentially cross-reacting
nucleotide sequences) and (ii) diagnostic specificity (the probability that a WGS assay
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will not detect sequence variations when none are present) (this value reflects the
false-positive rate of the assay).

Analytical sensitivity. The limit of detection (LOD) is traditionally defined as “the
lowest actual concentration of an analyte in a specimen that can be consistently
detected ... with acceptable precision” (40). The LOD in this sense is not applicable to
WGS, which utilizes pure bacterial cultures as starting material; the amount of the
analyte (genomic DNA) that is added to the reaction mixture is strictly standardized,
and the DNA concentration of each sample is measured by a fluorometric method
before each assay. In our workflow, we established the minimum amount of the starting
DNA input to be 1 ng (at a concentration of 0.2 ng/ul) and did not process DNA extracts
with concentrations of <1 ng/ul. Instead, we determined the LOD of SNP detection
(LODgpp) by establishing the lowest coverage that allows accurate SNP calling. The
LODg,p Was estimated by modeling different mapping coverages and estimating the
number of SNPs called at each of the coverage values. Nine samples representative of
different species were in silico downsampled to coverages of 60X, 50X, 40X, 30X,
20X, 15X, 10X, and 5X. The LODg,, was established to be 60X, as it was the lowest
coverage which yielded accurate SNP detection for all of the samples (see Table S4 and
the section on analytical sensitivity of SNP detection in Document S1 in the supple-
mental material).

Analytical specificity. Analytical specificity is referred to as the “ability of an assay
to detect only the intended target and that quantification of the target is not affected
by cross-reactivity from related or potentially interfering nucleic acids or specimen-
related conditions” (40). Since our WGS pipeline is not intended for clinical specimens
directly, the conditions interfering with fragmentation, amplification, and sequencing
processes are minimized and are monitored via multiple QC steps, including DNA and
library purity and concentration measurements. However, interference from contami-
nating nucleotide sequences is much more consequential. Analytical specificity (inter-
ference) was determined by creating sequencing files containing a mixture of the reads
from two different samples in silico, thus mimicking contamination and demonstrating
its effect on mapping metrics (percentage of reads mapped, percentage of the refer-
ence sequence covered, etc.) and SNP detection (see Table S5 and the section on the
analytical specificity of SNP detection in Document S1 in the supplemental material). As
expected, contaminating reads led to a decrease in the percentage of mapped reads
and an increase in the portion of unmapped reads. The percentage of reads in pairs
decreased for samples containing contaminating reads. Modeled contamination with E.
coli C1 and M. tuberculosis C57 sequencing reads did not cause any change in called
SNPs. Contamination with any of the other reads led to additional SNPs being called
both between the compared samples and with the reference sequence. In the sample
contaminated with S. enterica C75, in addition to nonspecific SNPs, one of the SNPs
detected previously was missing. The bioinformatics pipeline had a certain tolerance of
contaminating reads depending on the nature of the contamination.

Diagnostic sensitivity and specificity were estimated for genotyping and MLST
assays.

Diagnostic sensitivity and specificity of genotyping. To estimate the diagnostic
sensitivity and specificity of WGS-based genotyping, the hqSNP phylogenetic trees
generated from the validation sequences were compared to the trees generated from
the reference sequences for the same strain. In the case of whole-genome sequence
genotyping, the true sequence variation (SNP), which was not detected, represents a
false-negative result. Changes introduced into the DNA sequence during library prep-
aration/sequencing or data analysis errors could result in false-positive sequence
variations. All generated validation trees repeated clustering and had 100% topological
similarity to the corresponding reference trees, indicating the absence of false-negative
or false-positive results of the genotyping assay. The hqSNP-based genotyping assay
was 100% sensitive and specific.
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Diagnostic sensitivity and specificity of MLST. The sequence types of validation
sequences and reference sequences were determined by using organism-specific MLST
databases. For MLST, the number of true-positive results corresponds to the number of
alleles correctly identified in the validation samples. For true-negative results, we
performed a comparison of validation sequences against MLST databases for un-
matched species, e.g., a search of alleles for the Escherichia coli C1 validation sample
against the MLST database for Salmonella enterica. In the latter case, the MLST assay
was expected not to identify any alleles. All alleles in the positive validation samples
were identified correctly. None of the alleles were identified in the negative controls.
Both the diagnostic sensitivity and analytical specificity of the in silico MLST assay were
100%.

Reportable range for WGS. The following information about the sequenced ge-
nome was collected for the reportable range: genome-wide hgSNPs, housekeeping
genes used in MLST schemes, 16S rRNA genes, and antibiotic resistance genes included
in the ResFinder database. A reporting language was developed to assist in the
interpretation of results by an end user with or without specific WGS knowledge. The
appropriate template and examples are provided in Document S1 in the supplemental
material.

Quality assurance and quality control for WGS. QA and QC measures were
developed to ensure high quality and consistency of routine testing using the MiSeq
lllumina platform. QC was performed during the preanalytical (DNA isolation and library
preparation), analytical (quality metrics of the sequencing run), and postanalytical (data
analysis) steps of WGS. Five QC checkpoints were implemented throughout the WGS
procedure: DNA template QC, library QC, sequencing run QC, raw data QC, and data
analysis QC. The quality parameters evaluated at each of these QC checkpoints are
summarized in Fig. 3. The QA and QC manual established for WGS applications is
presented in Document S1 in the supplemental material. Based on the preliminary
quality thresholds, all runs passed from the first attempt, and none of the samples had
to be resequenced. The final quality thresholds were set at the lower border of quality
values, which still allowed the generation of accurate and reproducible assay results
(phylogenetic analysis, MLST, 16S identification, or ABR detection). The WGS quality
cutoff values are summarized in Table S6 in the supplemental material. We determined
the optimal depth of coverage to be =60X based on the accuracy of SNP detection at
various simulated genome coverages. Table S6 does not reflect the optimal data quality
parameters but merely the thresholds below which data will be rejected and the
sample will have to be resequenced.

We employed two levels of positive and negative controls. First, as an internal
positive control, we used spiked-in PhiX Control (lllumina Inc., San Diego, CA, USA) and
evaluated its sequencing error rate. As an internal negative control, at the demulti-
plexing step, we called index combinations, which did not correspond to any samples
in the current sequencing run but were used in the previous run. This negative-index-
combination control allowed us to capture carryover contamination with the library
fragments generated in the previous runs. Second, as an external positive control, we
included E. coli strain ATCC 25922 processed from the DNA extraction step all the way
to the data analysis step. As an external negative control, a no-template control was
processed through all WGS steps starting with DNA extraction. Additional positive
controls representing one Gram-positive strain and one M. tuberculosis strain were
introduced solely for the DNA extraction step in cases when the corresponding types
of samples were processed (to control for differences in the DNA extraction protocols).
The quality cutoff values for the controls can be found in Table Sé.

Validation summary. Analytical sensitivity (LOD of SNP detection) was established
at a 60X depth of genome coverage. Analytical specificity in the presence of interfering
sequencing reads was demonstrated for different types of contamination. The WGS
assay was shown to have >99.9% accuracy, >99.9% reproducibility/repeatability, and
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100% diagnostic specificity and sensitivity. These parameters met the CLIA require-
ments for laboratory-developed tests (LDTs).

DISCUSSION

This study established the workflow and reference materials for the validation of
WGS for routine use in PHLs according to CLIA guidelines for LDTs. The validation panel,
sequencing analytics, and raw sequences generated during this study could serve as
resources for future multilaboratory comparisons of WGS data. Additionally, the WGS
performance specifications and modular validation template developed in this study
could be easily adopted for the validation of other platforms and reagent kits. These
results could strengthen the concept of unified laboratory standards for WGS enunci-
ated by some professional organizations, including the Global Microbial Identifier (GMI)
initiative (30, 31, 33, 41). A few other groups have also highlighted the challenges and
solutions for the implementation of WGS in clinical and public health microbiology
laboratories (21, 42).

Using a combination of reference strains and corresponding publicly available
genomes, we devised a framework of “best practices” for the quality management of
the integrated “wet-lab” and “dry-lab” WGS workflows (“pipeline”). The importance of
reference materials for the validation and QC of wet- and dry-lab WGS processes was
noted previously (28, 31, 33). Unlike human genomics (43), there is no well-established
resource of reference materials for the validation of WGS in public health microbiology
laboratories. The main challenge for creating a customized validation set is a lack of
reference materials, in other words, strains that can be easily acquired by PHLs and that
have high-quality, well-characterized reference genomes available. While the use of
genomic sequences of ATCC strains from the NCBI is an option, it is far from being
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perfect. The genome sequences available from public databases are generated by using
different methods, chemistries, and platforms, which might yield different error rates;
therefore, deposited sequences are not guaranteed to be free of such errors. With the
ongoing development of new sequencing technologies and improvements in the
quality of sequences, it is likely that the genomes sequenced with old methods might
appear less accurate than the sequences generated by the laboratory during validation.
Additionally, there is the possibility of mutation accumulation in control strains, e.g.,
ATCC cultures, after many rounds of subculture in different laboratories. Overall, there
is no gold standard available yet for use as reference material for the validation of WGS
for pathogenic bacteria. Nevertheless, NCBI, ENA, and similar public genome deposi-
tories remain the best resources for the genomic sequences of control strains that could
be used for validation, such as the FDA Database for Regulatory-Grade Microbial
Sequences (FDA-ARGOS) (https://www.ncbi.nlm.nih.gov/bioproject/231221). In the fu-
ture, it would be helpful to have a network/agency/bank that could distribute panels
of sequenced and curated isolates with genomic sequences available online for
WGS validation. In the absence of such a resource, we developed a validation set of
microorganisms, which can be used for future validations of WGS platforms. Bacterial
genomes vary in size, GC content, the abundance of repeat regions, and other prop-
erties, which affect WGS results. We created a validation set that reflects the diversity
of microorganisms with various genome sizes and GC contents that are routinely
sequenced by PHLs. Different species of Gram-positive and Gram-negative microor-
ganisms and M. tuberculosis were included to account for the differences in DNA
extraction procedures as well.

Samples were validated based on four core elements reflected in the formal assay
report: 16S rRNA-based species identification, in silico MLST, hqSNP phylogenetic
analysis, and the presence of ABR determinants. Specific WGS assays should be vali-
dated, in addition to platform accuracy, to account for the ability to reach decent
coverage in genomic areas of interest and tolerate certain base-calling error rates.
Overall, we achieved high accuracy, reproducibility, repeatability, diagnostic sensitivity,
and specificity for all assay analytes ranging from 99 to 100%, which exceeds the 90%
threshold for LDT performance parameters per CLIA requirements. These findings are in
agreement with several recent reports of 93% to 100% accuracies in WGS identification,
subtyping, and antimicrobial resistance gene detection for a number of pathogens
(44-47). We determined SNP detection at coverages of 5X to 60X and established an
LOD for SNP detection at 60X, which was the lowest coverage that yielded accurate
SNP detection in all of the samples. We determined the effect of contaminating reads
on the analytical specificity of WGS. We point out that CLIA LDT performance param-
eters are difficult to apply to WGS analysis. For example, in determining the accuracy
of the platform, CLIA would allow for up to 10% of base calls to be incorrect, which, in
the case of the ~5-Mb E. coli genome, would mean 500,000 inaccurate SNPs, which is
clearly an unacceptable error rate for any WGS application. Genome-wide hqSNP
detection can be used as a way to validate platform accuracy since it allows assessment
of the accuracy of base calling throughout the genome. Additionally, validation of the
actual hgSNP genotyping pipeline would be required, as the phylogenetic assay takes
into account not only the number of SNPs detected between isolates but also how it
affects the tree topology, because one erroneous SNP is unlikely to change genotyping
conclusions in most instances.

Successful CLIA integration for WGS would also require a laboratory to implement
a continuous performance measurement plan via an internal or external PT program.
Such PT programs are under active development, with the GMI network, the Genetic
Testing Reference Materials Coordination Program (Get-RM), the Genome in a Bottle
(GIAB) Consortium, and CDC PulseNet NextGen being the most prominent (31, 43). A
set of generic standards has been proposed by the CAP molecular pathology checklist
(30). The proposed quality standards include both live cultures as well as “sequence-
only” formats for a comprehensive assessment of the WGS pipeline. Our validation set
of isolates is amenable to both internal and external quality assurance testing. In
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preliminary internal PT, we were able to successfully assess the entire workflow and
personnel performance (details not shown).

Microbial WGS remains a dynamic technology, and therefore, any validated pipeline
is unlikely to remain static. For this reason, the implementation of a modular validation
template becomes crucial for the seamless and timely introduction of changes to the
pipeline; e.g., we had to carry out several amendments to the protocol since its
implementation in the laboratory. These amendments included a new processing
algorithm for highly contagious pathogens and minor adjustments in the data analysis
algorithm. The changes were accomplished via minor modifications of the pipeline with
corroborative testing using a modular validation template developed by us. We also
performed a two-sequencer agreement study to allow the processing of increased
volumes of samples (see Document S1 in the supplemental material). The WGS report
format could pose challenges for the end user. The report format in our study was
designed to convey assay results to an end user with or without extensive knowledge
of WGS. Additional disclaimers were used to avoid erroneous interpretations of results,
for example, the disclaimer that the detection of antibiotic resistance genes by WGS
does not guarantee the resistance of the strain in vivo and that phenotypic suscepti-
bility testing is required to confirm antimicrobial resistance (see section on results
reporting in Document ST in the supplemental material).

This study possesses certain limitations. First, only a limited number of WGS-based
assays were included in the validation study based on the most common PHL appli-
cations. Other types of WGS assays/analytics would have to be validated in a similar
manner to determine the performance specifications, which are required to generate
accurate and reproducible results, e.g., a threshold for the base-calling accuracy of the
platform or a depth of coverage of specific genes. Second, not all validation set samples
had available NCBI database entries to provide comparison sets. Third, the absence of
any eukaryotic pathogens in the current validation scheme would require the imple-
mentation of a specialized pipeline for pathogenic fungi and parasites. Finally, the
presence of extrachromosomal elements or polymorphic or repeat regions can nega-
tively affect reference mapping and the de novo assembly of the reads generated on
short-read platforms such as the Illumina platform; however, the direct effect of such
genomic features on assay performance was not investigated in this study.

As the clinical and public microbiology community implements high-quality WGS, it
would be opportune to consider the available models for the delivery of these services
(48). Since their inception, most WGS activities have taken place in reference facilities
with rather large supporting infrastructures. Although inevitable in the early stages, the
centralization of services presents several challenges, such as turnaround time and
access to specific expertise on the local population structure of a given pathogen,
which is crucial for the management of infectious diseases at the local and regional
levels. WGS services could be delivered locally and more easily with affordable se-
quencers, standardized reagents, and well-defined quality metrics. The local-delivery
model would also be more responsive to the needs of the target clients and enhance
the adoption of WGS across health care systems. Another alternative is a hybrid model
with complementary central and local services to balance the need for speed with
advanced expertise and resources (48). Two prominent examples of hybrid models in
the United States are the FDA GenomeTrakr network for the tracking of foodborne
pathogens and the CDC Advanced Molecular Detection (AMD) initiative for the im-
proved surveillance of infectious diseases (49, 50). The AMD and GenomeTrakr frame-
works rely on a participatory model with enhanced analysis, curation, and data storage
at a central site. However, these resource-intensive networks focus on few selected
pathogens at present. Notably, there are still significant challenges for the implemen-
tation of comprehensive WGS services at the local level (42, 51). We hope that the
quality framework proposed in the present study will advance the localization of
comprehensive WGS services in clinical and public health laboratories.

In summary, the salient achievements of this study included (i) the establishment of
performance specifications for WGS applications in PHLs according to CLIA guidelines,
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TABLE 3 List of strains used for validation and corresponding reference materials®

Reference genome

MDL ID Species NCBI strain NCBI accession no.
(@ Escherichia coli 0157:H7 CDC EDL 933 0157:H7 CDC EDL 933 NZ_CP008957.1
c3 Escherichia coli ATCC 8739 ATCC 8739 NC_010468.1
C55 Escherichia coli ATCC 25922 ATCC 25922 NZ_CP009072.1
c4 Enterobacter cloacae ATCC 13047 ATCC 13047 NC_014121

c6 Salmonella enterica serovar Typhimurium ATCC 14028 14028S NC_016856

c5 Staphylococcus aureus ATCC 25923 ATCC 25923 NZ_CP009361
C46 Enterococcus faecalis ATCC 29212 ATCC 29212 NZ_CP008816
Cc47 Staphylococcus epidermidis ATCC 12228 ATCC 12228 NC_004461

C48 Staphylococcus saprophyticus ATCC 15305 ATCC 15305 NC_007350
C49 Streptococcus pneumoniae ATCC 6305 ATCC 700669 FM211187

C50 Pseudomonas aeruginosa ATCC 27853 FRD1 NZ_CP010555
51 Stenotrophomonas maltophilia ATCC 13637 ATCC 13637 NZ_CP008838
C52 Legionella pneumophila SG-12 ATCC 43290 ATCC 43290 NC_016811

C53 Moraxella catarrhalis 87A-3084 ATCC 25240 NZ_CP008804
C54 Acinetobacter baumannii ATCC 17945 PKABO7 NZ_CP006963
C103 Bacteroides fragilis ATCC 25285 638R NC_016776
C104 Haemophilus influenzae ATCC 10211 KR494 NC_022356

c2 Aeromonas hydrophila ATCC 7966 ATCC 7966 NC_008570
C105 Corynebacterium jeikeium ATCC 43734 ATCC 43734 GG700813, GG700833
C106 Neisseria gonorrhoeae ATCC 49226 MS11 NC_022240

C56 Mycobacterium tuberculosis H37Rv NC_000962.3
C57 Mycobacterium tuberculosis H37Rv NC_000962.3
C58 Mycobacterium tuberculosis H37Rv NC_000962.3
C59 Mycobacterium tuberculosis H37Rv NC_000962.3
C61 Mycobacterium tuberculosis H37Rv NC_000962.3
C65 Mycobacterium tuberculosis H37Rv NC_000962.3
c67 Mycobacterium tuberculosis H37Rv NC_000962.3
C68 Mycobacterium tuberculosis H37Rv NC_000962.3
C69 Mycobacterium tuberculosis H37Rv NC_000962.3

aBoldface type indicates reference strains for which genomes are available from the NCBI database. Lightface type indicates cases where the genome is not available
from the NCBI database and an alternative reference genome was used for mapping. MDL, Microbial Diseases Laboratory, California Department of Public Health,
Richmond, CA.

(ii) development of quality assurance and quality control measures, (iii) a reporting
format for end users with or without WGS expertise, (iv) availability of a validation set
of microorganisms to be used for future validations, and (v) creation of a modular
template for the validation of WGS processes in PHLs.

MATERIALS AND METHODS

Bacterial isolates and sequences. A set of 34 bacterial isolates representing the typical workflow in
PHLs was used for validation and quality control of WGS. These isolates included 10 Enterobacteriaceae
isolates, 5 Gram-positive bacterial pathogens, 5 Gram-negative nonfermenting bacterial pathogens, 9
Mycobacterium tuberculosis isolates, and 5 miscellaneous bacterial pathogens (Tables 3 and 4). The
bacterial pathogens for the validation set were selected to represent various genome sizes and GC
contents and to account for differences in the DNA extraction protocols. We selected ATCC strains with

TABLE 4 List of strains used for validation and corresponding reference materials available from the CDC?

Reference raw reads generated by Reference genome used for
the CDC mapping
GenBank NCBI

MDL ID Species CDC strain accession no. NCBI strain accession no.
C72 Escherichia coli O121:H19 2014C-3857 SRR1610033 2011C-3493 NC_018658
C73 Salmonella enterica serovar Enteritidis CDC_2010K-1543 SRR518749 P125109 NC_011294.1
C74 Salmonella enterica serovar Infantis 2014K-0434 SRR1616809 1326/28 NZ_LN649235
C75 Salmonella enterica serovar Adelaide 2014K-0941 SRR1686419 P125109 NC_011294.1
C76 Salmonella enterica serovar Worthington 2012K-1219 SRR1614868 P125109 NC_011294.1
C77° Salmonella enterica serovar Saintpaul 2014K-0875 SRR1640105 14028S NC_016856

aBoldface type indicates the reference strains for which genomes are available from the NCBI database. MDL, Microbial Diseases Laboratory, California Department of
Public Health, Richmond, CA.
bSample C77 was sequenced by the MDL only for genotyping assay accuracy validation. No replicates were done.
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whole-genome sequences available from the NCBI; the NCBI sequences served as references for the
validation sequencing results. Several isolates with reference sequences available from the CDC were also
included in the validation set.

Reference whole genomes. The genome sequences of ATCC strains, isolates characterized by the
CDC, and other representative isolates were downloaded from the NCBI database (http://www.ncbi.nim
.nih.gov/genome/) to be used as a reference according to CLSI guidelines (37) (Tables 3 and 4).

WGS wet-bench workflow. Whole-genome sequencing was performed on an lllumina MiSeq
sequencer (see Fig. ST in the supplemental material). The Nextera XT library preparation procedure and
2 X 300-cycle MiSeq sequencing kits were used (lllumina Inc., San Diego, CA, USA). lllumina Nextera XT
indexes were used for barcoding. Bacterial DNA was extracted by using the Wizard Genomic DNA kit
(Promega, Madison, WI, USA). The bacterial DNA concentrations were measured by using Qubit fluoro-
metric quantitation with a Qubit double-stranded RNA (dsDNA) BR assay kit (Thermo Fisher Scientific,
Waltham, MA, USA). DNA purity was estimated by using a NanoDrop 2000 UV-visible (UV-Vis) spectro-
photometer (NanoDrop Products, Wilmington, DE, USA). The Mastercycler nexus was used for incubation
for tagmentation reaction and PCR (Eppendorf North America, Hauppauge, NY, USA). The library
concentration was measured by using a Qubit HS kit. The DNA library size distribution was estimated by
using a 2100 BioAnalyzer instrument and a High Sensitivity DNA analysis kit (Agilent Technologies, Santa
Clara, CA, USA). Ampure beads were used for size selection. Manual normalization of libraries was
performed. Genome sizes of samples pooled in one run were taken into account to ensure the equal
representation of each genome per flow cell. The number of samples was kept at 16 per run (except for
one run with 19 samples), resulting in a total genome load of 48 to 84 Mb/run (average, 69 Mb/run). The
PhiX Control V3 sequencing control at 1% was spiked in for every sequencing run (lllumina Inc., San
Diego, CA, USA). Genomes were generated with a depth of coverage (estimated for trimmed mapped
reads) in the range of 15.71X to 216.4X (average, 79.72X; median, 71.55X).

The preliminary run and raw data acceptance criteria were set for (i) the percentage of bases with a
=Q30 quality score for the run of =50%, with the requirement that the Q30 score for the generated
genome sequences must be =75% for at least 80 bp of the read length; (ii) a minimum average coverage
of the genome of 10; (iii) a PhiX error rate that must be <6%; and (iv) the negative control meeting
the following parameters: <10,000 reads after trimming, an N50 value of <1,000, and the highest
coverage of de novo-assembled contigs of <10X. Data which did not meet these quality parameters
were rejected. The preliminary quality thresholds were further adjusted based on the quality ranges
observed during validation.

Bioinformatics pipeline. Paired-end reads were quality trimmed with the threshold of Q30 and then
used for mapping to the reference and de novo assemblies on CLCbio Genomic Workbench 8.0.2 (Qiagen,
Aarhus, Denmark). The BAM files generated after mapping to the reference genome were taken through
series of software suites to generate the phylogenetic tree. A customized shell script was created to
automate the subsequent steps after mapping, which included (i) calculating the genotype likelihood
using SAMtools mpileup (v.1.2) (52), (ii) conversion to a VCF matrix using bcftools view (v0.1.19;
http://samtools.github.io/bcftools/), (iii) single nucleotide polymorphism calling in coding and noncod-
ing genome areas using bcftools call —c (v0.1.19), (iv) variant parsing using vcftools (v.0.1.12b) (53) to
include only hgSNPs with a mean coverage of =30X and a minimum SNP quality (minQ) of =200 with
indels and heterozygote calls excluded and the allele frequency defining a homozygous call at =93%,
and (v) conversion of the SNP matrix to a FASTA alignment file for export back to CLCbio Genomic
Workbench 8.0.2 for the generation of the phylogenetic tree.

hqSNP-based genotyping. Maximum likelihood phylogenetic trees were generated based on
hqgSNPs under the Jukes-Cantor nucleotide substitution model; bootstrapping included 100 replicates.

16S rRNA gene-based identification. Genomes were annotated with prokka v1.1 (54), and species
identification was performed by comparing 16S rRNA gene sequences against data in the Ribosomal
Database Project (RDP) database (55).

In silico MLST. In silico MLST was performed by using the Center for Genomic Epidemiology (CGE)
online tool (56).

Detection of antibiotic resistance genes. ABR gene detection was performed by using the CGE
ResFinder online resource (57) with 99% identity and 100% query length coverage thresholds. Two sets
of sequences were analyzed. For the first set, ATCC reference bacterial strains designated for use as
antibiotic susceptibility controls were sequenced by the laboratory performing the validation. Negative
controls were chosen among strains described as being susceptible, with no known antibiotic resistance
genes, according to CLSI document M100-S25 (58). Positive controls were chosen among strains that
possessed resistance determinants, according to CLSI document M100-S25. For the second set, reference
sequences were acquired from the FDA-CDC Antimicrobial Resistance Isolate Bank (https://www.cdc.gov/
drugresistance/resistance-bank/) for in silico testing. Thirteen isolates (7 Gram-negative and 6 Gram-
positive organisms) with various resistance genes were analyzed.

Validation plan. Thirty-four bacterial isolates were sequenced in triplicate. The WGS pipeline,
including wet- and dry-bench processes, was validated by assessing the performances of the platform,
specific WGS-based assays, and the bioinformatics analysis pipeline (Fig. 1). Validated WGS assays
included genome-wide SNP-based genotyping, MLST, 16S rRNA species identification, and antibiotic
resistance gene detection. The following performance characteristics were assessed: accuracy, reproduc-
ibility (between-run precision), repeatability (within-run precision), analytical and diagnostic sensitivity,
and analytical and diagnostic specificity.

For reproducibility assessments, all between-run replicates were generated starting from fresh
cultures except for M. tuberculosis, where DNA samples were used. Between-run replicates were pro-
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cessed on three different days, alternating between two operators, as recommended in CLSI document
MM11A (59). For repeatability, within-run replicates were prepared from one DNA extract, but
independent library preparations were done, with the final samples being included in one sequenc-
ing run. The reproducibility and repeatability of the genotyping assay were evaluated with two
methods: (i) evaluation of the reproducibility and repeatability of SNP calling per replicate takes into
account the whole genome of one replicate as a single test, meaning that any number of single
nucleotide changes in one out of three of the replicates was regarded as 33.3% disagreement for
that validation sample, and (ii) the reproducibility and repeatability of SNP calling relative to the
genome size were calculated by taking a discordant SNP into account as a percentage of the number
of base pairs in the genome (genome size); e.g., a 10-SNP difference among the replicates with 5-Mb
genomes equals 99.9998% reproducibility.

Analytical sensitivity. The LOD of SNP calling was estimated by modeling different mapping
coverages and estimating the minimum coverage that allowed accurate SNP calling (LODg,,). Mapping
BAM files were downsampled in order to achieve different coverage values (60X, 50X, 40X, 30X, 20X,
15X, 10X, and 5X) for each of the nine samples representative of the different species. The original
sequence mapping coverage was estimated from the BAM file by using the following command:
samtools depth bamfile_sorted.bam | awk ‘{sum+ = $3} END {print “Average =",sum/NR}' The bam files
were downsampled to the desired coverage by using the command samtools view —h —s F bamfile_
sorted.bam >bamfile_sorted_30x.bam, where F is a fraction of the desired coverage in relation to the
original coverage. Downsampled BAM files were compared to other replicates for the same sample at
their original coverage.

Analytical specificity. To determine analytical specificity (interference), we generated in silico
sequencing files containing a mixture of reads from two different samples, thus mimicking contamina-
tion. The effect of potentially interfering sequencing reads on mapping metrics (percentage of reads
mapped/not mapped, percentage of the reference sequence covered, etc.) and SNP detection was
estimated. Sample C3 (Escherichia coli ATCC 8739) was selected as a “control, not-contaminated
sample,” and equal parts of reads from different species were merged with it to generate mixed fastq
files. This was done by using the concatenate command, e.g., cat file1 file2 > mixed file. To ensure
that the correct file was generated, the numbers of lines in both files and the mixed file were
counted. The number of lines in the mixed file was the sum of the numbers of lines in the two parent
files. Also, the column headings were checked to ensure that the headers of the mixed file were
similar to those of the parent file. “Contaminated” and “not-contaminated” reads were mapped to
the same reference genome of E. coli ATCC 8739 from the NCBI. Further SNP calling analysis was
performed by using the standardized pipeline under validation. The specificity of SNP calling in the
samples containing potentially interfering reads was estimated by comparing (i) the number of SNPs
detected between the contaminated sequence and the reference sequence and (ii) the number of
SNPs detected between the contaminated and not-contaminated sequences included in the same
SNP calling analysis (vcf file after filtering).

Accession number(s). Data from this whole-genome shotgun project have been deposited in
GenBank under raw read accession numbers SRR4114366 to SRR4114399 and assembly accession
numbers MTFS00000000 to MTGZ00000000 (see Table S1 in the supplemental material). All WGS data,
including sequences of the replicates, are associated with BioProject accession number PRINA341407.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/JCM
.00361-17.

SUPPLEMENTAL FILE 1, PDF file, 12.7 MB.
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