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Abstract

Purpose—We propose a systematic methodology to quantify incidentally identified pulmonary 

nodules based on observed radiological traits (semantics) quantified on a point scale and a 

machine learning method using these data to predict cancer status.

Materials and Methods—We investigated 172 patients who had low-dose computed 

tomography (LDCT) images, with 102 and 70 patients grouped into training and validation 

cohorts, respectively. On the images, 24 radiological traits were systematically scored and a linear 

classifier was built to relate the traits to malignant status. The model was formed both with and 

without size descriptors to remove bias due to nodule size. The multivariate pairs formed on the 

training set was tested on an independent validation data set to evaluate its performance.

Results—The best four feature set that included a size measurement (Set 1), was short axis, 

contour, concavity, and texture, which had an area under the receiver operator characteristic curve 

(AUROC) of 0.88 (Accuracy= 81%, Sensitivity= 76.2%, Specificity= 91.7%). If size measures 

were excluded, the four best features (Set 2) were: location, fissure attachment, lobulation, and 
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spiculation which had an AUROC of 0.83 (Accuracy= 73.2%, Sensitivity= 73.8%, Specificity= 

81.7%) in predicting malignancy in primary nodules. The validation test AUROC was 0.8 

(Accuracy=74.3%, Sensitivity =66.7%, Specificity= 75.6%) and 0.74 (Accuracy=71.4%, 

Sensitivity = 61.9%, Specificity = 75.5%) for Sets 1 and 2, respectively.

Conclusions—Radiological image traits are useful in predicting malignancy in lung nodules. 

These semantic traits can be used in combination with size-based measures to enhance prediction 

accuracy and reducing false positives.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths globally and in the U.S. (1). Low-

dose computed tomography (LDCT) has evolved to be a sensitive imaging modality to detect 

pulmonary nodules. The National Lung Screening Trial (NLST), which compared LDCT 

and standard chest radiography (CXR) for three annual screens, found a 20% reduction in 

lung cancer mortality for CT compared to CXR(2). In the NLST trial, at least 39% of LDCT 

study participants had a nodule-positive scan during the study, and 96.4% of these were non-

cancerous (i.e., false positive). The CXR arm had a lower rate of positive detection (16%) 

with a comparatively lower rate of false positives (2, 3). In the NLST, it is estimated that 

about 18.5% (95% CI, 5.4% – 30.6%) of the lung cancers detected in the study population 

were clinically insignificant and hence, over-diagnosed (4). Other studies have shown that 

over-diagnosis of lung cancer can be as high as 96% (5–7). Despite the high false positive 

rate, the United States Preventive Services Task Force (USPSTF) recommended lung cancer 

screening for high-risk individuals (8). However, debate on the effectiveness of LDCT 

screening still continues. The availability of abundant data has helped the development of 

clinical assessment models to predict probabilities of malignancy (9, 10).

Identification of malignancy continues to be a challenge even in the screening setting, 

patients with indeterminate pulmonary nodules (IPN) are typically monitored with 

scheduled follow-up scans (11). Advancements in image acquisition and improved 

computer-aided diagnostic tools coupled with effective treatment strategy have shown to 

improve patient survival (12). In recent work, nodule characteristics coupled with clinical 

risk factors have been widely used to differentiate malignancy (13–15). Although the NLST 

shows < 4% of the subjects with non-calcified nodules (NCN) were diagnosed with lung 

cancer within a year (17), at present, there is limited ability to provide individual patient-

level risk (16),

In this work we focus on quantifying radiological imaging characteristics of nodules (shape, 

location, texture) including associated structures of the lung and relate them to cancer status. 

We followed a rigorous approach to find the optimal imaging characteristics in a training 

cohort using cross-validation methodology and validated in a test cohort data set. These 

quantitative predictive scores (accuracy and or AUROC) obtained from images were used to 

develop classifier models to identify a risk of malignancy (see Figure 1).
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MATERIAL AND METHODS

Patient cohort

In this study we collected two cohorts (training and validation) from the Vanderbilt 

University Medical Center (VUMC), Nashville and Veterans Affairs (VA) Medical Center, 

Nashville. The training cohort had 102 patients consisting of 42 with lung cancer and 60 

patients with a positive scan that was not lung cancer (i.e., benign nodule). Of the 102 

patients in the training set, there were 206 nodules (84 malignant, 122 benign). While the 

validation set had 70 patients 21 with lung cancer and 49 patients with positive scan that was 

non lung cancer. Of the 70 patients in validation cohort, there were 102 nodules (26 

malignant, 76 benign). The patients had 2 years of follow up from the time of CT scans and 

the biopsy results confirmed their cancer status. The median patient age for the training set 

was 67 years (σ = 8.6) while the validation set had 65 years (σ = 9.3). The patient samples 

were retrospectively curated, first batch of patients were used in the training and later batch 

was used in the validation set, the cohorts had a collection time difference of 6 to 9 months.

Table 1 describes the patient demographics, and Supplemental Table-S1 describes the nodule 

dimensions in the two cohorts. This study was approved by the Institutional Review Board 

(IRB) at the collecting institution (VUMC/VA Hospital) and as a retrospective study to 

review de-identified patient records at the collaborating institution (Moffitt Cancer Center). 

The requirement for patients’ informed consent was waived.

LDCT protocol

Chest LDCT scans were performed with a single deep breath hold by using a Discovery 

VCT (GE Healthcare, Waukesha, WI, USA) from the base of the neck to the posterior lung 

gutters. The patients were scanned without IV contrast and images obtained by filtered back 

projection image reconstruction with a soft tissue filter to obtain a 512 × 512 matrix. CT 

energy was 120 KVp, with variable mAs, (range 30 – 400) to minimize radiation. Helical 

data were acquired using collimation of 40 mm, pitch 1.375:1, table speed 55 cm/sec, 

reconstructed as 1.25 mm pixels at contiguous 1.25 mm intervals, producing isotropic 

voxels. The field of view (FOV) was based on patient body habitus, typically 35 to 43 cm.

Image analysis and reader agreement

All LDCT images were reviewed by a clinical radiologist (Y.L.) with more than 6 years of 

experience in LDCT imaging of thoracic malignancies, who was blind to the clinical details 

and final diagnosis for the nodules at the time of image interpretation. Thin-section LDT 

images were displayed using both standard mediastinal (width, 350 HU; level, 40 HU) and 

lung (width, 1500 HU; level, −600 HU) window-width and window-level settings. Totally, 

24 CT image descriptors were developed to characterize the pulmonary nodules and these 

were classified into eight categories: (1) location; (2) size; (3) shape; (4) margin; (5) density; 

(6) internal features; (7) external features; and (8) associated findings, example cases are 

shown in Supplemental Figure 1. Each CT descriptor was rated using either an ordinal scale 

or a binary categorical variable (See Supplemental Table S-2 and Supplemental Table-S-3).
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To measure the reproducibility of semantic scoring metric, we randomly selected 80 patients 

(40 malignant and 40 benign) from the cohort and provided the scoring sheet with 

approximate anatomical location of the nodules to two different radiologists (Y.L. and Q.L. 

who is a resident radiologist with 3 years of clinical experience). The scoring sheet was used 

to compute the concordance of these discrete scoring between readers using kappa statistics 

(18, 19). In radiological observations, a value of kappa coefficient greater than 0.8 is 

considered perfect agreement, 0.61 to 0.8 is considered substantial agreement, 0.41 to 0.6 

moderate agreement; 0.21 to 0.4 fair agreement and below 0.2 is considered poor agreement 

(20). The Supplemental Table S-4 shows the kappa coefficient and the confidence limits in 

different sampling cohorts. Out of the 24 features, 10 semantic features had kappa > 0.95 of 

which 9 features exhibited a perfect score. Eight semantic features had kappa coefficient 

between 0.85 – 0.95, while three were between 0.7 to 0.8. One feature (distribution) could 

not be scored due to limited examples in the sample population. The two size-based features 

(long and short axis) repeatability was evaluated by computing Interclass Correlation 

Coefficient (ICC) which was 0.94 (0.89–0.968) and 0.96 (0.834–0.985) respectively.

Reader Variability and Prediction Outcome—We evaluated reader variability on the 

classification outcome in a subset of 80 patients, which was further divided into training and 

testing (40 patients in each) with equal number of patients with benign and malignant 

nodules. Two radiologist independently score the semantics metrics as described in the 

previous section. We compared prediction results (AUC) of the classifier by using semantic 

scoring for test and train samples coming from the same radiologist to the prediction testing 

carried out using semantic scoring coming from different radiologist. Supplemental Table 

S-5 shows the results of the AUC (Sensitivity and Specificity) of the inter-reader 

classification carried out in both ways. We find semantic metrics of contour and concavity 

showed differences of 10.2% and 6.6%, respectively, in the AUC derived from different 

radiologists. Notably, other semantic metrics showed less than 5% difference in the AUC.

Statistical analysis

Discriminatory analysis was conducted using a liner classifier to find the best predictive 

feature of cancer status. The error of classification was estimated using the hold-out cross 

validation method, where 80% of the sample was selected for training and 20% for testing. 

The process was randomized and repeated for a large number of times (over 200) and the 

average test accuracy (or error) was reported. For each combination, the AUROC was 

computed and compared with the clinical model proposed by Gould et.al (9, 21). To make a 

comparison to the cross validation method, clinical data were resampled using a bootstrap 

method and the clinical model prediction was computed for each random partition (22–24). 

The average AUROC with deviation across multiple runs was reported, along with 

sensitivity and specificity. The classifier model was first built on the training cohort using 

the cross validation method described and independently applied to the validation cohort to 

find the most promising feature combination.

The feature combination that exhibited the highest sensitivity and specificity (Youden J 

index) (25, 26) in the training set was then selected to be tested for performance on the test 

cohort. The final lists of top candidate features were selected based on their performance on 
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both cohorts (training and test). This approach provides an additional validation step to 

overcome typical considerations of cross-validation methods (27–29). As such, the larger 

cohort sample size provided better performance capabilities and hence the elevated AUCs.

Integrity of training and testing samples was independently maintained without mixing the 

samples. We evaluated the overall survival difference between the classifier discriminated 

patient population using Kaplan Meier survival plots and p-value the log-rank test.

Finding the best set of features is a challenge. Various feature reduction methods have been 

proposed in the past, most often these methods have a range of performance, typically 

dependent on the complexity of the datasets(30). We used an exhaustive search to find the 

best performing feature finding all possible feature combinations (up to four dimensions, 

over 12,650 combinations). The top discriminating features are reported in Tables 2 and 

Supplemental Table S-6 (all nodules in S-7 & S-8) for the training data along with clinical 

comparator. Accuracy (1-Error), AUROC, sensitivity, and specificity, were all considered in 

identifying the best discriminant combinations. We then used the top discriminating feature 

pairs short listed from the training and applied the discriminator blindly on the validation 

data. The error rate with sensitivity and specificity is reported in Table 3.

Clinical Predictor (Gould Model)

Clinical patient characteristic including size of the nodules has been widely used as 

prognostic factors. There are several models proposed in the past; we used clinical model 

proposed by Gould et.al (9, 21). In the model, clinical malignancy of a nodule was predicted 

based on smoking status, age of the patient, diameter of the nodule and number of years 

since the patient quit smoking. These factors in the logistic regression model showed a high 

accuracy of malignancy prediction. We used this model as a baseline to compare the 

semantic based predictors.

RESULTS

Prediction of cancer status

We investigated combinations of up to four features, with and without size (long axis, short 

axis and size category) based descriptors. Figure 2 shows an example of cancerous and 

benign nodule across different slices. As expected, size-based features by themselves were 

good predictors for cancerous nodules, providing an average accuracy of 73% (AUC of 0.89, 

CI [0.69, 0.98]), with a low sensitivity (0.476) and high specificity (0.93), reported in 

Supplemental Table S-6. Individual traits, including lymphadenopathy or vascular 

convergence, provided accuracies of 70 and 72% (AUC range: 0.71, CI [0.58, 0.84] to 0.72, 

CI [0.55,0.9]), respectively. Using all the nodules identified in the patients shows varied 

prediction accuracy (see Supplemental Tables-S7 and S8). Multivariate analyses of image 

features were shown to improve the accuracy of prediction; as shown in Table 2. For 

example, using size based short axis with contour, concavity and texture improved 

prediction accuracy to 81% (AUC of 0.88, CI [0.68, 0.98]) using the primary largest nodule. 

The size-based features are conventionally known to be informative of malignancy and 

hence we removed size measurements to avoid bias in the predictions and repeated the 
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process to find best non-size-based predictors of cancer status. The accuracy for the best 

non-size based features (4-dimentions) was in the range of 67.2% to 73.6%, the average 

AUROC was in the order of 0.8 (CI [0.57, 0.98]) to 0.83 (CI [0.68, 0.98]), with sensitivity in 

the range of 0.71 to 0.74, and specificity of 0.73 to 0.82. Figure 3 shows receiver operator 

curves (ROC) with four semantic features (both with and without size) to predict 

malignancy. These were compared against the Gould model and a validation data set. The 

best semantic model was based on size, concavity, contour and spiculation. The non-size 

based predictor was based location, fissure attachment, lobulation and spiculation, which are 

known to be related to malignancy (31–36).

Prediction of Overall-survival (OS)

These semantic based predictor models were used to partition the samples into two groups, 

which showed significant differences in survival based on the Kaplan-Meier survival curves. 

As expected, the model that included a size-based feature was significantly associated with 

overall survival (Supplemental Figure 2a; P = 0.013) while the model without size-based 

features was borderline significantly associated with overall survival (Supplemental Figure 

2b; P =0.048).

The models were then blindly applied to the validation data set to assess the ability to predict 

malignancy and the predictor’s discrimination ability was measured using accuracy, 

sensitivity and specificity. As noted in Table 3 (and Supplemental Table S-9), accuracy in 

predicting cancer status in the validation set was in the range of 64.3 to 80% (with AUROC 

0.73 to 0.80, sensitivity 66.7 to 71.4%, specificity 63.3 to 83.7%) using a combination of 

size-based and semantic features. Semantic features by themselves had prediction accuracy 

in the range of 64.3 to 71.4 % (AUC 0.68 to 0.78, sensitivity 57 to 81%, specificity 67 to 

75.5%).

To improve reliability of the predictors, the top five discriminating combinations were used 

to obtain an ensemble decision to predict cancer status. The voting-based top 

multidimensional feature predictor should improve the sensitivity and specificity. The 

accuracy in blindly predicting cancer status in the validation data was 77.2% (sensitivity 

71.4%, specificity 79.6%) using primary nodules. In contrast, non-size based features 

provided a comparable accuracy of 77.4% (sensitivity 61.9%, specificity 69.4%).

DISCUSSION

In this study, we used observed radiological traits to systematically characterize the size, 

shape and location of indeterminate pulmonary nodules and quantitatively represented these 

traits on a point scale. Traditionally, these semantics have been used to prognosticate 

malignancy in lung cancer(37). A linear classification model was applied on these quantified 

observed image traits to predict malignancy. The training data set was used to find feature 

combinations and estimate the accuracy of the predictor in a cross validation setting, graded 

based on the accuracy, sensitivity, specificity, and the AUROC. The ability of the predictor 

was blindly evaluated by applying it on validation set. The top five, four-dimensional 

features were determined, and it was interesting to observe that seven unique features 

appeared as candidates in both size- and non-size-based models: border definition, vascular 
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convergence, concavity, lobulation, texture, spiculation and nodules in non-tumor lobe (see 

Supplemental Table S-10). The non-size based feature categories had four additional 

features selected by the top combinations, namely: location, fissure attachment, pleural 

attachment, peri-nodule fibrosis. Although linear methods may not discriminate non-linearly 

separable cases, the limitations are mitigated by using multiple linear fits to derived an 

ensemble decision (38, 39).

Comparison of various CT features such as contour, shape, and margin, can be helpful for 

distinguishing between malignant and benign nodules (31, 40–42). The positive relationship 

of lesion size to likelihood of malignancy has been clearly demonstrated (32, 33). Zerhouni 

et al. (33) found that more than 80% of benign solitary pulmonary nodules were less than 2 

cm in diameter; by contrast, diameters of malignant nodules were nearly uniformly 

distributed in the range of 1–6 cm, and 50% of the malignant nodules were larger than 2 cm 

in diameter. We similarly observed that nodules of bigger size were more likely to be 

malignant. Importantly, we also found some top semantic features are good predictors of 

malignancy even after size based features were removed to avoid size based bias. A 

spiculated contour occurs significantly more often in malignant lung nodules (31, 35). This 

was supported by our results in which the majority of malignant lesions exhibited 

spiculation. In pathological studies, spiculated contours were shown to be due to thickened 

interlobular septa, fibrosis caused by obstruction of peripheral vessels, or lymphatic channels 

filled with tumor cells (43). Nevertheless, in benign lung nodules, especially in 

inflammatory pseudo tumors or tuberculomas, spiculated edges may also be found (31). Our 

results agree with other publications (31, 44) that reported similar morphological 

appearances for the differentiation of benign and malignant IPNs, such as regular shape for 

benign lesions and lobular for malignant lesions. In a recent study, it is confirmed that the 

prevalence of lung cancer among current smokers increased from 1.1% for those without 

emphysema to 2.3% for those with emphysema; among former smokers, the prevalence 

increased from 0.9% to 1.8%, and for never smokers it increased from 0.4% to 2.6%. Thus, 

there was a little more than 2-fold increase for current and former smokers while a 6-fold 

increase among never smokers (45). This could be verified in the current study as we 

observed severe peri-nodule emphysema has a high frequency to be seen in malignant 

nodules.

Size (WHO, RECIST: long and short axis), rate of change in size and volume are largely the 

most important prognostic metrics that have been widely used (46). In response to 

community’s need to converge on a standard, the American College of Radiology (ACR) 

created the guidelines to define a positive scan, Lung-Rads (47). Current clinical guidelines 

relies heavily on the nodule size (11, 47)(cite NCCN and LungRads). Based on nodule size, 

a wide range of false positives has been reported, 96.4% by the CT arm of the NLST, and 

25% by others.(4, 48, 49) Our semantic model in addition to size based predictors will aid 

the clinical decision support system, including monitoring of the nodule growth.

Designing a predictive method poses several challenges; most often the cohort population 

has larger number of benign nodules compared to cancerous with range of nodule sizes. 

Image traits observed by the expert radiologist has the ability to adjust with the system 

variations (CT parameters) and nodule size differences. It then becomes critical for 
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predictive models to balance positive and negative (sensitivity and specificity) findings 

rather than relying on single figure of merit. The approach followed by us allows grading the 

feature pairs according to the predictive performance. We believe our approach of 

radiological semantics is novel that uses the observed traits on a quantitative scale and apply 

machine learning classification approach in a systematic cross validation setting. Our results 

show better performance compared to one of the widely used clinical model (9).

Semantic approach has practical relevance in nodule classification. In a recent Lung nodule 

classification challenge, our team proposed semantic based approaches to classify 

indeterminate pulmonary nodules. The challenge had about 10 samples for calibration or 

training (known outcome) and about 60 samples for blinded testing. The semantic based 

approach came second with a test AUC of 0.66, while the computerized CAD feature based 

method was first with AUC of 0.68 with over 15 international participants (50–52).

Due to the retrospective study design and small sample size, to avoid over-fitting the data we 

collected two independent cohorts from two institutions (train and validation from 

Vanderbilt Medical Center and Veteran Affairs Hospital in Nashville, samples randomly 

mixed in the cohorts). Further multi-Institutional studies with large number of patients are 

warranted to replicate these novel results.

Study Limitations

Our study has some limitations. First, the number of patients was not large. We have taken 

effort to reduce false discovery by using training and test cohort. Despite this approach, it is 

possible there could be biases in the patient population, as the current cohorts were 

predominantly male, derived as they were from a VA population. This could be mitigated by 

collecting samples in a larger multi-institutional cohort study. Radiologist training and 

preferences will influence the semantic scoring. While this is less a concern in a research 

setting, it may be an issue in a clinical practice. Efforts have been made to standardize the 

scoring sheet with a descriptive atlas (e.g. Supplemental Figure 1 & Supplemental Table 

S-2) in a way that will be acceptable by the community at large.

CONCLUSION

We have shown radiological image traits are useful in differentiating malignant from non-

benign nodules. These semantic features along with size measurement, certainly enhances 

the prediction accuracy and reduces false positives. The usefulness of radiological imaging 

traits (semantics) in predicting cancer status shows ability to reduce diagnostic errors 

compared to clinical models. These, along with conventional measure based on the size, 

could be collectively used in clinical workflow to better diagnose malignancy.
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TRANSLATIONAL / CLINICAL RELEVANCE

• Radiological image traits have been investigated extensively to prognosticate 

in lung CT both in the context of lesions and nodules. Most of the studies 

relied on patient survival based models using single or multiple traits.

• In this study we have taken a systematic approach to describe and traits on a 

point scale and score the patient scans for the appearance of a trait. Agnostic 

learning method was used in a cross validation setting to find the relationships 

of the traits to the malignancy status. The combination pairs were tested for 

reliability on a validation cohort.

• These pairs of radiological traits (semantics) could be readily be used by the 

practicing clinician to provide risk assessment for pulmonary nodules, which 

will help to standardize radiologist inference and improve patient care.

• Certainly any inference on biomarkers need to be used with a caution, one 

needs to account for system level variability at the clinic, parameter settings 

of the scanner and the operator precision needs to brought to perspective.
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Figure 1. 
Study design to find discriminant Semantic features. The blocks describe the methodology 

followed in the manuscript. The observed radiological trait by an expert was related to 

outcome with a train and validation setting.
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Figure 2. 
Representative slices selected based on four radiological traits (Lobulation, Border 

definition, Texture and Nodules in primary tumor lobe) which was found to be one of the 

best discriminant pairs to predict malignant nodules. The slices in panel A) correspond to 

malignant case (Lobulation:3, border definition:2, Texture: 3, Nodules-in-Primary-Tumor:0) 

and B) Benign case (Lobulation:1, border definition:1, Texture: 3, Nodules-in-Primary-

Tumor:0).
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Figure 3. 
Receiver operator characteristics (ROC) for semantic feature based predictors (blue) 

compared to conventional clinical parameters using Gould model (red) and on the 

independent validation data set. The panels below uses pairs (a) with size feature and (b) 

without size based features.
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