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Abstract

In this paper, we propose a novel approach to solve the renal cortex segmentation problem, which 

has rarely been studied. In this study, the renal cortex segmentation problem is handled as a 

multiple-surfaces extraction problem, which is solved using the optimal surface search method. 

We propose a novel graph construction scheme in the optimal surface search to better 

accommodate multiple surfaces. Different surface sub-graphs are constructed according to their 

properties, and inter-surface relationships are also modeled in the graph. The proposed method 

was tested on 17 clinical CT datasets. The true positive volume fraction (TPVF) and false positive 

volume fraction (FPVF) are 74.10% and 0.08%, respectively. The experimental results 

demonstrate the effectiveness of the proposed method.

1 Introduction

Image segmentation is a fundamental and challenging issue in the area of medical image 

analysis and computer-aided diagnosis. The kidney volume and renal cortex thickness are 

important clinical indications for renal function and are valuable for nephrologists. As 

shown in Fig. 1, the kidney consists of the renal cortex, renal medulla and renal pelvis. The 

renal cortex forms a continuous smooth outer zone with a number of projections (renal 

columns). Several kidney segmentation methods have been proposed in the literature [1–3]. 

They focused on mostly the whole kidney and seldom referred to the specific structures such 

as the renal column and renal cortex. Since the renal cortex thickness information plays an 

important role in renal function assessment, the segmentation of the renal cortex is desirable.

Special characteristics of the kidney’s anatomical structure, such as (1) semi-closed structure 

around the renal pelvis, (2) weak boundaries between adjacent organs (e.g. liver, spine and 

muscles), and (3) the intensity proximity of the renal cortex and renal column (see Fig. 1), 

make renal cortex segmentation a challenging problem. Traditional methods such as region 

growing and threshold will most likely fail. Model-based methods incorporating anatomical 

constraints are necessary to separate the renal cortex and renal column. Furthermore, in 

order to overcome the weak boundaries, graph-based methods can be employed to search for 

a global optimal solution. In this paper, we propose an extended optimal surface search 
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method [4] to segment the renal cortex by simultaneously extracting its outer and inner 

surfaces. The graph construction [5] was utilized to build a single graph for the entire image. 

However, it could not fully accommodate multiple surfaces, so we propose a new graph 

construction scheme that models multiple sub-graphs to address this problem.

2 Methods

The framework of the proposed approach is illustrated in Fig. 2. The general strategy is to 

solve the renal cortex segmentation problem through multiple-surfaces extraction. The 

segmentation has two major stages. The first stage provides the approximate segmentation of 

the whole kidney, and the second stage simultaneously extracts the two surfaces.

2.1 Initial Segmentation

The initial segmentation is based on the statistical shape model method [6–7] and consists of 

the following three main steps: nonlinear diffusion filtering, kidney shape model creation 

and kidney initial localization.

1) Nonlinear diffusion filtering—As a preprocessing step, a nonlinear diffusion filter [8] 

is applied to smooth the image and reduce noise. The diffusion filter is defined by the 

following equation:

(1)

t is a scale parameter, and the diffusivity function g(s) = 1−exp(−3.6150 (s/λ)10) if s> 0, and 

g (s) =1 otherwise. λ is the contrast parameter.

2) Kidney shape model creation—The kidney shape model is built from manually 

segmented kidneys in a training set. First, a triangulated surface mesh is reconstructed from 

the manually labeled images using marching cubes [9]. Then, a minimum description length 

(MDL) [10] approach is used to determine the point correspondence for all training shapes. 

Subsequently, all training shapes are aligned with affine transformations. Finally, the average 

kidney shape can be obtained with Φ̄=ΣiΦi/n, where Φi is a training surface, and n is the 

number of the training set.

3) Kidney initial localization—After generating the average kidney shape, we can 

approximately locate this average shape using the software package Amira [11]. We use the 

built-in transformation editor to roughly register the average shape to the original volume.

2.2 Multiple-surface graph search

Based on the kidney initialization results, we employ an optimal surface search algorithm 

[4]. This algorithm can be considered as an optimization process aiming at finding the set of 

surfaces with the minimum cost. The three major components are graph construction, cost 

function design and optimal surface recovering.
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1) Graph construction—A key innovation of our method is its novel graph construction 

scheme, enabling construction of different sub-graphs according to different surface 

properties and inter-surface relationships. The graph construction process is illustrated in 

Fig. 3. Two sub-graphs (G0,G1) are constructed for outer and inner surfaces respectively in a 

narrowband around the surface meshes. For each vertex vj on the mesh, a column of 

equidistant points is sampled along the normal direction of the vertex. The sampled points is 

denoted as , i = 0,1; j = 0, …, M −1; k = 0, …, Ni constituting the nodes for the sub-

graphs, where i is the index of the two sub-graphs (G0,G1), j is the index of the vertex on the 

surface, and k is the index of the sampled points along the columns. We adopt different 

strategies to form the columns in sub-graphs G0 and G1, which are written in equ. 2:

(2)

where the normal direction  points outward, and (Δ0,Δ1) are the smoothness constraints for 

the two sub-graphs. The outer surface is searched both inward and outward, but the inner 

surface is searched only inward. This scheme is illustrated in Fig. 3(b)(c) so that G0 spans 

both inside and outside of the pre-segmented surface and G1 spans only inside the surface. 

This is based on the prior knowledge that the renal cortex inner surface should be inside of 

the initial exterior surface.

There are three types of arcs in the graph shown in Fig. 3(b)(c):

(3)

where (i, j, k) are the indices defined above. The intra-column arc Ea denoted by the blue 

edges connect two adjacent points on the same column; the inter-column arcs  denoted by 

green edges connect two points on two adjacent columns of the outer surface sub-graph G0, 

while the arcs  are denoted by red edges in the inner surface sub-graph G1; and the inter-

surface arcs Es denoted by the brown edges connect two points on different sub-graphs. In 

our graph construction, different smoothness constraints (Δ0,Δ1) are designed for the inter-

column arcs in the two sub-graphs. Separation constraints (δ l,δ u) are exerted on the inter-

surface arcs to separate the two surfaces.

2) Cost function design—All of the intra-column, inter-column and inter-surface arcs 

are viewed as n-links in the s–t graph [12] and assigned infinity values initially. Each node 
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has a weight  in the weighted directed graph, where (i,j,k) are the indices defined in 

the previous section. The node weight  is defined below:

(4)

where the cost  is defined with cost functions reflecting some properties of the 

relevant surfaces.  and  represent the two cost functions for sub-graph G0 and 

G1:

(5)

the 3-D “sheet filter” Fsheet [13] is defined as follows:

(6)

λ1, λ2,λ3(λ1≥λ2≥λ3) are eigenvalues of Hessian matrix ∇2I, and w is written as

(7)

where γ and α are parameters.

If , nodes are connected to the sink terminal t by a directed edge with weight 

, otherwise nodes will be connected to the source terminal s by a directed edge of 

weight . These arcs are t-links.

3) Optimal surface recovering—After the above two steps, a s–t graph Gst has been 

derived from the weighted directed graph G. Then we can apply the traditional graph cut 

algorithm [12] to recover the optimal surfaces. After that, the outer and inner surface meshes 

are scanned and converted to volumes with the same dimension and spacing as the original 

CT datasets. Finally, the segmentation of the renal cortex is obtained by subtracting the two 

volumes.
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3 Experiments and Results

The proposed method was tested on 17 clinical CT datasets using Leave-one-Out cross 

validation. The CT images consist of 512×512×32 voxels. These data sets were manually 

segmented by labeling the kidney tissue to create kidney template images. Our method was 

implemented on a 32-bit desktop PC (2.33 GHz Core 2 and 2 GB RAM) based on the 

medical imaging toolkit [14] (MITK http://www.mitk.net/).

The parameters used in our algorithm are listed in Table 1. The sampling distance varies 

inversely with the density of local triangulated mesh. Results of the segmented renal cortex 

as well as the extracted outer and inner surface are shown in Fig. 4. Manual segmentation 

was used as reference and compared with the automatic segmentation result according to 

five metrics: true positive volume fraction (TPVF), false positive volume fraction (FPVF), 

signed relative volume difference (SVD), average symmetric surface distance (DAvg), and 

average symmetric RMS surface distance (DRMS). These metrics are summarized in Table 2. 

TPVF is relatively low compared to (1-FPVF), which is due mostly to the cortex 

segmentation error around the renal pelvis (blue arrow in Fig. 5(b)). Fig. 5(a) shows one 

example of the surface distance map between an automatic segmentation and a reference 

segmentation.

4 Conclusions and Future Work

A novel approach has been presented to solve the renal cortex segmentation problem. We 

segment the renal outer and inner surfaces simultaneously by using the optimal multi-surface 

search method to generate the renal cortex. The experimental results demonstrate the 

effectiveness of the proposed method. Our key innovation is the novel graph construction 

scheme. Different surface sub-graphs are constructed according to the surface properties and 

inter-surface relationships. This graph construction scheme can be applied in other multiple-

surfaces segmentation problems, such as the myocardium and cerebral cortex segmentation. 

In our future work, we will focus on improving the performance of inner surface 

segmentation. More investigations will be conducted about the separation constraints and 

cost functions, especially the relationship between the two cost functions.
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Fig. 1. 
CT image of the kidney. (a) Coronal view. (b) Sagittal view.
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Fig. 2. 
The proposed renal cortex segmentation framework
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Fig. 3. 
Graph construction. (a) Triangulated surface mesh with vertex normal. (b) Graph 

construction with three columns in the orange ellipse in (a). The whole graph is composed of 

two sub-graphs G0 and G1. The blue edges denote the intra-column arcs, while the green 

edges and red edges denote the inter-column arcs of the two sub-graph, and the brown edges 

between two columns projected from the same vertex denote the inter-surface arcs. (c) Detail 

of the inter-surfaces arcs.
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Fig. 4. 
Surface segmentation results. (a) Original image. (b) Enhanced image using nonlinear 

diffusion filtering. (c) Red region indicates the renal cortex segmentation result, while the 

reference segmentation is in green. (d) Outer surface mesh. (e) Inner surface mesh. (f) 

Combined segmented outer surface (translucent surface) and inner surface (wire frame).
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Fig. 5. 
(a) 3D surface distance map between the outer surface segmentation result and the kidney 

template image (ground truth). (b) Segmentation error around the renal pelvis (blue arrow). 

The cortex segmentation is in red, while the reference segmentation is in green.
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Table 1

Parameter values

Stage Parameter values

Initial segmentation λ=10, step size 0.1, iter 30;
n=17, model radius 0.3, samples number 41, landmarks 2562

Multiple surfaces graph search Outer surface: N0=41, Δ0=1, sampling distance 0.2–4.0mm;
Inner surface: N1=21, Δ1=1, sampling distance 0.1mm;

M=2562, [δl,δu]=[3,8]sampling distance unit
α = 0.5, γ = 0.25
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Table 2

Metrics results (Mean±SD)

TPVF(%) FPVF(%) SVD (%) DAvg (mm) DRMS (mm)

74.10±3.18 0.08±1.25 −3.46±3.33 0.69±0.20 1.36±0.29
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