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Abstract

A multiple center milestone study of clinical vertebra segmentation is presented in this paper. 

Vertebra segmentation is a fundamental step for spinal image analysis and intervention. The first 

half of the study was conducted in the spine segmentation challenge in 2014 International 

Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) 

Workshop on Computational Spine Imaging (CSI 2014). The objective was to evaluate the 

performance of several state-of-the-art vertebra segmentation algorithms on computed tomography 

(CT) scans using ten training and five testing dataset, all healthy cases; the second half of the study 

was conducted after the challenge, where additional 5 abnormal cases are used for testing to 

evaluate the performance under abnormal cases. Dice coefficients and absolute surface distances 

were used as evaluation metrics. Segmentation of each vertebra as a single geometric unit, as well 

as separate segmentation of vertebra substructures, was evaluated. Five teams participated in the 

comparative study. The top performers in the study achieved Dice coefficient of 0.93 in the upper 
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thoracic, 0.95 in the lower thoracic and 0.96 in the lumbar spine for healthy cases, and 0.88 in the 

upper thoracic, 0.89 in the lower thoracic and 0.92 in the lumbar spine for osteoporotic and 

fractured cases. The strengths and weaknesses of each method as well as future suggestion for 

improvement are discussed. This is the first multi-center comparative study for vertebra 

segmentation methods, which will provide an up-to-date performance milestone for the fast 

growing spinal image analysis and intervention.

1. Background

The vertebral column, also known as spine, is a bony skeletal structure forming the central 

weight-bearing axis of the human upper body. Multiple medical imaging modalities, such as 

radiographs, CT, MRI and PET, are used to evaluate spine anatomy and diagnose spinal 

pathology. Using current generation of scanning techniques, CT is the most spatially 

accurate modality to assess the three dimensional morphology of the vertebra. Spine 

segmentation is a fundamental step for most subsequent spine image analysis and modeling 

tasks, such as identification of spine abnormalities (e.g. vertebral fractures, [1]), image-

based biomechanical modeling (e.g. load analysis [2]) or image-guided spine intervention 

(vertebral fusion, [3]). The accuracy of the segmentation is demanded in some analysis. For 

instance, image-guided spine intervention often requires sub-millimeter precision. Manually 

segmenting a vertebra is time consuming and subjective. Fully automated or semi-automated 

methods are required for most clinical applications.

Vertebra segmentation is challenging due to the complex shape and variable architecture of 

vertebrae across the population, similar structures in close vicinity, pathology, and the spatial 

inter-relation between vertebrae and ribs. In recent years, a number of spine segmentation 

algorithms for computed tomography (CT) images have been proposed. In early work, 

segmentation of vertebrae was achieved by unsupervised image processing approaches such 

as adaptive thresholding, region growing and boundary adjustment (Kang et al. [4]), or 

region-based segmentation such as watershed (Li. et al. [5]) and graph-cut (Aslan et al. [6]). 

Level set methods had also been adopted since they can handle the complex topological 

merging and breaking in the vertebrae. Lim et al. [7] included the Willmore flow in a level 

set framework to guide a surface model evolution. Huang et al. [8] combined edge- and 

region- based level set functions for vertebra segmentation on CT images. Li et al. [9] 

proposed an automatically initialized level set method based on hybrid morphological filter 

and Gaussian mixture model to deal with the topological variation. In region-based 

techniques, Blumfield et al. [10] devised a statistical and heuristic methods to detect key 

features for vertebral body segmentation. Yao et al. [11] presented a technique based on 

watershed algorithm, directed graph search, curved reformation and vertebra template to 

automatically partition and segment the spinal column. Naegel et al. [12] applied 

mathematical morphology and watershed for the labeling and segmentation of vertebrae.

More recent methods were mostly based on geometric models, statistical anatomical models, 

or probabilistic atlas. The models incorporated prior knowledge about the vertebra anatomy. 

Furthermore, the statistical models estimate the mean shape and variation of a vertebra from 

a training set of segmented vertebrae. The models were fit to the target image data either 
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through forces derived from the image or via a deformable registration framework. These 

models are often sensitive to the initial pose estimation, which are done either manually or 

automatically. The manual initialization may be performed by placing seeds within the 

vertebral body [13] or drawing bounding box to restrict the searching range [14]. Automatic 

initialization had also proposed via detecting the spine curvature and inter-vertebral disk 

[11]. Klinder et al. [15] proposed a method, by integrating detection, identification, and 

segmentation of vertebrae in a single framework. The method was based on spinal curve 

extraction and statistical shape models (SSM). The method proposed in Ma et al. [16] was 

based upon bone-structure edge detectors and coarse-to-fine registration of a deformable 

surface model for the thoracic spine. Both shape and pose statistics were incorporated in 

Rasoulian et al. [17] in a multi-vertebrae model for lumbar spine segmentation. Kim and 

Kim [18] proposed a deformable fence model to separate lumbar vertebrae and surrounding 

tissues. Individual vertebrae was modeled in an articulated spine model with a low-

dimensional manifold representation and inferred the model using high-order Markov 

random fields (Kadoury et al. [19]). The vertebrae were clustered into sub-groups using 

manifold learning and a linear point distribution model was constructed for each sub-group. 

Ibragimov et al. [20] built landmark-based shape representations of vertebrae using 

transportation theory and aligned the model to a specific vertebra in three-dimensional (3D) 

CT images using game theory. Part-based models and active shape models were used in 

Roberts et al. [21] to divide the vertebra into several parts and conducted the segmentation 

collaboratively. The model was applied on 2D radiograph images and can be extended to 3D. 

Stern et al. [22] proposed a 3D superquadric model for the segmentation of just the vertebral 

body. Multi-atlas with joint label-fusion had showed promising results in the segmentation 

of several anatomical organs including vertebrae. Wang et al. [23] applied the atlas approach 

in the segmentation of osteoporotic vertebrae with compression fractures. Ghebreab and 

Smeulders [24] constructed a deformable integral spine model encoded as an necklace 

model by learning the appearance of vertebrae boundaries from a set of training images.

More recently, machine learning techniques had been applied in the segmentation of 

vertebrae. Huang et al.[25] applied a statistical learning approach based on Adaboost for 

vertebra detection and an iterative normalized cut algorithm for boundary refinement. Suzani 

et al. [26] proposed a deep learning scheme to automatically localize, identify and segment 

vertebral body in MR images. Mirzaalian et al. [27] combined a probabilistic boosting tree 

classifier for initialization of statistical shape models for segmentation.

Most of the published methods reported fairly accurate results (1.12 ± 1.04 mm point-to-

surface error reported in Klinder et al. [15]). Table 1 summarizes the performance of some 

recently published methods, including number of cases, performance metrics by DICE 

coefficient and average surface distance, targeted subjects, and initialization methods. All 

information is directly extracted from the published peer-reviewed papers. However, these 

algorithms were mostly evaluated on different data sets with various degrees of difficulties 

and are not publicly available. This precludes direct comparison of the results and access to 

the data, and therefore, their performances were not independently verified.

In order to objectively compare different segmentation algorithms, it is necessary to 

establish standardized reference data and validation criteria. Quite a few challenge 
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frameworks have been developed in the past few years for several medical image analysis 

problems. A dedicated website at http://www.grand-challenge.org has the most complete list 

of organized challenges since 2007, including those focusing on liver, lung, brain and heart, 

amongst others. Thus far, there is no grand challenge focusing specifically on spine image 

analysis.

This paper presents a milestone comparative study of the vertebra segmentation. The first 

stage was a challenge held at the 2014 International Conference on Medical Image 

Computing and Computer Assisted Intervention (MICCAI) Workshop on Computational 

Spine Imaging (CSI 2014), and the second stage was evaluation on more challenging clinical 

cases. The objective to organize this vertebra segmentation comparative study was three-

fold. Firstly, we wanted to provide a platform to objectively evaluate the strengths and 

weaknesses of various spine segmentation algorithms; secondly, we intended to construct an 

annotated reference data set for spine labeling and segmentation; and thirdly, we want to 

assess current state-of-the-art segmentation accuracy for vertebra and its substructures. The 

details of the organization of the comparative study can be found at the website (http://csi-

workshop.weebly.com/).

2. Spine imaging data sets

The data sets used in the comparative study were acquired at the University of California, 

Irvine, Medical Center (Orange, CA, USA), between March 2013 and May 2013. The study 

received Institutional Review Board approval, and was compliant with the Health Insurance 

Portability and Accountability Act. As the study was performed as a retrospective analysis 

of previously obtained imaging studies, informed consent was waived. The data sets were 

manually selected by a radiologist with eight years of experience according to the following 

selection criteria: thoracic and lumbar spine column scanned. All patients were scanned 

using a spine CT protocol, where a small field of view centered at the spine was 

reconstructed. The scanning parameters included 0.7-2.0 mm slice thickness, 120 kVp, soft 

tissue reconstruction kernel, and intravenous contrast. The volumes completely covered the 

thoracic and lumbar part of the spine and were scanned as a single continuous CT data set at 

high spatial resolution.

Following these data characteristics, we collected twenty data sets for the comparative study, 

ten for training and ten for testing. The training cases were provided before the participants 

entered the workshop challenge (January, 2014). The testing sets were provided in two 

stages after the participants entered the challenge. In the first stage, five cases from healthy 

young individuals (20-34 years, mean 27 years) were provided. In the second stage, the 

participants were invited back to test on five cases from an osteoporotic cohort (59-82 years, 

mean 73 years) that has been previously identified to have at least one vertebral compression 

fracture. In the osteoporotic set, 16 vertebrae were identified with a compression fracture 

(one with grade 1 Genant score, ten with grade 2, and five with grade 3). Examples of the 

two testing sets are shown in Figure 1. All data were anonymized and made available in 

Meta format (MHD/raw). The data sets and related codes are open to public and released on 

SpineWeb (http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets), a 

collaborative platform for research on spine imaging and image analysis. The details of the 
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training and test data sets are listed in Table 2. The test sets from healthy young individual 

were intended to assess the baseline performance and the more difficult diseased cases for 

evaluating the accuracy of state-of-the-art vertebra segmentation algorithms.

3. Reference data generation

The reference segmentation data was generated in two stages. Firstly, the initial 

segmentations were obtained using a fully automatic algorithm reported in [11], which was 

based on adaptive thresholding, watershed, directed graph search, and connected component 

analysis. The obtained segmentations were then manually corrected and refined by a medical 

fellow and a research fellow using customized software that was developed for the manual 

correction. In the reference data, each vertebra was assigned a unique label and the 

background (pixels other than vertebrae) was assigned label 0. We created reference 

segmentation for every vertebra, for both thoracic (T1-T12) and lumbar (L1-L5) spines. A 

reference segmentation file was saved in Meta data format [28] for each data set with the 

same resolution as the original CT image file. The reference segmentations for the test sets 

were based on consensus reading of two operators. Figure 1 shows examples of the reference 

labels in the sagittal plane and the 3D surface model generated by the reference 

segmentation for both a healthy case and an osteoporotic case.

4. Participating algorithms

Since the release of the training data there have been over 60 requests or downloads of the 

training data from SpineWeb. Five teams entered the comparative study held at the 

Computational Spine Imaging Workshop (CSI2014). Among the participants, four teams 

segmented both thoracic and lumbar vertebrae, and one team segmented only lumbar 

vertebrae.

The five participating algorithms are dubbed as Method 1 [29], Method 2 [30], Method 3 

[31], Method 4 [32], and Method 5 [33] in this paper according to the order of the 

submission. The titles of the five methods are listed in the references. The following is a 

brief description of each participating method.

Method 1 [29] is an atlas-based technique and consists of four steps: pre-processing, initial 

alignment, non-rigid registration and label fusion. N spine atlases (image data with 

corresponding label data) are used to segment thoracic and lumbar vertebrae as imaged in a 

target data set. In the pre-processing step, consisting of spinal canal tracking, disc detection, 

and vertebra position and rotation estimation, an approximate position and rotation (pose) of 

each vertebra in all data sets are estimated. The results from the pre-processing are used to 

obtain an initial alignment between each of the N atlases and the target data set. The initial 

alignment can either be for the whole spine or computed per vertebra. This is followed by a 

registration step, where the vertebrae of each atlas are registered to the target data set using 

non-rigid registration (minimizing the local phase-difference). This step is performed on a 

group of three vertebrae. The computed transforms are used to transform corresponding 

label sets. The transformed labels are combined to a single label volume using label fusion 

(majority voting) to form the segmentation of the vertebrae as imaged in the target data set.
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Method 2 [30] is based on a statistical multi-vertebrae shape+pose model which is registered 

to the bony edges of the spinal column as extracted from the CT volume. For construction of 

the model the idea is to analyze the pose and shape statistics separately as they are not 

necessarily correlated and are not formulated in the same parameter space. Training data is 

collected for every vertebra (in this case T1 to L5) and is used to build individual sub-

models each containing three neighboring vertebrae and the ensemble of all models covering 

the whole spinal column. Segmentation using one of these statistical multi-object shape

+pose model can then be formulated as a registration problem where the model is registered 

to the bone edge point cloud extracted from the CT volume by optimizing the model 

parameters using the expectation maximization (EM) algorithm. Successive registration of 

the individual sub-models starting from a user-specified initial vertebra finally results in the 

segmentation of the spine.

Method 3 [31] uses a variational segmentation framework which is derived from a convex 

formulation of 3D geodesic active contours for individual vertebra segmentation. In this 

formulation the weighted total variation (TV) norm is combined with prior bone intensity 

and shape information. For bone intensity prediction, normalized foreground (bone) and 

background histograms are learned from annotated training data. Each voxel of a test image 

is classified accordingly using the log-likelihood ratio. Prior shape knowledge in terms of a 

mean shape is obtained by registering the set of binary training vertebrae representations and 

final averaging. To account for variation in shape along the spine, mean shape 

representations for upper thoracic, lower thoracic and lumbar spines are calculated 

separately. At testing time, the learned mean shape is registered to a binary representation of 

the bone prior to get a rough location of the vertebrae. The final energy formulation 

expressed in a variational framework obtains a segmentation by combining bone prior, 

registered shape prior and the weighted TV norm which accounts for both edge magnitude 

and edge direction of the respective image.

Method 4 [32] consists of two parts: vertebra detection and vertebra segmentation. An 

interpolation-based optimization approach is applied to detect the whole spine and 

individual vertebrae in an unknown CT spine image by using a spline-based interpolation 

function on an equidistant sparse optimization grid and a dimension-wise computational 

complexity reduction algorithm to obtain the optimal translation, scaling and rotation 

parameters of the rigidly align vertebra shape models. The obtained detection results 

represent a robust and accurate initialization for vertebra segmentation, built upon the 

existing shape-constrained deformable model approach. The proposed iterative segmentation 

consists of finding distinctive vertebra boundaries by applying Canny edge operator and 

random forest regression model of image intensities and intensity gradients, and of 

deforming the vertebra shape model so that it fits the obtained vertebra boundaries while 

preserving shape topology.

In Method 5 [33], a statistical shape models (SSM) of each lumbar vertebra was previously 

created from an independent dataset of 30 lumbar spines with no evident osteological 

pathologies. From manually placed intervertebral discs centers, the similarity transformation 

parameters of each vertebra are computed to initialize the vertebra shapes. The segmentation 

is performed by iteratively deforming a mesh inside the image intensity and then projecting 
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it into the SSM space until convergence. Afterwards, a relaxation step based on B-spline is 

applied to overcome the SSM rigidity. The deformation of the mesh, within the image 

intensity, is performed by displacing each landmark along the normal direction of the surface 

mesh at the landmark position seeking a minimum of a cost function based on a set of 

trained features.

The technical comparisons of the five methods are detailed in Table 3. The comparisons are 

conducted in six aspects: vertebral localization, segmentation strategy, bundled model, 

registration/optimization, image feature, and running time. Method 1 and Method 4 

comprise steps to automatically initialize the location of vertebrae. Method 2, 3, and 5 

require manual initialization of the model, either at the center of vertebral bodies or at the 

center of intervertebral discs. The automatic initializations of Method 1 and 4 were self-

claimed by the participants and not verified. All methods are based on certain types of shape 

and intensity models. Method 1 uses multiple atlases directly derived from the reference 

data. Method 2 uses a statistical shape+pose model built from 87 training volumes 

incorporating variations of both shape and pose across the population. Both Method 3 and 

Method 4 use mean shape models from the training data. Method 4 builds a model for each 

vertebra level, while Method 3 builds one model for each section of the spine (one for T1-

T6, one for T7-T12, and one for Ll-L5). Method 5 computes a statistical shape model from 

30 training models for each vertebra level. In Method 1 and Method 2, adjacent vertebrae are 

bundled together (5 vertebrae in Method 1 and 3 vertebrae in Method 2) in the segmentation. 

Different registration/optimization frameworks were adopted in the methods. Method 1 first 

applies a non-rigid registration for each atlas and then performs a label fusion. Method 2 

conducts an EM algorithm to optimize the model. Method 3 adopts a total variation 

framework. Surface mesh deformation and reconfiguration is performed in Method 4. 

Method 5 employs statistical shape deformation plus B-spline relaxation for surface 

optimization. Different feature functions are used in the methods for the optimization. They 

are mostly based on edge point and intensity models. The running time was reported by the 

participating teams (Table 3). It can only be viewed as a reference, since the algorithms were 

run on different hardware platforms and some have been optimized by graphics processing 

units (GPU).

5. Evaluation

The performance on the training data set was evaluated by the participants themselves and 

reported in their submissions [29-33]. The performance on the test data set was evaluated by 

the organizers.

After the test data set was released, the participants were given 10 days to submit the 

segmentation results. Each segmented vertebra was assigned a unique label. The results were 

submitted in Meta format (MHD/raw) [28] with the same resolution as the original CT data.

Two metrics were employed for evaluation: Dice coefficient (DC) [34] and mean absolute 

surface distance (ASD). The definitions are as follows:
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Here Vr is the reference volume, Vs is the segmentation volume, Sr is the reference surface, 

Ss is the segmentation surface, and di is the minimum distance from a point on Ss to Sr. The 

evaluation was conducted on each individual vertebra. The maximum surface distance 

(MSD) is also evaluated. The surfaces were generated using a Marching Cube algorithm 

from the binary segmentation mask.

By visual inspection, we noticed that the segmentation performed differently at different 

parts of the vertebra. Therefore, we evaluated the segmentation performance for both the 

whole vertebra and its four substructures: vertebral body, left transverse process, right 

transverse process, and spinous process, respectively. We developed an automatic method to 

partition the vertebra into anatomical substructures [35]. It is based on the anatomical 

knowledge that pedicles and laminae are the densest parts of the vertebral arch which forms 

the circle of bones around the spinal canal. We therefore search for the four cutting planes at 

left pedicle, right pedicle, left lamina and right lamina that go through the cross-sections 

with highest CT intensity around the spinal canal. Symmetric constraints are also enforced 

to balance the left and right cutting planes. The vertebra is then partitioned into four 

substructures (vertebral body, left transverse process, right transverse process and spinous 

process), depending on which side of the cutting planes a pixel lies. The partitions on our 

data sets were verified by experts to ensure the correctness. Figure 2 shows the partitioning 

of a vertebra into the four substructures.

6. Performance comparison

The segmentation results were compared both visually and quantitatively. The results were 

superimposed on the CT image for visual inspection. DC and ASD were used for 

quantitative analysis. In this paper, we mainly focus on the results on the test set.

Figure 3 shows the visual comparison of submitted segmentation results for test case 1 from 

a healthy spine. All methods achieve visually acceptable segmentation for thoracic and 

lumbar vertebrae in a healthy spine. There is no obvious leakage or under-segmentation from 

the sagittal view. Figure 4 shows the visual results for test case 10 which is an osteoporotic 

case with multiple compression fractures. All methods show certain degree of deterioration 

in performance compared to the healthy case. Method 1 and 4 demonstrated the best 

segmentation on the osteoporotic case. Method 1's segmentation on the compression 

fractured vertebrae slightly leaked into the intervertebral disc space. Method 4 slightly 

under-segmented the spinous processes. Method 2 had trouble locating the endplates in the 

thoracic spine. Method 3 failed to segment several vertebrae because of the training prior. 
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Method 5 only segmented the lumbar spine, but showed fairly good results, not statistically 

different from method 4 for osteoporotic spines.

For a closer visual inspection, Figure 5 shows the visual comparison of the segmentation of 

the mid-axial slice for three representative vertebrae on a healthy case: T3, T9 and L3. In T3 

and T9, all methods successfully separate the vertebra and the ribs. The border of segmented 

vertebra in Method 1 is not smooth, which indicates that further refinement is necessary. 

Method 1 participant indicated that the data was resampled at 1mm × 1mm × 1mm due to 

memory limitation. Running the method on a finer grid may improve the pixelated result. 

The segmentation in Method 2 is off-mark although the location of the vertebra and the 

overall shape are correct. Another stage of local segmentation should be conducted. Method 

3 and 4 both achieve moderately accurate segmentation results, but it is noted that the 

segmentation of the posterior substructures still have room for improvement. The tips of the 

processes are not completely segmented and some contrast-enhanced vessels are included in 

the segmentation. Method 5 only segments the lumbar spine and the result is similar to that 

of Method 1 where the boundary is slightly off.

There is a general trend of better performance from upper spine to lower spine as the 

vertebrae gradually increase in size and density. To illustrate the pattern, we group the 

vertebrae into three sections: upper thoracic from T1 to T6, lower thoracic from T7 to T12 

and lumbar spine from L1 to L5 (Figure 6). In the healthy cases, DC goes from 0.867 in the 

upper thoracic, to 0.909 in the lower thoracic and to 0.933 in the lumbar spine. In the 

osteoporotic cases, DC goes from 0.652 in the upper thoracic, to 0.756 in the lower thoracic 

and to 0.854 in the lumbar spine. As expected, the performance on the healthy cases is much 

higher than that on the disease cases.

Figure 7 summarizes the performance on the sub-structures. This evaluation was only 

conducted on the healthy cases. It is noted that the DC for the vertebral body segmentation is 

much higher than that for the posterior substructures (left transverse process, right transverse 

process and spinous process). The three processes have comparable performance. This 

further verifies the visual comparison shown in Figure 5.

Figure 8 shows the comparison for the three vertebra groups on both the healthy and 

osteoporotic cases for all five methods. Figure 9 summarizes the comparison for the whole 

thoracic and lumbar spine. These comparisons show the differences in performance among 

the methods, in terms of both DC and ASD. The MSD for healthy cases were 8, 12, 22, 12 

and 10mm for Method 1 to 5 respectively, and those for osteoporotic cases were 9, 15, 44, 

12 and 10mm for Method 1 to 5 respectively. Since DC and ASD show similar patterns, we 

will only show DC in most of the following comparisons. The ranking of performance on 

the healthy cases is Method 4, Method 3, Method 1, Method 5, and Method 2, and that on 

the osteoporotic cases is Method 1, Method 4, Method 5, Method 2 and Method 3. It is noted 

that Method 5 only segmented lumbar vertebrae. Method 3 performed well on the healthy 

cases, but failed on many vertebrae in the osteoporotic cases (34 out of 85 vertebrae were 

not segmented). For those vertebrae that were successfully segmented in Method 3, the 

average DC was 0.833. The reason for the failure was that the bone prior map was trained 

based on healthy vertebrae and did not work on most of the osteoporotic vertebrae. Method 
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5 was also trained on healthy cases, but the B-spline relaxation step seems to give enough 

flexibility to allow the model to adapt to fractured lumbar vertebrae.

Statistical analysis was conducted to evaluate the significance of differences in performance. 

Table 4 lists the p-value of the paired t-test on DC of every vertebra for the healthy cases. 

Only two t-tests did not show statistically significant difference: the comparison between 

Method 3 and Method 4, and the one between Method 1 and Method 5. The analysis shows 

that Method 3 and Method 4 statistically performed better than other methods on the healthy 

cases. Table 5 lists the paired t-test results for the osteoporotic cases. Again only two t-tests 

did not show statistically significant difference: the comparison between Method 1 and 

Method 4, and the one between Method 4 and Method 5 (only on lumbar vertebrae). This 

shows that Method 1 and Method 4 had statistically better performance than other methods 

on the osteoporotic cases. Table 6 lists the z-test results comparing DC on the healthy cases 

and the osteoporotic cases for each method. It shows Method 1 had the smallest differences 

between the two test sets, while all methods showed statistically worst performance on the 

osteoporotic cases comparing to the healthy cases.

In the osteoporotic cases, 16 out of 85 vertebrae were previously identified with 

compression fractures. The comparison of performance on fractured and non-fractured 

vertebrae is shown in Figure 10. All methods except Method 2 had better performance on 

non-fractured vertebrae than fractured vertebrae. Figure 11 compares the system 

performance on vertebral substructures for each of the five methods. This evaluation was 

conducted on the healthy cases. A similar trend in segmentation performance between the 

different methodologies is seen in the substructure segmentation portion of the comparative 

study as was seen in the whole vertebra segmentation. All methods perform better on the 

vertebral body than the other substructures.

We evaluated the inter-operator and intra-operator variability of the manual segmentation to 

assess the consistency and variability of the reference segmentation. We chose two test data 

sets (test case 1 for healthy case and test case 6 for osteoporotic case). We then had a second 

operator to provide a new manual segmentation (for inter-operator variability) and also 

asked the first operator to repeat the manual segmentation six months after the first manual 

segmentation (for intra-operator variability). Table 7 lists the mean DC for both data sets 

between the two corresponding manual segmentations. The manual segmentations showed 

high consistency even for osteoporotic and fractured vertebrae.

7. Discussion

The performance of the methods of the participating teams ranged from 0.868 to 0.947 in 

DC and 0.373 to 1.086 mm in ASD for the healthy cases. The best results represent the 

state-of-the-art performance and out-perform most recently published methods (Table 1). 

However, it also indicates that there are still opportunities for improvement. The substructure 

assessment shows that the vertebral body segmentation is generally excellent (DC of 0.936 

on average, 0.964 in the best method). However, for other substructures (left and right 

transverse processes, spinous process), the DC is 0.852 on average and 0.917 in the best 

performer. A closer look to Figure 5 also shows that most segmentation errors occur at the 

Yao et al. Page 10

Comput Med Imaging Graph. Author manuscript; available in PMC 2017 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



tip of the processes. The tips of the processes are often used as landmarks for image-guided 

intervention. Further refinement in the posterior substructures is possible and desirable. For 

the osteoporotic cases, the performance varied greatly among methods (DC from 0.472 to 

0.897). Method 1 and Method 4 managed to segment every vertebra, while Method 3 failed 

for about 40% of the vertebrae.

The results also show that the performance of the segmentation algorithms varies at different 

vertebra levels. For instance in the healthy cases, upper thoracic levels have a DC of 0.867 

on average and 0.930 in best, lower thoracic 0.909 on average and 0.961 in best, and lumbar 

0.933 on average and 0.965 in best. The performance difference is predominantly based on 

two factors: 1) the size and bone density at the upper thoracic level is smaller and lower, 

respectively, than that at the lumbar level; 2) interfaces with surrounding structures are more 

complex at the upper thoracic level, particularly at the costovertebral junctions connecting 

the ribs and the vertebrae. Further investigation is necessary to improve the segmentation of 

the upper spine column.

All participating methods used models computed from training data to segment the test data. 

Method 2 and Method 5 used their own training set to build the model. Indeed, the 

availability of only lumbar training set was the reason for Method 5 to segment only lumbar 

vertebrae. The difference in imaging protocols and type of population between their own 

training set and the challenge data set may have decreased the accuracy of the results. 

Method 1 used multiple atlases from labels, Method 2 and Method 5 used statistical shape 

models and Method 3 and Method 4 used mean shape models. The mean shape model with 

large flexibility for deformation may work better for healthy and normal vertebrae. However, 

statistical models with stricter domain constraints would be necessary for pathological cases 

where the target shape is far from the mean shape and therefore severe under- or over- 

segmentation may occur without shape and domain constraints. Method 1 and Method 4 

performed well on both the healthy and diseased cases, indicating both statistical model 

based approaches and single model based deformable registration approaches are valid for 

reliable vertebra segmentation.

Initial location of the model is essential for the accuracy of segmentation results. Three 

methods in this comparative study required manually placement of the model locations. 

Automatic vertebra labeling and localization will be important for the methods to be applied 

in a clinical setting or to a large number of data sets. Manually placed seeds also have the 

issue of operator subjectivity. Methods based on spinal canal tracking [11, 36] or based on 

random forest models [37, 38] have shown robust and promising results to automatically 

locate the vertebrae.

Vertebra models are bundled in Method 1 and Method 2, so that the interaction between 

adjacent vertebrae can be employed to assist the segmentation. Since most vertebrae are well 

separated, the individual vertebra model is able to reliably segment the individual vertebrae 

independently, within the limitations of normal architectural variation. In the case of 

pathologic anatomic deformity, especially for cases with compression fractures, it can be 

helpful to rely on relatively healthy vertebrae in the neighborhood to assist the segmentation 

of the damaged vertebra. Thus, the bundled model is expected to be beneficial in situations 
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of pathologic architectural deformity. The bundled model can also help prevent overlapping 

and collision between adjacent vertebrae. This is one of the reasons that Method 1 

performed the best on the osteoporotic and fractured vertebrae.

Vertebrae at different spinal levels have different shapes, sizes, and image intensity. For 

instance, two vertebrae with a large spatial separation within the spinal column, such as an 

upper thoracic vertebra and a lower lumbar vertebra, show significant morphologic 

differences. Therefore, it would be a difficult task to accurately characterize all vertebrae 

with a single model. Based on this characterization, all participating teams employed 

methods that built different models for different vertebra levels, or at least for different 

vertebral groups (Method 3). Vertebra specific models impose anatomical knowledge in the 

modeling and would be necessary for a robust segmentation.

Image resolution also affects the segmentation performance. The test data for healthy spine 

has two reconstructions of slice thickness: 0.7mm and 1mm. The best performer (Method 4) 

achieved 96.3% for 0.7mm data sets and 95.7% for 1mm data sets respectively. The diseased 

data set has 1mm and 2mm reconstructed slice thicknesses. The best performer (Method 1) 

achieved 90.6% for 1mm and 89.3% for 2mm data sets respectively. Intuitively, the 

segmentation algorithms perform better on higher resolution data set. New multi-channel CT 

scanners generate high resolution data. 1mm reconstructed CT is becoming a norm.

Model fitting or image registration is widely accepted as the reliable way to segment 

complex objects such as a vertebra. Different frameworks for the registration or optimization 

had been adopted by the participating methods. They all converged to a solution, however, at 

different rates and computational costs.

The running time ranged from a few minutes to 30 minutes (including the initialization), and 

three methods required manual initialization of the model. Vertebra segmentation is mostly 

needed for pre-operative planning, biomechanical simulation or offline diagnosis. Therefore, 

30 minute segmentation time and manual interaction are accepted for clinical uses.

Since the vertebral bone has a relatively high contrast relative to its surrounding tissues, 

edge and gradient based feature functions were used in all methods. These feature functions 

could be sensitive to noise and compromised by surrounding bony tissues (e.g. ribs). 

Recently, however, machine learning techniques have been explored to classify pixels based 

on structural information and contextual features, which may mitigate the effect of this 

image noise. Furthermore, the gradients vary within the images due to variation of bone 

density and partial volume effect. The feature function must be adaptive to local image 

properties.

Method 1 and Method 4 have comparably the best performance in this study. Both methods 

include a component for automatic vertebra detection and localization, which makes them a 

more complete system. The initialization appeared to be rather robust since both methods 

successfully segmented all vertebrae. Method 4 performed best on the healthy cases and 

Method 1 performed best on the osteoporotic cases, although the difference was not 

statistically significant for the osteoporotic cases. Although different data sets were used in 
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the evaluation, Method 1 and Method 2 outperformed the methods listed in Table 1 in terms 

of DICE coefficient and average surface distance.

There were a few limitations in this study report. Firstly, the data set was relatively small. 

However, it was very time consuming to generate the reference segmentation, especially for 

disease cases. Although we only have 20 data sets, each data set has 17 vertebrae. Therefore, 

each algorithm was tested on 340 vertebrae, which was a relatively large number. Secondly, 

the number of participants is relatively small. Computational spine imaging is a relatively 

small research field. Since this is the first comparative study in this field, we only managed 

to recruit five participants. This is actually the typical number of participants in most 

medical image analysis comparative studies. We have made the data public so that other 

researchers can test their algorithms. We also plan to keep the study open on spineWeb 

(http://spineweb.digitalimaginggroup.ca/spineweb). Thirdly, the reference standard is 

somewhat biased toward the result of the automatic segmentation that was used as the initial 

segmentation. Through the inter- and intra- observer experiments, the variability between 

two sets of manual segmentations is much lower than the difference between manual and 

computer segmentations. Even though the vertebral shape is complex, its border has distinct 

contrast to be located positively by an operator. Therefore, the reference segmentation is 

consistent. Fourth, the data used in the comparative study were spine CT with intravenous 

contrast. From our experience, the vertebra segmentation algorithms perform better on non-

contrast scans since less interference from contrast agent inside nearby aorta. In healthy 

spines, the interference is small since bone has much higher density than the contrast agent. 

However, the contrast agent may cause problems in osteoporotic cases since part of the spine 

may have similar density as the contrast agent. The contrast may be present inside the 

vertebral body where it will change the image voxel density and thus affect segmentation, 

density measurement and identification. A robust initialization and shape constrained 

vertebra model will provide a means to handle this issue. From the results of the 

participating algorithms, we didn't notice visible leakage into the aorta, which indicates that 

contrast had little impact on the vertebra segmentation algorithms. However, in this 

challenge, we didn't compare the performance between contrast studies and non-contrast 

studies.

The basic mechanism of the vertebra segmentation algorithms presented in this comparative 

study has potentials for application to more generalized clinical CT data sets. Through the 

comparison of various algorithms, readers should get a sense of the strengths and 

weaknesses of different vertebra segmentation algorithms and choose the appropriate one for 

their applications.
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Figure 1. Example of test cases with reference segmentation
Each vertebra is assigned a unique label (color coded). Sagittal and 3D views are shown.

Left: a healthy spine (test case 1)

Right: an osteoporotic and fractured spine (test case 10). Arrows point to vertebrae with 

compression fractures.
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Figure 2. Partitioning of a vertebra into four substructures
Left: Density map on vertebra surface, hotter color: higher density

Right: Partitioning a vertebra into four substructures. The substructures are color-coded with 

different colors. The cutting planes lie at the border between two substructures.
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Figure 3. Visual comparison of segmentation results for test case 2 (a healthy case)
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Figure 4. Visual comparison of segmentation results for test case 10 (an osteoporotic and 
fractured case)
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Figure 5. Visual comparison of segmentation results for specific vertebrae in test case 4
Row 1: T3 vertebra; Row 2: T9 vertebra; Row 3: L3 vertebra

Mid-axial slice for each vertebra is shown. The segmentation is superimposed on the CT 

data.
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Figure 6. Mean performance of all methods for healthy and osteoporotic cases
Both Dice Coefficient and mean surface distance are evaluated. The spine column is divided 

into three segments (T1-T6, T7-T12, and L1-L5) for assessment.
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Figure 7. Mean performance of all methods for vertebra substructures
The results show that vertebral body is more accurately segmented than other posterior sub 

structures.
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Figure 8. Performance comparison on each vertebra group on healthy (left) and osteoporotic 
(right) cases
The charts compare the performance of different methods on each segment of the spine.
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Figure 9. Performance comparison on the entire spinal column
Only lumbar vertebrae were evaluated in Method 5. The charts compare the difference of 

each method on healthy cases and osteoporotic cases.
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Figure 10. Performance comparison on fractured and non-fractured vertebrae
All methods except Method 2 performed better on non-fractured vertebrae.
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Figure 11. Performance comparison on substructures
The charts show the similar pattern of performance on substructures.
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Table 7
Inter- and intra- operator manual segmentation variability

T1-T6 T7-T12 L1-L5 All

Inter- operator 0.974±0.005 0.971±0.014 0.983±0.005 0.976±0.01

Intra- operator 0.981±0.004 0.989±0.004 0.993±0.002 0.987±0.006
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