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ABSTRACT Preliminary preclinical and observational studies suggest the potential
utility of metformin as an adjunctive, host-directed agent for treatment of tuberculo-
sis (TB). In this study, we sought to investigate the bactericidal and sterilizing activi-
ties of human-like exposures of metformin when given in combination with the first-
line regimen against chronic tuberculosis in BALB/c mice. Mice receiving metformin
adjunctive therapy had similar lung bacillary burdens with control mice during treat-
ment, and the proportion of mice with microbiological relapse was similar between
the two groups.
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Host-directed therapy (HDT) may offer expanded therapeutic options for improving
tuberculosis (TB) treatment (1–5). Metformin (MetF), an AMP-activated protein

kinase (AMPK)-activating drug for type 2 diabetes (DM), was reported to inhibit
intracellular growth of mycobacteria by inducing reactive oxygen species and to
enhance the efficacy of conventional anti-TB drugs in mouse models of acute and
chronic TB; its use was associated with decreased TB severity and improved clinical
outcomes in a retrospective analysis of 220 patients with DM and TB (6). In another
retrospective study, Srujitha et al. showed that MetF use was associated with a 3.9-fold
reduction in TB incidence among patients with DM (7). Based on these findings, we
hypothesized that MetF adjunctive therapy would enhance the bactericidal and ster-
ilizing activities of the standard first-line treatment (8, 9) against chronic TB infection in
mice and shorten the duration of curative treatment as assessed by microbiological
relapse.

All animal-related procedures were approved by the Johns Hopkins University (JHU)
School of Medicine Animal Care and Use Committee. A total of 170 female BALB/c mice
aged 4 to 6 weeks (Charles River Labs, Wilmington, MA) were aerosol infected with
Mycobacterium tuberculosis H37Rv (JHU) using the inhalation exposure system (Glas-
Col, Terre Haute, IN) calibrated to deliver �102 CFU per mouse lung in two consecutive
runs. After aerosol infection, the mice were randomized into the two treatment groups.
Six weeks postinfection, the mice were treated daily (5 days/week) via esophageal
cannulation with human-equivalent doses of rifampin (10 mg/kg), isoniazid (10 mg/kg),
pyrazinamide (150 mg/kg), and ethambutol (100 mg/kg) (RHZE) with or without MetF
(250 mg/kg) for up to 6 months (2, 10, 11). For the first 2 months of treatment, the mice
received RHZE and, for the remaining 4 months, only rifampin and isoniazid (RH) to
mirror the first-line regimen in humans. The rifampin dose preceded that of the other
drugs by at least 1 h to prevent pharmacokinetic antagonism (12, 13). The dose of MetF
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selected for these studies was found to have anti-TB activity in C57BL/6 mice by Singhal
et al. (6) and is estimated (14) to be equivalent to 25 mg/kg in humans (15), which is
well tolerated (15, 16). Groups of 5 mice were sacrificed on the day after infection, on
the day of treatment initiation, and at preselected time points after treatment to
determine the numbers of CFU implanted in the lungs, baseline pretreatment CFU, and
posttreatment CFU, respectively. The proportion of mice with culture-positive relapse
was determined by holding cohorts of 15 mice for 3 additional months after comple-
tion of 3.5, 4.5, or 5.5 months of treatment. Relapse was defined as the presence of
mycobacterial colonies upon plating entire undiluted lung homogenates. Animal body
weights and lung and spleen weights were recorded at the time of sacrifice. The lungs
of sacrificed animals were examined grossly for visible lesions, and small, randomly
selected sections were formalin fixed for histopathology. The remainder of each lung
was homogenized in 2.5 ml phosphate-buffered saline (PBS). Lung homogenates were
plated on selective 7H11 plates (BD, Baltimore, MD) for CFU enumeration. CFU data
were derived from five mice per group. Log-transformed CFU were used to calculate
means and standard deviations (SDs). Comparisons of CFU data among experimen-
tal groups were performed by Student t test. Group relapse proportions were
compared using Fisher’s exact test. P values of �0.05 were considered to be
statistically significant.

One day postinfection, the mean lung CFU counts (�SD) were 2.96 � 0.01 log10 and
2.96 � 0.04 log10 in aerosol runs 1 and 2, respectively. Four weeks later, on the day of
treatment initiation (day 0), mean lung CFU counts were 6.56 � 0.14 log10. During the
initial phase of treatment, the standard regimen of RHZE reduced the lung CFU counts
to 4.92 � 0.28, 3.66 � 0.21, and 1.43 � 0.48 log10 after 0.5, 1, and 2 months of
treatment, respectively (Fig. 1). Relative to the control regimen, the addition of MetF did
not significantly alter lung CFU at 0.5 (P � 0.53), 1 (P � 0.87), or 2 months (P � 0.22)
of treatment. After 3.5 months of treatment, the addition of MetF to standard therapy
reduced mean lung CFU by 0.18 log10 relative to the control group (P � 0.039). At 4.5
months posttreatment, all mice treated with the control and experimental regimens
were lung culture negative and remained so after 5.5 months of treatment.

Totals of 53.3%, 20%, and 6.6% of mice treated with the first-line regimen relapsed
after treatment for 3.5, 4.5, and 5.5 months, respectively (Table 1). MetF adjunctive
therapy did not significantly alter relapse proportions, as 46.6% (P � 0.52), 20% (P �

FIG 1 Adjunctive treatment with metformin (M) in Mycobacterium tuberculosis-infected BALB/c mice.
RHZE, rifampin at 10 mg/kg, isoniazid at 10 mg/kg, pyrazinamide at 150 mg/kg, ethambutol at 100
mg/kg; M, metformin at 250 mg/kg.

TABLE 1 Sterilizing activity of metformin in combination with the first-line regimen
against chronic TB in mice

Regimen

Percentage (proportion) relapse, assessed 12 wk
after the completion of treatment for:

3.5 mo 4.5 mo 5.5 mo

2 mo RHZE and 4 mo RH 53.3 (8/15) 20 (3/15) 6.6 (1/15)
2 mo RHZE and 4 mo RH � MetF 46.6 (5/15) 20 (3/15) 0 (0/15)
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1.0), and 0% (P � 1.0) of mice relapsed after treatment for 3.5, 4.5, and 5.5 months,
respectively.

MetF-treated mice showed no overt signs of toxicity during the entire treatment
period. There were no significant differences in total body weights, lung and spleen
weights, gross lung pathology of mice lungs, or surface area of lung involved by
inflammation at any of the treatment or relapse time points (data not shown).

To our knowledge, this is the first study to investigate the adjunctive sterilizing
activity of MetF against TB in a preclinical model. Although there was a trend toward
improved bactericidal activity in the MetF arm during the continuation phase of
therapy, this effect did not consistently attain statistical significance. Our study and that
of Singhal et al. (6) used the same MetF dose (250 mg/kg). One possible explanation for
the discrepant findings between the two studies is the different mouse models used.
Another potential explanation is that Singhal et al. used MetF as an adjunctive agent in
combination with a single antitubercular drug (isoniazid or ethambutol), whereas we
studied the activity in combination with the more potent first-line regimen RHZE, which
may mask an adjunctive role for MetF. Alternatively, the inclusion of rifampin in our
study may have altered the pharmacokinetics of MetF. Although concurrent use of
rifampin and MetF may result in increased plasma concentrations of the latter in
humans (17), it is possible that rifampin may accelerate the clearance of MetF and
reduce drug exposures in BALB/c mice (18). Adjunctive therapy with host-modulating
agents likely must strike a balance between an antimicrobial effect and excessive host
inflammation, which may promote bacterial growth. Therefore, further preclinical
pharmacokinetics studies of MetF coadministered with the first-line antitubercular
regimen are urgently needed to guide the future study of this promising agent in
clinical trials (19, 20). In addition, detailed pharmacodynamics studies are required to
relate plasma drug exposures in mice to AMPK activation and anti-TB activity in cell
culture systems (6, 21). Finally, it is important to recognize that observations made in
the mouse model are not necessarily predictive of outcomes in clinical trials of TB
treatment nor is early “sterilization” a predictor of cure in humans (22).
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