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he human fungal pathogen Candida albicans switches between two cell types Address correspondence to Matthew B. Lohse,

named white and opaque (1-6). Both cell types are heritable; under standard e e el
laboratory conditions, stochastic switching events between the two cell types occur
approximately once in every 10,000 cell divisions (7). Roughly 15% of the C. albicans
genome is differentially expressed between the two cell types (476 genes are 2-fold
upregulated in opaque cells, 487 genes are 2-fold upregulated in white cells [8]). White
and opaque cells differ in their ability to mate (9), their metabolic preferences (10), their
responses to environmental signals (11-16), and their interactions with the innate
immune system (17-21). In addition to noticeable morphological differences between
the cell walls of white and opaque cells (22, 23), transcripts of several putative drug
pumps are differentially regulated between the two cell types: CDR3 and NAG4 are
upregulated in opaque cells, and QDRI1, CDR4, TPO3, TPO4, FLU1, and MDR1 are
upregulated in white cells (8, 10, 24). Given these differences in expression, we tested
whether they translated into differential drug sensitivities (=2-fold) by determining the
sensitivity of white and opaque cells from two independent strain backgrounds to a
panel of 27 antifungal drugs.

We tested white and opaque isolates of the WO-1 strain: a naturally occurring «
mating-type strain isolated from the blood and lungs of a patient in 1984 (1) and an a
mating-type derivative of the commonly used SC5314 strain isolated from a patient
with disseminated candidiasis before 1968 (25-28) (see Table S1 in the supplemental
material). Although the patient details pertaining to drug treatment before isolation of
these strains are not available, note that both strains were isolated before the devel-
opment of most current antifungal drugs. Strains were grown at 25°C in synthetic
complete media supplemented with 2% glucose, amino acids, and 100 wg/ml uridine
(SD+aa+Uri) (29). We determined the 50% reduction in turbidity compared with that
of the growth control well (MIC-2) using a 96-well MIC assay modified to avoid
environmentally induced opaque-to-white switching (30-32). Specifically, MIC assay
plates were incubated for 2 days at 25°C in SD+aa+Uri with 2-fold drug titration
gradients, because opaque cells are stable under this condition. After the 2-day
incubation, cell density (optical density at 600 nm) was measured on a Tecan Infinite
M1000 Pro plate reader, taking the average of five reads from distinct locations across
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TABLE 1 MIC-2 for white and opaque cells from two strain backgrounds exposed to 27 antifungal agents in SD+aa+Uri at 25°C

SC5314 WO-1
White MIC-2 Opaque MIC-2 Opaque MIC-2/ White MIC-2 Opaque MIC-2 Opaque MIC-2/

Class and drug (ng/ml [uM]) (pg/ml [pM]) white MIC-2 (g/ml [pM]) (g/ml [pM]) white MIC-2
Echinocandin

Anidulafungin 0.74 (0.65) 0.45 (0.39) 0.60 0.06 (0.05) 0.03(0.02) 0.50

Caspofungin 0.50 (0.41) 1.00 (0.82) 2.00 0.13(0.11) 0.25(0.21) 2.00

Micafungin 0.50(0.39) 0.25(0.20) 0.50 0.12(0.10) 0.12 (0.10) 1.00
Imidazole

Bifonazole 15.52 (50.00) 7.76 (25.00) 0.50 5.17(16.67) 7.76 (25.00) 1.50

Butoconazole 0.02 (0.05) 0.02 (0.05) 1.00 0.01 (0.03) 0.01(0.03) 1.00

Clotrimazole 0.13(0.39) 0.13(0.39) 1.00 0.07 (0.20) 0.07 (0.20) 1.00

Econazole nitrate 0.17(0.39) 0.17(0.39) 1.00 0.07 (0.16) 0.06 (0.13) 0.80

Ketoconazole 0.21 (0.39) 0.21 (0.39) 1.00 0.10 (0.20) 0.10(0.20) 1.00

Miconazole nitrate 0.10(0.20) 0.05 (0.10) 0.50 0.02 (0.05) 0.02 (0.05) 1.00

Oxiconazole Nitrate 0.19(0.39) 0.19(0.39) 1.00 0.10 (0.20) 0.10(0.20) 1.00

Sulconazole nitrate 0.18 (0.39) 0.18 (0.39) 1.00 0.18 (0.39) 0.18(0.39) 1.00

Tioconazole 0.03 (0.08) 0.02 (0.05) 0.60 0.02 (0.04) 0.02 (0.05) 1.20
Thiazole

Abafungin 4.73 (12.50) 9.46 (25.00) 2.00 0.30(0.78) 0.20(0.52) 0.67
Triazole

Fluconazole 1.56 (5.09) 1.56 (5.09) 1.00 0.78 (2.55) 0.78 (2.55) 1.00

Itraconazole 0.07 (0.10) 0.07 (0.10) 1.00 0.04 (0.05) 0.04 (0.05) 1.00

Terconazole 1.66 (3.13) 1.66 (3.13) 1.00 1.66 (3.13) 1.66 (3.13) 1.00

Voriconazole 0.02 (0.05) 0.01(0.03) 0.50 0.01 (0.03) 0.01 (0.03) 1.00
Polyene

Ampbhotericin B 16.00 (17.31) 10.67 (11.54) 0.67 8.00 (8.66) 8.00 (8.66) 1.00

Candicidin 2.31(2.08) 3.47(3.13) 1.50 0.87(0.78) 0.87(0.78) 1.00

Natamycin 5.55(8.33) 4.16 (6.25) 0.75 2.77 (4.17) 2.08(3.13) 0.75

Nystatin 3.86(4.17) 2.89(3.13) 0.75 1.45 (1.56) 2.41(2.60) 1.67
Squalene epoxidase inhibitor

Terbinafine hydrochloride 21.86 (66.67) 8.20 (25.00) 0.38 21.86 (66.67) 5.47 (16.67) 0.25

Amorolfine hydrochloride 0.55 (1.56) 0.55 (1.56) 1.00 0.03 (0.10) 0.03 (0.10) 1.00
Other

Ciclopirox olamine 1.30(6.25) 1.30 (6.25) 1.00 1.30 (6.25) 1.30 (6.25) 1.00

Flucytosine >12.91 (100) >12.91 (100) NAa >12.91 (100) >12.91 (100) NA

Griseofulvin >35.28 (100) >35.28 (100) NA >35.28 (100) >35.28 (100) NA

Tolnaftate >30.74 (100) >30.74 (100) NA >30.74 (100) >30.74 (100) NA

aNA, not applicable

each well. Each assay was performed in triplicate, and the average MIC-2 values are
reported for each strain-drug combination in Table 1. As the MIC-2 value is the
accepted endpoint for most of the drugs tested (23 of 27), we chose to use this
endpoint for all of the drugs (including the 4 polyenes) so that all of the drugs in this
study were tested in a consistent manner. In addition to applying a consistent endpoint
for all of the drugs, we wanted to avoid using MIC,, and/or MIC-0 endpoints for opaque
cells because we have found them problematic, within an experiment and between
different experiments, due to the lower final cell density achieved (relative to white
cells) and the resulting decrease in dynamic range. Details of the antifungal stock
solutions are provided in Table S2 in the supplemental material. To determine whether
cell type switching had occurred, we plated single cells from the 2-day MIC assay on the
SC5314 strain background and examined the morphology of the resulting colonies.
None of the drugs tested induced en masse white-to-opaque or opaque-to-white
switching; therefore, the observed MIC-2 values were representative of each of the two
starting cell types.

We determined the MIC-2 for white and opaque C. albicans cells from each strain
background exposed to 27 antifungal agents (2 squalene epoxidase inhibitors, 3
echinocandins, 9 imidazoles, 1 thiazole, 4 triazoles, 4 polyenes, and 4 others) (Table 1).
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Opaque cells from at least one strain background were 2-fold more sensitive to 6 drugs
(anidulafungin, bifonazole, micafungin, miconazole nitrate, terbinafine hydrochloride,
and voriconazole), whereas white cells from at least one strain background were 2-fold
more sensitive to 2 drugs (abafungin and caspofungin) (Table 1). However, only 2 of
these 8 drugs had detectable differences between cell types in both strain backgrounds
(opaque cells from both were 2- to 4-fold more sensitive to terbinafine hydrochloride,
and white cells from both were 2-fold more sensitive to caspofungin). We did not
observe a difference in sensitivity (=2-fold) between the two cell types for 16 drugs.
The 3 remaining drugs did not affect either cell type at concentrations of 100 uM (the
highest concentration tested, equivalent to 12.91 ug/ml for flucytosine, 35.28 ug/ml for
griseofulvin, and 30.74 ug/ml for tolnaftate). No obvious correlation emerged between

specific classes of antifungal drugs and specific cell type sensitivities.

Despite the numerous differences between white and opaque cells, the cell types
had similar sensitivities to the full spectrum of antifungal agents. Given that the 2-fold
differences observed fell within the potential variability of the assay used, we do not
consider our results to indicate any significant difference in drug sensitivity between
the two cell types. Furthermore, note that the differences in white-opaque sensitivities
were smaller than the differences observed between the two strain backgrounds (Table
1) or between the same strain in different media conditions (data not shown). No class
of antifungal drugs tested in this study showed consistent selective efficacy against
either cell type. For example, white and opaque cells varied in their sensitivities to
different echinocandins. These results suggest that the processes and genes that are
commonly affected by antifungal drugs do not change in a meaningful way between
the two cell types. Thus, the large gene expression differences between white and
opaque cells (~1,000 genes at least 2-fold and 350 genes at least 4-fold differentially
regulated [8]) do not appear to affect antifungal sensitivity.
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