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ABSTRACT There is a pressing need to identify more effective antiretroviral drugs
for HIV-2 treatment. Here, we show that the investigational compound MK-8591 (4=-
ethynyl-2-fluoro-2=-deoxyadenosine [EFdA]) is highly active against group A and B
isolates of HIV-2; 50% effective concentrations [EC50] for HIV-2 were, on average, 4.8-
fold lower than those observed for HIV-1. MK-8591 also retains potent activity
against multinucleoside-resistant HIV-2 mutants (EC50 � 11 nM). These data suggest
that MK-8591 may have antiviral activity in HIV-2-infected individuals.
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Antiretroviral therapy (ART) can prolong the life spans of individuals infected with
human immunodeficiency virus type 1 (HIV-1) by years or even decades, but these

benefits have yet to be formally demonstrated in clinical trials involving human
immunodeficiency virus type 2 (HIV-2) and HIV-1/2 dually infected patients (1–3). HIV-2
is endemic in West Africa and is also prevalent in other areas with socioeconomic ties
to the region (4, 5). Choices of antiretroviral (ARV) drugs for HIV-2 treatment are
constrained by the intrinsic resistance of the virus to non-nucleoside reverse transcrip-
tase inhibitors (NNRTIs) and the reduced susceptibility of HIV-2 to most HIV-1-active
protease inhibitors (5–8). In addition, ART-experienced HIV-2 patients frequently harbor
mutants resistant to both protease inhibitors and NRTIs (9–11), and newer ARV drugs,
such as integrase strand transfer inhibitors, are not broadly available in areas where
significant numbers of HIV-2-infected individuals reside. These limitations underscore
the need to identify new ARV agents that exhibit potent activity against HIV-2,
including drug-resistant strains of the virus.

MK-8591 (4=-ethynyl-2-fluoro-2=-deoxyadenosine [EFdA]) (Fig. 1) is an investigational
nucleoside analog that inhibits HIV-1 replication with 50% effective concentrations
(EC50s) in the low nanomolar-to-picomolar range (12–16). Direct comparisons show that
MK-8591 is 10-fold more potent than tenofovir disoproxil fumarate (TDF) (15), 10 to100
times more potent than zidovudine (AZT) (12, 14), and 1,000 times more potent than
emtricitabine (FTC) (16) against HIV-1 in culture. MK-8591 also exhibits favorable
pharmacokinetic properties, including a long intracellular half-life compared to those of
conventional, FDA-approved NRTIs (16–18). This property is attributable to the fluorine
at the 2 position of the adenine base, which renders the compound resistant to
degradation by adenosine deaminase (13, 14). MK-8591 suppresses HIV-1 and simian
immunodeficiency virus (SIV) replication at clinically achievable concentrations in
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humanized mice and rhesus macaques, respectively (16, 19–21). In a phase 1b proof-
of-concept clinical trial, a single 10-mg dose of MK-8591 demonstrated antiviral activity
for 10 days in ART-naive, HIV-1-infected participants (22). The in vivo potency, phar-
macokinetic profile, and physical properties of MK-8591 open the possibility for once-
weekly oral dosing, and studies of long-acting formulations of MK-8591 indicate that a
single parenteral administration may provide HIV-1-suppressive levels of the drug for 6
months or longer (23). Thus, MK-8591 potentially represents a new ARV with multiple
modalities for preventing and treating HIV-1 infection.

The exceptional antiretroviral activity of MK-8591 is likely related to its unique
mode of action. As with FDA-approved NRTIs, MK-8591 is converted to MK-8591-5=-
triphosphate (MK-8591-TP) by cellular kinases and serves as an alternative substrate for
HIV-1 reverse transcriptase (RT)-catalyzed DNA synthesis (14, 17, 24–26). However, due
to its extendable 3=-hydroxyl group, MK-8591-TP is not an obligate chain terminator.
Instead, incorporation of the analog results in either immediate stalling of polymeriza-
tion or delayed termination after incorporation of the next complementary nucleotide
(26, 27); the latter mechanism renders the newly synthesized DNA resistant to ATP- or
pyrophosphate-mediated drug removal (excision) (27). In pre-steady-state kinetic as-
says, HIV-1 RT utilized MK-8591-TP with an efficiency comparable to or greater than
observed for dATP (depending on the template sequence context), indicating that the
enzyme is unable to discriminate between the two substrates (26, 27). When insertion
of the analog was favored, the difference between MK-8591-TP and dATP was attrib-
utable to a lower Kd (dissociation constant) for the former (26, 27), suggesting that
MK-8591-TP bound to RT with a higher affinity than dATP. This inference is supported
by surface plasmon resonance data (27) and by crystallographic data from the recently
solved structure of HIV-1 RT with MK-8591-TP as the incoming nucleotide (i.e., in the N
site of the polymerase) (28). In this structure, the 4=-ethynyl moiety of the analog is
embedded within a well-defined hydrophobic pocket in the polymerase active site.
This interaction appears to stabilize MK-8591-TP in the N site complex. Additional RT
structures in which MK-8591-5=-monophosphate occupies the penultimate position of
the nascent strand (i.e., the P site) reveal localized distortions in the phosphate
backbone that may affect nucleic acid binding and/or positioning. Taken together, the
pre- and postincorporation complexes (28) reveal structural features that are consistent
with MK-8591-mediated inhibition of HIV-1 RT translocation and arrest of DNA synthesis
(27). To distinguish the compound from conventional chain-terminating NRTIs, MK-
8591 is more accurately described as a nucleoside reverse transcriptase translocation
inhibitor (NRTTI).

Although MK-8591 has been shown to potently inhibit HIV-1 and SIV in culture
(12–16, 19) and in experimentally infected nonhuman primates and humanized mouse
models (16, 19–21), efforts to evaluate the activity of the drug against HIV-2 are limited;
a single report showed that a group B strain (HIV-2EHO) is sensitive to the drug in
spreading infections of MT-4 cells (14). In addition, the ability of MK-8591 to inhibit
HIV-2 mutants that are resistant to other NRTIs is unknown. In HIV-1, the M184V
replacement in RT confers low-level resistance to the drug (7.5- to 15-fold increase in
EC50) (13, 14), whereas the tenofovir resistance-associated change K65R confers 3- to

FIG 1 Chemical structures of 2=-deoxyadenosine (dA), MK-8591 (4=-ethynyl-2-fluoro-2=-deoxyadenosine
[EFdA]), and BMS-986001 (2=,3=-didehydro-3=-deoxy-4=-ethynyl-thymidine; also known as festinavir, cen-
savudine, 4=-ethynyl stavudine, 4=-ethynyl-d4T, and OBP-601).
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5-fold hypersusceptibility to MK-8591 (14, 15). However, these findings cannot be
extended a priori to HIV-2, as important differences exist between the two HIV types
with respect to NRTI resistance pathways and mechanisms (29–31).

We recently evaluated the antiviral activity of a 4=-ethynyl thymidine analog bearing
a 2=,3=-didehydro-3=-deoxy sugar (BMS-986001; also known as festinavir or censavu-
dine) (Fig. 1) and found that the compound had greater activity against HIV-2 than
against HIV-1 in culture (32). To our knowledge, this remains the only report of an NRTI
that, when tested against a diverse panel of HIV-1 and HIV-2 isolates, exhibits more-
potent inhibition of HIV-2 replication. Molecular modeling suggests that the ethynyl
group of BMS-986001-5=-triphosphate fits within a hydrophobic pocket in HIV-2 RT that
corresponds to the aforementioned 4= pocket of the HIV-1 enzyme (28, 32). In agree-
ment with this model, other 4=-modified nucleosides with 2=-deoxy (14, 33) and 2=-deoxy-
2=-�-fluoro (34) sugar configurations also inhibit HIV-2 replication, with EC50s in the
nanomolar range. Collectively, these findings suggest that MK-8591 might inhibit a broad
range of HIV-2 isolates with a potency comparable to or even better than that observed for
HIV-1.

In the present study, we tested the activity of MK-8591 against a panel of HIV-1 and
HIV-2 strains that were originally isolated from ART-naive individuals. We also evaluated
the ability of MK-8591 to inhibit HIV-2 variants with mutations in RT that emerge in
response to ART (9, 10, 35–49) and that confer resistance to various NRTIs in culture (29,
40, 50–52) and in biochemical assays with purified HIV-2 RT (30, 31). Unless otherwise
specified, drug susceptibility measurements were performed using MAGIC-5A indicator
cells, which are CD4� CXCR4� CCR5� HeLa cells containing an HIV-inducible reporter
gene (HIV long terminal repeat [LTR]–�-galactosidase). A detailed description of the
assay protocol has been provided elsewhere (32). Importantly, this methodology
directly quantifies antiviral activity in a single round of HIV infection (as opposed to
measuring virus-induced cell death or viral protein release following multiple rounds of
HIV replication), and the resultant EC50s are not affected by strain-specific differences
in replication rate, infectivity, cytopathic potential, or cell-to-cell spread (32, 53, 54). The
50% cytotoxic concentration (CC50) for MK-8591 in MAGIC-5A cells was �100 nM, as
determined using the CellTiter Glo assay (Promega) (32).

We initially compared the ability of MK-8591 to inhibit two prototypic isolates
derived from full-length plasmid molecular clones: HIV-1NL4-3 and HIV-2ROD9. We have
previously shown that these isolates exhibit comparable susceptibilities to FDA-
approved NRTIs in the MAGIC-5A cell line, with EC50s that differ by 2-fold or less
between the two strains (53). In the present study, we performed a total of 10
independent assay runs in which the sensitivity of HIV-1NL4-3 and HIV-2ROD9 to MK-8591
was tested head-to-head (e.g., Fig. 2A). In these experiments, the mean EC50 for
HIV-1NL4-3 was 2.0 � 0.6 nM. This result agrees with previously published measure-
ments for HIV-1 in single-cycle assays (1.1 nM for HIV-1BH10 in MAGI cells [14], 3.2 nM
for HIV-1NL101 in TZM-bl cells [15]). In contrast, within each assay run, the EC50 for
HIV-2ROD9 was lower than the corresponding value for HIV-1NL4-3 by a factor of 2.3 to
9.9 (Fig. 2A and B). Following additional determinations (n � 14 total), the mean EC50

for HIV-2ROD9 was 0.42 � 0.12 nM (Fig. 3A). Thus, MK-8591 was 4.8-fold more active
against HIV-2ROD9 than against HIV-1NL4-3 in the single-cycle assay. These data are
concordant with the results of spreading infection assays with CEMss cells (see refer-
ence [32] for the assay protocol), which yielded EC50s of 38 pM for HIV-2ROD9 and 120
pM for HIV-1NL4-3.

Other HIV-1 and HIV-2 isolates from ART-naive individuals showed a similar trend
with respect to MK-8591 susceptibility in the single-cycle assay (Fig. 3A). The mean EC50

for 10 HIV-1 strains from groups M and O was 2.6 � 0.6 nM (range � 2.0 to 3.8 nM),
whereas HIV-2 isolates from groups A and B yielded EC50s of 0.55 � 0.17 nM and 0.50 �

0.12 nM, respectively (range � 0.25 to 0.76 nM) (Fig. 3A and C). Overall, HIV-2 was more
susceptible to MK-8591 than HIV-1 was by a difference of 4.8-fold (Fig. 3B).

To identify structural features that might explain the increased activity of MK-8591
against HIV-2, we constructed a molecular model of HIV-2 RT with MK-8591-TP bound

Activity and Resistance Profile of MK-8591 against HIV-2 Antimicrobial Agents and Chemotherapy

August 2017 Volume 61 Issue 8 e00744-17 aac.asm.org 3

http://aac.asm.org


at the polymerase active site and compared the model to the published structure of the
HIV-1 RT–MK-8591-TP complex (28) (see Fig. S1 in the supplemental material). This
model recapitulates important features of the HIV-1 structure, including base-pairing
interactions between MK-8591-TP and the template thymidine, coordination of the
triphosphate by magnesium, and the presence of a hydrophobic pocket that accom-
modates the 4=-ethynyl moiety of the inhibitor. However, closer inspection of the two
structures suggests that subtle differences in the positioning of residues A114, Y115,
F160, M184, and D185 result in a wider 4= pocket in HIV-2 RT than in the HIV-1/MK-
8591-TP complex (see Fig. S1 in the supplemental material). A similar disparity in the
sizes of the 4= pockets is evident in our models of HIV-1 and HIV-2 RT with BMS-986001-
5=-triphosphate as the incoming substrate (32). Whether this variation accounts for the
differential sensitivities of HIV-1 and HIV-2 to MK-8591 is unclear and will likely remain
uncertain until a crystal structure of the HIV-2/MK-8591-TP complex is obtained.

Mutations that are associated with NRTI treatment can have differing effects on drug
susceptibility/resistance in HIV-1 versus HIV-2, as demonstrated for thymidine analog
mutations and for the Q151M replacement in RT (29–31). We therefore examined the
resistance profile of MK-8591 using a panel of site-directed HIV-2ROD9 RT mutants and
a recombinant clone of HIV-2 (designated 4.7a) that was derived from a patient
receiving AZT, lamivudine (3TC), and ritonavir-boosted lopinavir; this clone encodes five
amino acid substitutions that are associated with ART in HIV-2-infected individuals (RT
changes K65R, N69S, V111I, Q151M, and M184V; see reference [32] for treatment
history, clone construction, and additional details). A site-directed mutant of HIV-1NL4-3

encoding the M184V replacement was included in this analysis as an MK-8591-resistant
control (14).

Relative to the parental clone, the K65R mutant of HIV-2ROD9 was hypersusceptible
to MK-8591, with a mean EC50 that was 2.5-fold lower than the value for the wild-type
virus; the K65R�Q151M HIV-2ROD9 mutant was also hypersusceptible to MK-8591
(2.1-fold) (Table 1). MK-8591 was fully active against Q151M HIV-2ROD9, whereas the
M184V change conferred 26-fold resistance to the drug. A slightly lower level of
resistance (9-fold) was observed for M184V HIV-1NL4-3 (Table 1). In contrast, in both
HIV-1 and HIV-2, the M184V replacement confers �1,000-fold resistance to FTC and 3TC
(50, 51, 55). Overall, the changes in MK-8591 susceptibility that resulted from single
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amino acid changes K65R, Q151M, and M184V in HIV-2ROD9 were similar to those
reported for HIV-1 (13–15).

We also observed moderate MK-8591 resistance (13- to 19-fold) for HIV-2 mutants
that encode M184V in combination with one or more treatment-associated amino acid
changes in RT, including those in the patient-derived clone 4.7a (Table 1). In HIV-2ROD9,
the addition of up to three changes (K65R, Q151M, and either K70R or Y115F) together
with M184V did not lead to higher levels of resistance than with M184V alone. It is
important to note that the EC50s for all HIV-2ROD9 clones containing M184V (with or
without other changes) were only 2- to 4-fold greater than the mean EC50 for HIV-1
isolates from ART-naive individuals (2.6 nM). Although we cannot exclude the possi-
bility that other amino acid replacements in HIV-2 RT confer higher levels of MK-8591
resistance, our analysis demonstrates that MK-8591 retains substantial activity against
the types of drug-resistant variants that typically emerge in NRTI-treated HIV-2 patients
(9, 10, 35–49).

Lastly, we performed a series of experiments to confirm that the hypersusceptibility
and resistance phenotypes observed with MK-8591 (Fig. 1 and 2 and Table 1) were not
an artifact of the conditions used in the MAGIC-5A single-cycle assay. The protocol for
this analysis was identical in all aspects to the one used in the above-described assays.
In addition, for each strain tested in the follow-up study, the multiplicity of infection
(MOI) was comparable to the MOI used in previous assay runs with MK-8591 (there was
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a �2-fold difference between the two experimental sets); we have previously shown
that variations in MOIs of up to 32-fold have no effect on the EC50s obtained in the
single-cycle assay (32). As observed in our previously published work (29, 32, 53, 56),
HIV-1NL4-3 and HIV-2ROD9 were equally susceptible to AZT, stavudine [d4T], and the
integrase inhibitor raltegravir, with EC50s that differed by �1.2-fold between the two
strains (see Table S1 in the supplemental material). HIV-1NL4-3 and HIV-2ROD9 were also
comparable to each other with respect to TDF susceptibility in this analysis (EC50s of
13 � 1.3 nM and 6.4 � 1.3 nM, respectively). Furthermore, HIV-2 RT mutants that were
either hypersusceptible or resistant to MK-8591 (Table 1) were fully sensitive to ralte-
gravir (maximal change in EC50 of 1.2-fold relative to the EC50 for wild-type HIV-2ROD9)
(Table S2). Collectively, these data demonstrate that the MK-8591 hypersusceptibility
and resistance phenotypes reported here for HIV-2 stem from intrinsic properties of the
virus, rather than a systematic bias in assay setup or performance.

In summary, our findings show that MK-8591 is highly active against a broad
range of HIV-2 isolates from ART-naive individuals (Fig. 3A and B). In conjunction
with our earlier study of BMS-986001 (Fig. 1) (32), data from the present work
provide an additional example of a nucleoside analog that exhibits greater activity
against HIV-2 than against HIV-1 in a single cycle of infection. MK-8591 is also highly
active against NRTI-resistant HIV-2 mutants, including variants that harbor the
M184V change in RT, with EC50s of �11 nM (Table 1). Furthermore, the addition of
K65R, Q151M, or both in combination with M184V did not lead to higher levels of
MK-8591 resistance than with M184V alone. This result is significant given the
frequent appearance of K65R�M184V, Q151M�M184V, and K65R�Q151M�M184V
variants in HIV-2-infected patients (9, 36, 44, 48, 49). We speculate that, relative to
3TC/FTC, MK-8591 might delay the appearance of M184V in both HIV-1- and
HIV-2-infected patients and, in the event of its emergence, retain substantial activity
against the mutant virus. MK-8591 might also be considered for second-line or
salvage therapy in patients harboring M184V variants. This could be particularly
important for HIV-2 treatment, since second-line options for HIV-2 patients are
restricted by both innate and emergent ARV resistance. Collectively, our findings
suggest that MK-8591 may have clinical activity in HIV-2 infection.

TABLE 1 Susceptibilities of HIV-1 and HIV-2 RT mutants to MK-8591

HIV clonea Genotypeb EC50 (nM)c No.d Fold changee

HIV-1NL4-3 Wild type 2.0 � 0.62 10
M184V 18 � 6.8 4 9

HIV-2ROD9 Wild type 0.42 � 0.12 14
K65R 0.17 � 0.03 3 0.4
Q151M 0.38 � 0.15 3 1
M184V 11 � 6.4 6 26
K65R�Q151M 0.20 � 0.06 3 0.5
K65R�M184V 8.0 � 2.7 3 19
Q151M�M184V 5.9 � 3.6 5 14
K65R�Q151M�M184V 6.2 � 2.0 3 15
K65R�K70R�Q151M�M184V 7.0 � 2.5 3 17
K65R�Y115F�Q151M�M184V 5.3 � 3.3 5 13

HIV-2ROD9-4.7a K65R�N69S�V111I�Q151M�M184V 5.4 � 0.7 3 13
aViruses produced from full-length plasmids pNL4-3, pROD9, and patient-derived clone pROD9-4.7a.
bAmino acid changes listed for HIV-1NL4-3 and HIV-2ROD9 were engineered by site-directed mutagenesis.
Changes listed for HIV-2ROD9-4.7a were encoded by a pol gene segment that was PCR amplified from an
HIV-2-infected patient (32).

cEC50, 50% effective concentrations measured in the MAGIC-5A single-cycle assay. Values shown in bold are
significantly different from the corresponding wild-type value (P � 0.05; analysis of variance of log10-
transformed EC50s with Sidak’s posttest).

dNumber of independent dose-response assays performed for each strain.
eEC50 for the mutant divided by the EC50 for the corresponding wild-type clone (wild-type HIV-2ROD9 for the
patient-derived strain).
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