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Abstract

Time resolved phase-contrast magnetic resonance imaging 4D-PCMR (also called 4D Flow MRI) 

data while capable of non-invasively measuring blood velocities, can be affected by acquisition 

noise, flow artifacts, and resolution limits. In this paper, we present a novel method for merging 

4D Flow MRI with computational fluid dynamics (CFD) to address these limitations and to 

reconstruct de-noised, divergence-free high-resolution flow-fields. Proper orthogonal 

decomposition (POD) is used to construct the orthonormal basis of the local sampling of the space 

of all possible solutions to the flow equations both at the low-resolution level of the 4D Flow MRI 

grid and the high-level resolution of the CFD mesh. Low-resolution, de-noised flow is obtained by 

projecting in-vivo 4D Flow MRI data onto the low-resolution basis vectors. Ridge regression is 

then used to reconstruct high-resolution de-noised divergence-free solution. The effects of 4D 

Flow MRI grid resolution, and noise levels on the resulting velocity fields are further investigated. 

A numerical phantom of the flow through a cerebral aneurysm was used to compare the results 

obtained using the POD method with those obtained with the state-of-the-art de-noising methods. 

At the 4D Flow MRI grid resolution, the POD method was shown to preserve the small flow 

structures better than the other methods, while eliminating noise. Furthermore, the method was 

shown to successfully reconstruct details at the CFD mesh resolution not discernible at the 4D 

Flow MRI grid resolution. This method will improve the accuracy of the clinically relevant flow-

derived parameters, such as pressure gradients and wall shear stresses, computed from in-vivo 4D 

Flow MRI data.
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1. Introduction

Hemodynamic forces play an important role in the initiation and progression of 

cardiovascular diseases (Ku et al., 1985). Quantification of the blood flow and associated 

bio-markers such as wall shear stress (WSS) and pressure gradients (Stalder et al., 2008; 

Ebbers et al., 2002; Donati et al., 2015; Harloff et al., 2010) can help clinicians in diagnosis 

and treatment of various vascular pathologies by indicating adverse hemodynamic 

conditions that are likely to cause disease progression. There are two main techniques to 

quantify these forces. The first is through model-independent in-vivo time resolved phase-

contrast magnetic resonance imaging (4D-PCMR/4D Flow MRI) scans(Nayak et al., 2015; 

Steinman and Taylor, 2005; Pelc et al., 1991). The second is through patient specific 

Computational Fluid Dynamics (CFD) modeling under certain assumptions on boundary 

conditions and flow models (e.g. laminar, turbulent, Newtonian, non-Newtonian) (Johnston 

et al., 2004; Ku, 1997; Shahcheraghi et al., 2002; Rayz et al., 2008; Boussel et al., 2009; Vali 

et al., 2017).

CFD has been used to model flow in various vascular structures including the aorta, 

abdominal and cerebral aneurysms (Boussel et al., 2009) and carotid bifurcations (Milner et 

al., 1998). This method essentially solves the incompressible Navier-Stokes equation 

(Ferziger and Perić, 2002) on the vascular geometry obtained from anatomical magnetic 

resonance (MR)/computed tomography (CT) scans and boundary conditions (inlet/outlet 

flow velocities) that are typically based on two dimensional in-vivo PCMR 

measurements(Rayz et al., 2008; Wake et al., 2009; Karmonik et al., 2008). While the 

method itself provides the ability to resolve flows and associated secondary parameters at 

arbitrarily fine spatial and temporal resolutions (at the cost of increasing computational 

effort), the boundary conditions can greatly affect the accuracy (Milner et al., 1998; Moyle 

et al., 2006; Moore et al., 1999) and can potentially generate flows that are significantly 

different from reality.

Recently, 4D Flow MRI imaging has made it possible to non-invasively estimate in-vivo 
hemodynamic velocity profiles. Velocities are encoded in the phase of the acquired MR 

signal through use of special sequences (Johnson and Markl, 2010; Markl et al., 2003). 

However there are serious limitations in both spatial and temporal resolution of the signals 

(Harloff et al., 2010). Besides the resolution issues, data is also corrupted by noise-like 

phase error introduced to the system. These noise-like errors can be caused by various 

elements such as body noise and acquisition instrument imperfection which may be 

amplified by high velocity encodings (VENCs). The high VENCs are necessitated to avoid 

aliasing in high dynamic range data. Furthermore, sparse sampling and reconstruction 

techniques such as k-t GRAPPA (Huang et al., 2005), k-t BLAST, k-t SENSE (Tsao et al., 

2003), k-t PCA(Pedersen et al., 2009), k-t SPARSE (Lustig et al., 2006), and k-t 

SPIRit(Lustig and Pauly, 2010) that are used for reducing sampling time further reduce 

signal-to-noise ratio. Moreover, artifacts may be introduced in case of nonuniform sampling.

The raw data obtained is not useful for computing clinically relevant flow descriptors such 

as wall shear stresses and pressure gradients which depend on spatial derivatives of the 
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velocity field (derivatives amplify high frequency noise in a signal). While a low pass filter 

may be used to reduce high frequency noise, it will also blur image features. There are two 

main approaches that have been used to de-noise the raw 4D Flow MRI data. One set of 

techniques use a variational approach to minimize an objective function given by:

(1)

where f* is the de-noised field and y is the noisy raw data (in this case 4D Flow MRI 

measurements). The first term penalizes deviation from the observation y. The regularization 

term ℛ(·) enforces physics of the flow such as divergence-free and/or curl-free conditions. 

Variants of Total variation (TV) regularization is used to solve the optimization 

problem(Tafti et al., 2011; Bostan et al., 2015a). The second set of techniques use 

projections on to various basis functions such as divergence-free wavelets(Ong et al., 2015; 

Deriaz and Perrier, 2006; Bostan et al., 2015b), divergence-free radial basis functions (Busch 

et al., 2013), and divergence-free vector fields using finite difference methods (Song et al., 

1993). While these methods account for the physics of the flow through the divergence free 

constraint (mass balance of incompressible fluid flow), they do not account for the 

momentum balance. Our preliminary experiments have shown that this limitation can indeed 

distort/smear the velocity profile during reconstruction, especially in cases of complex 

recirculating flow patterns that occur in intricate blood vessel structures in pathologies such 

as intra-cranial aneurysms. Furthermore, the spatial and temporal resolutions of the results 

are restricted to the acquisition resolution of 4D Flow MRI. For small blood vessel 

formations (for example, intra-cranial aneurysms), this resolution is inadequate for any sort 

of analysis.

Recently Rispoli et al. (Rispoli et al., 2015) developed a technique to merge CFD and 4D 

Flow MRI based on the popular semi-implicit method for pressure-linked equations revised 

(SIMPLER) algorithm (Jang et al., 1986) by inserting a regularization step (Tikhonov et al., 

2013) that blended patient-specific CFD simulations and 4D Flow MRI observations. 

Boundary conditions for the CFD simulation were obtained directly from the 4D Flow MRI 

data. Since the work does not include tests on simulated data (where the ground truth is 

known) and therefore, it is unclear if the method can recover the actual flow-field from the 

noisy 4D Flow MRI data.

In this paper we present a set of techniques that can recover the actual flow-field up to a user 

specified spatial resolution (CFD mesh resolution) from noisy and low resolution 4D Flow 

MRI observations. Our method uses a combination of Proper Orthogonal Decomposition 

(POD)(Kerschen et al., 2005; Kosambi, 1943; Karhunen, 1947; Loeve, 1948) and ridge 

regression (Fang et al., 2013) to merge patient-specific CFD and 4D Flow MRI. Benchmark 

tests using a numerical flow phantom against state-of-the-art techniques indicates that our 

method is able to recover fine details in complex recirculating flows with error metrics that 

are substantially better.
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2. Methods

The flowchart of our algorithm is shown in Fig.1. The basic idea is to characterize the 

solution space of the Navier-Stokes equation in the proximity of the actual flow in terms of a 

POD basis followed by projection of the raw noisy 4D Flow MRI data on to this basis. This 

obtains the noise and divergence-free flow estimate at the 4D Flow MRI grid resolution. 

This is followed by a clever process of up-sampling based on a dictionary learning process 

(implemented using ridge regression) to obtain the flow-field at the spatial resolution of the 

CFD mesh.

2.1. Constructing Boundary Conditions

We begin by constructing the boundary conditions (BCs) (inlet/outlet flow rate) from the 

actual 4D Flow MRI data. As shown in Fig. 1, the BC is estimated by placing cutting planes 

normal to the center line on the geometry at a number of locations (5) at the proximal (inlet) 

and distal (outlet) locations. The mean BC is found by averaging the results computed at 

various sections. The sampling rate/time resolution of 4D Flow MRI is insufficient for 

numerical stability of the CFD algorithm. We therefore use cubic interpolation and re-

sampling to generate the BC waveform at a time resolution that enables numerical stability 

for the CFD solver. The sample BC standard deviation is determined and an ensemble of 

BCs is computed by perturbing the mean BC. The actual BC, by definition, is somewhere in 

the space given by the mean BC and the BC standard deviation. The ensemble BCs are used 

along with the vascular geometry to compute an ensemble of solutions. Time snapshots of 

the solutions are collected at regular simulation intervals (≈10 per 4D Flow MRI time step). 

These snapshots are then used to compute the proper orthogonal decomposition.

2.2. Proper Orthogonal Decomposition (POD)

POD is a method to find a set of ordered orthonormal basis vectors in a subspace where a 

random vector in the sample space can be expressed optimally using a linear combination of 

the selected first m basis vectors. In our case, the POD basis vectors span local space of all 

possible solutions near our ensemble of solutions. We generate our POD basis functions 

using the method of snapshots (Sirovich, 1987). A matrix of solutions from the ensemble of 

solutions is organized as:

(2)

where  is the sequence of velocity profiles by time of the kth ensemble 

solution, NH is the dimension of the 3-D velocity vector in CFD mesh resolution, ND is the 

number of time steps for which data is collected to generate the POD basis vectors, and NQ 

is the number of ensemble solutions. Therefore, the total number of snapshots in [ZH] is 

given by Ns = ND × NQ. Consequently, . The solutions are also down-

sampled to the 4D Flow MRI grid as:

Bakhshinejad et al. Page 4

J Biomech. Author manuscript; available in PMC 2018 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(3)

where  is the down-sampling matrix (in the current case, S computes the 

average of mesh finite volume center (mfvc) velocities in a 4D Flow MRI grid voxel as 

suggested in (Cibis et al., 2015)).

We next proceed to compute the singular value decomposition (SVD) (Golub and Reinsch, 

1970) of the matrices [ZH], [ZL] as:

(4)

The matrices ,  consist of left eigenvectors, the matrix 

 is diagonal and contains the singular values and the matrices [VH], [VL] 

contain the right eigenvectors. The matrices [UH], [UL] form the basis that spans the space 

of all possible solutions in the CFD mesh space and the down-sampled 4D Flow MRI grid 

space respectively.

2.3. Noise Free Reconstruction in 4D Flow MRI Grid Space

The 4D Flow MRI signal is the summation of the actual velocity and noise. While the actual 

velocity signal obeys the flow physics, i.e., satisfies momentum and mass conservation 

equations, the noise does not. Therefore, the actual velocity lies in the space of solutions 

spanned by the basis vectors [UL] and the noise signal is orthogonal to this space. Therefore, 

if we project the 4D Flow MRI data onto the basis vectors [UL], we should be able to 

recover the actual velocity. The projection is given by:

(5)

where [YL] is the 4D Flow MRI raw data. Finally, the estimate of the actual flow in the 4D 

Flow MRI grid is obtained as:

(8)

2.4. Noise Free Reconstruction at CFD Mesh Resolution Using Dictionary-based Ridge 
Regression

4D Flow MRI grid resolution is typically not high enough to capture the fine details of the 

flow-field. On the other hand, CFD can resolve these details to an arbitrarily fine level 

Bakhshinejad et al. Page 5

J Biomech. Author manuscript; available in PMC 2018 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(depending on the availability of computing power, random access memory (RAM) and 

time). Therefore, the problem here is to find if the low resolution flow estimate can be up-

sampled to the high resolution CFD mesh.

In our work, we use a dictionary learning process implemented using ridge regression for 

projection coefficient mapping between the low resolution space of the 4D Flow MRI grid 

and high resolution space of the CFD mesh. The estimate of flow velocity at the CFD mesh 

resolution is given by

(7)

To find [αH] (CFD mesh space projection coefficients), we use the relation

(8)

where  is the mapping matrix. To obtain [M] we use ridge regression that 

mimimizes an objective function given by (Leyuan Fang et al., 2013; Jia et al., 2013):

(9)

where

(10)

The equations above compute the projections of the CFD mesh resolution ensemble solution 

snapshots and their respective down-sampled 4D Flow MRI grid resolution solution 

snapshots on the basis vectors. β is a regularization parameter which minimizes the effects 

of outliers in the data. Basically, with ridge regression, we force the matrix [M] to map 

known projection coefficients obtained from ensemble solutions in a least squared sense. 

The optimal solution is given by

(11)

where I is an identity matrix of size Ns × Ns.
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Empirically, we have observed that choice of parameter β can impact the quality of the up-

sampled solution we obtain. When is β small (10−2), up-sampled data picks up certain 

amount of numerical oscillations. When is β large (100) it tends to smooth out sharp 

features. A method to optimally determine β automatically is a problem that we will 

research in the near future.

2.4.1. Down-sampling CFD Results to 4D Flow MRI Grid Resolution—Down-

sampling is done to compute values of the field on a regular grid from the unstructured CFD 

mesh. Using spatial binning, we assigned the mesh finite volume centers (mfvc) of the CFD 

mesh to voxels of the 4D Flow MRI grid. The velocity at the center of every voxel was then 

computed as the mean of all velocities of mfvc that fall within the 4D Flow MRI grid.

2.5. Numerical Phantom for Algorithm Testing

Similar to the testing methods in Ong et al. (Ong et al., 2015), we created a numerical 

phantom to test our algorithm. Realistic pulsatile boundary conditions along with an actual 

intra-cranial aneurysm geometry was used for pure CFD simulation of blood flow. The 

resulting velocity field was designated as the simulated ground truth. This velocity field was 

down-sampled to the 4D Flow MRI grid. 4D Flow MRI acquisition process was simulated 

by adding noise in k space to the down-sampled velocity-field (Johnson and Markl, 2010). 

The resulting noisy, time resolved data set was the synthetic 4D Flow MRI data set 

(numerical phantom) that was used to test the POD algorithm and benchmark its 

performance against various other de-noising methods in literature. Fig. 2 illustrates the 

overall process for generating the numerical phantom.

2.5.1. Patient Specific Vascular Geometry and CFD Mesh—High-resolution 

contrast enhanced MR angiography (CE-MRA) images were used to construct patient-

specific vascular geometry. The patient was imaged at the Vascular Imaging Research Center 

(VIRC), University of California, San Francisco (UCSF). The voxel size in the CE-MRA 

images was 0.7mm × 0.7mm × 0.7 mm and the contrast ratio of the luminal to background 

intensity was in the range of 8 to 10. MIMICSTM (Mimics 17.0, Materialise Inc, Leuven, 

Belgium) was used to create a three-dimensional iso-surface corresponding to the luminal 

boundaries. A threshold intensity value was adjusted to ensure that the segmented iso-

surface coincides with the luminal boundaries. The geometry obtained from the 

segmentation process included the aneurysm with its proximal and distal vessels. The iso-

surface was then imported into a pre-processing software ANSYS ICEM CFD (ANSYS, Inc, 

Canonsburg, PA), where the computational domain and mesh were created. The 

computational mesh has roughly 0.6 Million finite volume cells.

2.5.2. Pulsatile Boundary Flow Conditions for the Numerical Phantom—To 

mimic in-vivo conditions, we sampled an in-vivo 4D Flow MRI data set as detailed in 

section 2.1 over the entire cardiac cycle to generate the pulsatile boundary condition wave 

form. The mean BC waveform thus obtained was used to generate the simulated ground 

truth in the CFD mesh resolution.
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2.5.3. CFD Simulation—The open source software OpenFoam(Weller et al., 1998) was 

used to compute the CFD solutions. We used the time varying pressure implicit with 

splitting of operator (PISO) to integrate the discretized Navier Stokes equation. Reynold's 

number calculated at the inlet was estimated to be ≈ 400. At this value of Reynold's number, 

the flow can be assumed to be laminar (Sigovan et al., 2013). Dynamic viscosity of blood 

was set to 3.5 × 10−3Pa. Flow was assumed to be Newtonian with rigid aneurysm geometry. 

The time step for the PISO solver was set to 1.67ms. We are limited by the numerical 

stability of solver algorithm.

2.6. Error Analysis—Error metrics used for comparison between our technique and finite 

difference method (FDM), divergence-free radial basis functions (RBF), divergence-free 

wavelets with SureShrink and median absolute deviation (MAD) with and without cycle 

spinning (DFW-sm, DFWsms) were the same as those in (Ong et al., 2015). These include 

the velocity normalized root mean squared error (vNRMSE), the speed normalized root 

mean squared error (sNRMSE), and direction error (DE). For completeness, we include 

these herewith:

(12)

(13)

(14)

(15)

where N is the number of voxels within the segmented data, vi,ph is the numerical phanthom 

velocity in the ith voxel of the segmented data and vi,recon is the reconstructed velocity.

2.7. In-vivo 4D Flow MRI Data

4D Flow MRI flow imaging was performed on an aneurysm patient using a 3T MRI scanner 

(Siemens, Skyra). The number of 4D Flow MRI slices was 144 with in-plane matrix size of 

194×144 pixels (voxel size of 1.25mm × 1.25mm × 1.33mm). The sequence parameters used 

for the MRI were as follows: TR/TE = 5.2/3.78 ms, flip angle = 8°, and temporal resolution 
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= 83.28 ms. The VENC was set to 100cm/s. 4D Flow MRI data was imported in DICOM 

format to a pre-processing in-house software where the velocity data was extracted and 

saved for post-processing.

3. Results

3.1. Tests with Numerical Phantom

The methods developed in this work were compared to existing methods such as finite 

difference method (FDM), radial basis functions (RBF), and divergence free wavelets 

(DFW) using the numerical phantom described previously. The support of RBF basis 

functions was set to 7×7×7 experimentally. The number of iterations for the LSQR solver 

was set to be 20. The kernel size for FDM is 3×3×3 and is fixed. The minimum size for the 

wavelet scaling sub-band was set to 10 for both DFW-sm (with automated selection of sub-

band dependent threshold using Sure-Shrink (SS) and median absolute deviation(MAD)) 

and DFW-sms (with SS, MAD, and partial cycle spinning). For DFW-sms, the number of 

spins was set to 4 which is equivalent to 16 random shifts(Ong et al., 2015). As in the case 

of RBF, the parameters for DFW-sm, and DFW-sms were adjusted to achieve the best error 

performance for the dataset.

3.1.1. Reconstruction of the Velocity Flow-Field in CFD Mesh Resolution—Fig. 

3 illustrates the results of the POD reconstruction. Fig. 3(a) shows the magnitude of flow 

velocity of the simulated ground truth in CFD mesh resolution. Fig. 3(b) illustrates the 

ground truth down-sampled to the 4D Flow MRI grid resolution. As can be seen, fine 

features in the CFD mesh resolution are distorted just by the act of down-sampling. 

Therefore, it is obvious that 4D Flow MRI cannot possibly resolve fine flow features. Fig. 

3(c) shows the simulated noisy 4D Flow MRI velocity magnitude after applying white noise 

in k space to the down-sampled ground truth. Fig. 3(d) shows the result of projecting this 

noisy data on to the POD basis in 4D Flow MRI grid resolution. Clearly, this result closely 

matches the velocity profile of the down-sampled simulated ground truth in Fig. 3(b). Fig. 

3(e) illustrates the reconstruction in CFD mesh resolution after applying the ridge regression 

algorithm to map coefficients. As can be seen, this reconstructed result is nearly identical to 

the simulated ground truth in Fig. 3(a). This shows that our algorithm is able to reconstruct 

high resolution velocity profiles from low resolution noisy 4D Flow MRI observations with 

remarkable accuracy. To the best of our knowledge no other technique is able to achieve this.

3.1.2. Comparison with State-of-the-art for De-noising in 4D Flow MRI Grid 
Resolution—Comparison tests were conducted with RBF, FDM, DFW-sm, and DFW-sms. 

Tests were run for two different noise levels (28.17dB PVNR corresponding to noise 

standard deviation of σ = 10%|vmax| and 13.2dB PVNR corresponding to noise standard 

deviation of σ = 50%|vmax|) at 4D Flow MRI grid resolution of 40 × 80 × 80 voxels. One 

additional test was run with noise standard deviation set to 50% with the 4D Flow MRI grid 

resolution at 21 × 51 × 25 voxels. This is the resolution of the in-vivo patient data 

acquisition. Each of these tests were run 20 times and the sample means and standard 

deviation of various error metrics were tabulated in Table 1.
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As can be seen from Fig.4, for 10% noise level and 4D Flow MRI grid resolution of 40 × 80 

× 80 voxels, for all methods, the visual quality is almost the same. The overall quantitative 

error metrics shown in Table 1 indicate that in order of performance, FDM performs the 

worst (it actually amplifies noise), DFW-sm is next, followed by RBF, DFW-sms, and POD. 

As can be seen, the second best technique DFW-sms has about 6.127×, 6.22×, and 66.86× 

the vNRMS, sNRMS, and DR error of POD. However, the performance degrades with 

higher noise. The error metrics in Table 1 indicate that by order of performance, FDM 

performs the worst, RBF is next, followed by DFW-sm, DFW-sms, and POD. In this case, 

the second best method DFW-sms has about 6.42×, 6.55×, and 42.135× the vNRMS, 

sNRMS, and DR error of POD.

Fig. 5 illustrates the results of tests when noise was set to 50% with reduced 4D Flow MRI 

grid resolution of 21×51×25 voxels (resolution of in-vivo data). As can be seen, previous de-

noising techniques have significant distortion in velocity patterns. POD reconstruction works 

much better as shown in Fig.5(e).

Fig. 6 illustrates the velocity magnitudes at 2 1-D cross sections as shown in Fig. 6(b). 

Results for 10% noise level indicate all previous methods work reasonably well (Fig. 6 (c),

(d)). POD seems to have the least distortion. For the 50% noise level, DFW-sms and DFW-

sm seem to have surprisingly large amount of distortion as indicated in Fig.6(f). POD on the 

other hand is able to recover the velocity profile significantly better (Fig.6(g)).

3.1.3. Sensitivity Analysis—We varied the number of ensemble solutions NQ used to 

generate the POD basis, to test the sensitivity of the reconstructed results to NQ. Fig. 7 (a) 

shows the velocity magnitude at a particular 2-D section of the down-sampled ground truth. 

Fig. 7(b) - (e) shows the reconstructed results by using POD basis obtained from NQ = 6, 5, 

4, 3, respectively. In each of these trials, we made sure that one of the solutions used to 

generate the POD basis was generated using the mean boundary condition obtained from 

sampling the simulated noisy 4D Flow MRI data set. It can clearly be seen that magnitude 

plots are almost identical (within 4 × 10−3) to the ground truth. It appears that the results are 

relatively robust to change in NQ.

3.2. Tests on in-vivo Data

We also tested our algorithm on in-vivo data.(Fig. 8). In this case, the ground truth is not 

available. Fig. 8 (d), (e) show the results of our de-noising with reconstruction at CFD mesh 

resolution and streamlines respectively. We then compared our results against reconstruction 

using DFW (Fig. 9). As in (Ong et al., 2015), we performed streamline tests. Streamlines 

were constructed from the velocity data for the raw 4D Flow MRI data, reconstruction with 

DFW, and reconstruction with POD in 4D Flow MRI mesh resolution. We used the 

ParaView software to build streamlines from velocity data. Significant manual adjustment of 

parameters (threshold, sub band level etc.) with DFW had to be performed to generate 

results. DFM-sms failed to produce any coherent results. An emitter plane was place near 

the inlet and an analysis plane was placed near the outlet. Since this aneurysm has only one 

inlet and one outlet, it can be assumed that all streamlines released at the emitter should 

reach the analysis plane. In case of DFW, only 7.3 % of the streamlines reached the analysis 

Bakhshinejad et al. Page 10

J Biomech. Author manuscript; available in PMC 2018 June 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plane. For POD-based de-noising in 4D Flow MRI resolution, 87.8 % reached the analysis 

plane. For comparison, in case of the raw 4D Flow MRI data, only 1% reached the analysis 

plane. Clearly, the POD approach greatly improves streamline lengths.

4. Discussion

A new method based on proper orthogonal decomposition for reconstructing high resolution 

hemodynamic velocity profiles from low resolution noisy time resolved phase contrast 

magnetic resonance was developed. Furthermore, a novel technique based on ridge 

regression was developed for up-sampling of the results from the 4D Flow MRI grid to the 

unstructured high resolution CFD mesh. The performance of the proposed techniques was 

tested against existing techniques such as FDM, RBF, and DFW using a numerical phantom. 

Since our techniques use actual CFD simulation to generate basis vectors, unlike most of the 

previous methods, our solutions conform to both the momentum balance as well as mass 

balance parts of the Navier-Stokes equation. The ability to up-sample means that our 

technique can be used to potentially recover minute flow details that are not visible at the 

resolution of 4D Flow MRI acquisition. Alternatively, our technique can be used in 

situations where size of the blood vessels in question limits the resolution of the 4D Flow 

MRI acquisition.

In our work we have assumed laminar Newtonian flow model in the CFD simulation based 

on the Reynold's number. However, non-Newtonian flow models can easily be incorporated 

without any change in the basic process. Uncertainty in the viscosities and other parameters 

can be handled by process of sampling which will increase the number of CFD solutions 

used to generate the basis vectors.

Tuning of the parameters plays a significant role in the performance of the techniques used 

for de-noising of 4D Flow MRI data. While FDM has no parameters (it is based on a fixed 

3×3 kernel), RBF requires specification of radius r for its kernel and the max. number of 

iterations for its LSQR solver. For DFW-sm the user should specify the minimum size of 

wavelet scaling sub-bands. For DFW-sms, the number of cycle spins should also be 

specified. Our algorithm requires the specification of the parameter β in ridge regression. In 

the current work, it was chosen experimentally based on the quantitative measures when 

comparing with the simulated ground truth data.

Currently, a major limitation of our technique is computational complexity. Several CFD 

simulations (ensemble) have to be carried out to generate the POD basis. The high fidelity 

patient specific CFD mesh, in our tests, has approximately 600,000 nodes. On an AMD 

Phenom II X4 920 Processor computer with 16 GB of RAM in Ubuntu 14.04 LTS 

environment with OpenFOAM 3.0 without any multi-core modifications took around 10 

hours per simulation. We then used a parallel implementation on Google Cloud which 

brought down the total simulation time for 6 ensembles to 1hr. Currently, we use an explicit 

time solver and are limited by the numerical stability of the integrator. Using a fully implicit 

block coupled solver (Darwish and Moukalled, 2014) may significantly reduce the 

computation time. Furthermore, sensitivity analysis shows that the results do not change 

appreciably with the number of ensembles (Fig. 7). Based on this result, in our following 
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publication, we will test our technique with NQ = 1 on an intra-cranial aneurysm geometry 

with multiple inlets and outlets.

Finally, the proposed method has been tested on only a single intra-cranial aneurysm 

geometry. In the near future, we plan to run in-silico validation tests on multiple geometries. 

Also lacking is an in-vitro test where our method will be tested against a method such as 

particle image velocimetry (PIV) which has a much higher resolution as compared to 4D 

Flow MRI. We are working with our collaborators on building and testing an in-vitro model. 

The results will be presented in a subsequent paper.

5. Conclusion

A novel technique based on proper orthogonal decomposition and ridge regression for 

detailed reconstruction of hemodynamic velocity profiles at arbitrary levels of detail from 

low resolution noisy phase contrast magnetic resonance (4D Flow MRI) data has been 

developed. Benchmark tests indicated this technique performs better in de-noising and at the 

same time preserving details in the velocity profiles. Furthermore, our technique merges 

patient-specific CFD simulation with 4D Flow MRI observations and is able to recover the 

underlying velocity profiles at arbitrarily higher spatial resolutions. Therefore, this technique 

may improve the ability to accurately derive clinically relevant secondary parameters such as 

wall shear stresses and pressure gradients at a much higher level of detail and confidence 

than was previously possible.
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Figure 1. Flow-chart of the hemodynamic velocity reconstruction process
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Figure 2. Creating a realistic numerical phantom for algorithm testing and comparison
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Figure 3. 
Reconstruction of velocity profile using POD. A random two dimensional cross-section was 

chosen for visualization purposes. The units of the color bar are in m/s. Each sub-figure 

shows the velocity magnitude map of the selected cross-section. (a) Simulated ground truth 

in CFD mesh resolution sampled at a 2-D cross-section. (b) Down-sampled simulated 

ground truth in 4D Flow MRI grid. (c) Simulated noisy 4D Flow MRI/Numerical Phantom 

after adding noise in k space. (d) De-noised velocity profile in 4D Flow MRI grid resolution. 

(e) Reconstructed velocity profile in CFD mesh resolution. Notice that fine details missing 

in the reconstructed velocity profile in the 4D Flow MRI grid resolution are revealed in the 

reconstructed velocity profile in CFD mesh resolution.
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Figure 4. 
De-noising comparison on simulated data. The units of the color bar are in m/s. In this test, 

the noise standard deviation was set to be σ = 10%|Vmax |. The 4D Flow MRI grid 

resolution was set to 40 × 80 × 80 voxels. (a) 2-D section location for sampling velocity. (b) 

Down-sampled ground truth at the 2-D section. (c) Simulated noisy 4D Flow MRI. (d) De-

noising using FDM. (e) De-noising using RBF. (f) De-noising using DFM-sm. (g) De-

noising using DFM-sms. (h) De-noising using POD. All methods visually appear to more or 

less preserve details in the velocity profile.
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Figure 5. 
De-noising comparison on simulated data with high noise and low 4D Flow MRI grid 

resolution. The units of the color bar are in m/s. In this test, the noise standard deviation was 

set to be σ = 50%|Vmax |. The 4D Flow MRI grid resolution was set to 21 × 51 × 25 voxels 

which is the same for in-vivo 4D Flow MRI. (a) 2D section at which velocity magnitudes 

were sampled. (b) Down-sampled ground truth. (c) Simulated noisy 4D Flow MRI. (d) De-

noising using FDM. (e) De-noising using RBF. (f) De-noising using DFW-sm. (g) 

Reconstruction using DFW-sms. (h) De-noising using POD. Clearly, as can be seen in the 

figure, POD method is able to preserve details in the flow much better than all other 

methods.
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Figure 6. 
Comparison of velocity profiles along 1-D sections. (a) Location of sampled 1-D sections. 

(b), (c) Velocity profile comparison when noise standard deviation was set to be σ = 10%|

Vmax | at 1-D sections ‘1’ and ‘2’ respectively with resolution of 40 × 80 × 80 voxels. (d),(e) 

Velocity profile comparison when noise standard deviation was set to be σ = 50%|Vmax | at 

1-D sections ‘1’ and ‘2’ respectively with resolution of 40 × 80 × 80 voxels. And (f),(g) 

Velocity profile comparison when noise standard deviation was set to be σ = 50%|Vmax | at 

1-D sections ‘1’ and ‘2’ respectively with resolution of 21 × 51 × 25 voxels. Clearly, POD 

performs much better than all other methods. There is significant degradation in the results 

of other methods when noise level is increased.
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Figure 7. 
Sensitivity Analysis. The units of the color bar are in m/s. Here we check the sensitivity of 

the reconstructed results to changing NQ, the number of ensemble solutions used to generate 

solutions to construct the POD basis.Image (a) is the simulated down-sampled ground truth, 

(b)-(e) are results from setting NQ = 6, 5, 4, 3 respectively. In each trial, the mean flow 

(boundary condition) computed from sampling the simulated noise 4D Flow MRI data is 

part of the ensemble used to compute the POD basis.
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Figure 8. 
De-noising and reconstruction from in-vivo data. The units of the color bar are in m/s. (a) 2-

D section at which results are displayed. (b) Raw in-vivo 4D Flow MRI data. (c) POD-based 

de-noising in 4D Flow MRI grid resolution. (d) POD-based reconstruction using ridge 

regression in CFD mesh resolution. (e) Streamlines of CFD mesh resolution reconstruction.
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Figure 9. 
Comparison of de-noising on in-vivo 4D Flow MRI data using streamlines. (a) Location of 

emitter and analysis planes. (b) Unprocessed in-vivo 4D Flow MRI streamlines. (c) DFW 

streamlines (with manual optimization of parameters for the algorithm). (d) POD 

streamlines.
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