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Abstract

Librarians at the National Library of Medicine tag each biomedical abstract to be indexed by their 

Pubmed information system with terms from the Medical Subject Headings (MeSH) terminology. 

The MeSH terminology has over 26,000 terms and indexers look at each article’s full text to 

assign a set of most suitable terms for indexing it. Several recent automated attempts focused on 

using the article title and abstract text to identify MeSH terms for the corresponding article. Most 

of these approaches used supervised machine learning techniques that use already indexed articles 

and the corresponding MeSH terms. In this paper, we present a novel unsupervised approach using 

named entity recognition, relationship extraction, and output label co-occurrence frequencies of 

MeSH term pairs from the existing set of 22 million articles already indexed with MeSH terms by 

librarians at NLM. The main goal of our study is to gauge the potential of output label co-

occurrence statistics and relationships extracted from free text in unsupervised indexing 

approaches. Especially, in biomedical domains, output label co-occurrences are generally easier to 

obtain than training data involving document and label set pairs owing to the sensitive nature of 

textual documents containing protected health information. Our methods achieve a micro F-score 

that is comparable to those obtained using supervised machine learning techniques with training 

data consisting of document label set pairs. Baseline comparisons reveal strong prospects for 

further research in exploiting label co-occurrences and relationships extracted from free text in 

recommending terms for indexing biomedical articles.

1 Introduction

Indexing biomedical articles is an important task that has a significant impact on how 

researchers search and retrieve relevant information. This is especially essential given the 

exponential growth of biomedical articles indexed by PubMed®, the main search system 

developed by the National Center for Biotechnology Information (NCBI). PubMed lets users 

search over 22 million biomedical citations available in the MEDLINE bibliographic 

database curated by the National Library of Medicine (NLM) from over 5000 leading 

biomedical journals in the world. To keep up with the explosion of information on various 
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topics, users depend on search tasks involving Medical Subject Headings (MeSH®) that are 

assigned to each biomedical article. MeSH is a controlled hierarchical vocabulary of medical 

subjects created by the NLM. Once articles are indexed with MeSH terms, users can quickly 

search for articles that pertain to a specific subject of interest instead of relying solely on key 

words based searches.

Since MeSH terms are assigned by librarians who look at the full text of an article, they 

capture the semantic content of an article that cannot easily be captured by key word or 

phrase searches. Thus assigning MeSH terms to articles is a routine task for the indexing 

staff at NLM. This is empirically shown to be a complex task with 48% consistency because 

it heavily relies on indexers’ understanding of the article and their familiarity with the MeSH 

vocabulary [1]. As such, the manual indexing task takes a significant amount of time leading 

to delays in the availability of indexed articles. It is is observed that it takes about 90 days to 

complete 75% of the citation assignment for new articles [2]. Moreover, manual indexing is 

also a fiscally expensive initiative [3]. Due to these reasons, there have been many recent 

efforts to come up with automatic ways of assigning MeSH terms for indexing biomedical 

articles. However, automated efforts (including ours) mostly focused on predicting MeSH 

terms for indexing based solely on the abstract and title text of the articles. This is because 

most full text articles are only available based on paid licenses not subscribed by many 

researchers.

Many efforts in MeSH term prediction generally rely on two different methods. The first 

method is the k-nearest neighbor (k-NN) approach where k articles that are already tagged 

with MeSH terms and whose content is found to be “close” to the new abstract to be indexed 

are obtained. The MeSH terms from these k articles form a set of candidate terms for the 

new abstract. A second method is based on applying machine learning algorithms to learn 

binary classifiers for each MeSH term. A new candidate abstract would then be put through 

all the classifiers and the corresponding MeSH terms of classifiers that return a positive 

response are chosen as the indexed terms for the abstract. We note that both k-NN and 

machine learning approaches need large sets of abstracts and the corresponding MeSH terms 

to make predictions for new abstracts. In this paper, we propose an unsupervised ensemble 

approach to extract MeSH terms and test it on two gold standard datasets. Our approach is 

based on named entity recognition (NER), relationship extraction, knowledge-based graph 

mining, and output label co-occurrence statistics. Prior attempts have used NER and graph 

mining approaches as part of their supervised approaches and we believe this is the first time 

relationship extraction and output label co-occurrences are applied for MeSH term 

extraction. Furthermore, our approach is purely unsupervised in that we do not use a prior 

set of already tagged MEDLINE citations with their corresponding MeSH terms.

Before we continue, we would like to emphasize that automatic indexing attempts, including 

our current attempt, are generally not intended to replace trained indexers but are mainly 

motivated to expedite the indexing process and increase the productivity of the indexing 

initiatives at the NLM. Hence in these cases, recall might be more important than precision 

although an acceptable trade-off is necessary. In the rest of the paper, we first discuss related 

work and the context of our paper in Section 2. We describe our dataset and methods in 
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Section 3. We provide an overview of the evaluation measures and present results with 

discussion in Section 4.

2 Related Work

NLM initiated efforts in MeSH term extraction with their Medical Text Indexer (MTI) 

program that uses a combination of k-NN based approach and NER based approaches with 

other unsupervised clustering and ranking heuristics in a pipeline [4]. MTI recommends 

MeSH terms for NLM indexers to assist in their efforts to expedite the indexing process1. 

Another recent approach by Huang et al. [2] uses k-NN approach to obtain MeSH terms 

from a set of k already tagged abstracts and use the learning to rank approach to carefully 

rank the MeSH terms. They use two different gold standard datasets one with 200 abstracts 

and the other with 1000 abstracts. They achieve an F-score of 0.5 and recall 0.7 on the 

smaller dataset compared to MTI’s F-score of 0.4 and recall 0.57. Several other attempts 

have tried different machine learning approaches with novel feature selection [5] and 

training data sample selection [6] techniques. A recent effort by Jimeno-Yepes et al. [7] uses 

a large dataset and uses meta-learning to train custom binary classifiers for each label and 

index the best performing model for each label for applying on new abstracts; we request the 

reader to refer to their work for a recent review of machine learning used for MeSH term 

assignment. As mentioned in Section 1, most current approaches rely on large amounts of 

training data. We take a purely unsupervised approach under the assumption that we have 

access to output label2 co-occurrence frequencies where training documents may not be 

available.

3 Our Approach

We use two different datasets, a smaller 200 abstract dataset and a larger 1000 abstract 

dataset used by Huang et al. [2]; besides results from their approach, they also report on the 

results produced by NLM’s MTI system. We chose these datasets and compare our results 

with their outcomes as they represent the k-NN and machine learning approaches typically 

used by most researchers to address MeSH term extraction. To extract MeSH terms, we used 

a combination of three methods: NER, knowledge-based graph mining, and output label co-

occurrence statistics to extract candidate MeSH terms. We finally use semantic predications 

to rank the candidates and also use the traditional Borda rank aggregation method to rank 

various ranked lists of the candidate set. In this section we elaborate on the specifics of each 

of these components of our approach. Before we proceed, we first discuss the Unified 

Medical Language System (UMLS), a biomedical knowledge base used in NER, graph 

mining methods, and extraction of semantic predications.

3.1 Unified Medical Language System (UMLS)

The UMLS3 is a large domain expert driven aggregation of over 160 biomedical 

terminologies and standards. It functions as a comprehensive knowledge base and facilitates 

1For the full architecture of MTI’s processing flow, please see: http://skr.nlm.nih.gov/resource/
Medical_Text_Indexer_Processing_Flow.pdf
2Here the ‘labels’ are MeSH terms; we use ‘label’ to conform to the notion of classes in multi-label classification problems.
3UMLS Reference Manual: http://www.ncbi.nlm.nih.gov/books/NBK9676/
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interoperability between information systems that deal with biomedical terms. It has has 

three main components: Metathesaurus, Semantic Network, and SPECIALIST lexicon. The 

Metathesaurus has terms and codes, henceforth called concepts, from different 

terminologies. Biomedical terms from different vocabularies that are deemed synonymous 

by domain experts are mapped to the same Concept Unique Identifier (CUI) in the 

Metathesaurus. The semantic network acts as a typing system that is organized as a 

hierarchy with 133 semantic types such as disease or syndrome, pharmacologic substance, 
or diagnostic procedure. It also captures 54 important relations (called semantic relations) 

between biomedical entities in the form of a relation hierarchy with relations such as treats, 
causes, and indicates. The Metathesaurus currently has about 2.8 million concepts with more 

than 12 million relationships connecting these concepts. The relationships take the form C1 

→ < rel − type > → C2 where C1 and C2 are concepts in the UMLS and < rel − type > is a 

semantic relation such as treats, causes, or interacts. The semantic interpretation of these 

relationships (also called triples) is that the C1 is related to C2 via the relation < rel−type >. 

The SPECIALIST lexicon is useful for lexical processing and variant generation of different 

biomedical terms.

3.2 Named Entity Recognition: MetaMap

NER is a well known application of natural language processing (NLP) techniques where 

different entities of interest such as people, locations, and institutions are automatically 

recognized from mentions in free text (see [8] for a survey). Named entity recognition in 

biomedical text is difficult because linguistic features that are normally useful (e.g., upper 

case first letter, prepositions before an entity) in identifying generic named entities are not 

useful when identifying biomedical named entities, several of which are not proper nouns. 

Hence, NER systems in biomedicine rely on expert curated lexicons and thesauri. In this 

work, we use MetaMap [9], a biomedical NER system developed by researchers at the 

National Library of Medicine (NLM). So as the first step in identifying MeSH terms for a 

given abstract, we extract non-negated biomedical named entities by running MetaMap on 

the abstract text using MetaMap’s ability to identify negated terms. Once we obtain non-

negated UMLS concepts using MetaMap from the abstract text, we convert these concepts to 

MeSH terms, when possible. Specifically, we first note that MeSH is one of the over 160 

source vocabularies integrated into the UMLS Metathesaurus. As such, concepts in MeSH 

also have a concept unique identifier (CUI) in the Metathesaurus. As part of its output, for 

each concept, MetaMap also gives the source vocabulary. The concepts from MetaMap with 

source vocabulary MeSH finally become the set of extracted ‘candidate’ terms for each 

abstract. However, these MeSH term sets may not be complete because of missing 

relationships between UMLS concepts. That is, in our experience, although MetaMap 

identifies a medical subject heading, it might not always map it to a CUI associated with a 

MeSH term; it might map it to some other terminology different from MeSH, in which case 

we miss a potential MeSH term because the UMLS mapping is incomplete. We deal with 

this problem and explore a graph based approach in the next section. We also note that just 

because a MeSH term appears in the abstract, it may not be the case that the abstract should 

be tagged with that term (more on this later).
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3.3 UMLS Knowledge-Based Graph Mining

As discussed in Section 3.2, the NER approach might result in poor recall because of lack of 

completeness in capturing synonymy in the UMLS. However, using the UMLS graph with 

CUIs as nodes and the inter-concept relationships connected by relationship types parent and 

rel_broad as edges (high level relationship types in UMLS), we can map a original CUI 

without an associated MeSH term to a CUI with an associated MeSH term. The parent 
relationship means that concept C1 has C2 as a parent. The rel_broad type means that C1 

represents a broader concept than C2. We adapt the approach originally proposed by 

Bodenreider et al. [10] for this purpose. The mapping algorithm starts with a CUI c output 

by MetaMap that is not associated with an MeSH term and tries to map it to an MeSH term 

as follows.

1. Recursively, construct a subgraph Gc (of the UMLS graph) consisting of 

ancestors of the input non-MeSH CUI c, using the parent and rel_broad edges. 

Build a set Ic of all the MeSH concepts associated with nodes added to Gc along 

the way in the process of building Gc. Note that many nodes added to Gc may not 

have associated MeSH terms.

2. Delete any concept c1 from Ic if there exists another concept c2 such that

– c1 is an ancestor of c2, and

– The length of the shortest path from c to c2 is less than the length of the 

shortest path from c to c1.

3. Return the MeSH terms of remaining concepts in Ic and the corresponding 

shortest distances from c.

Note the the algorithm essentially captures ancestors of the input concept and tries to find 

MeSH headings in them.

3.4 Candidate Set Expansion Using Output Label Co-Occurrences

Using NER and graph-based mining discussed in Sections 3.2 and 3.3, we obtain a pool of 

candidate MeSH terms. However, note that the trained coders will look at the entire full text 

to assign MeSH terms to the articles. Thus, merely looking for MeSH terms mentioned in 

the title or the abstract may not be sufficient. To further expand the pool of MeSH candidates 

we propose to exploit the frequencies of term co-occurrences as noticed in already indexed 

articles. To elaborate, we already have nearly 22 million articles that are manually assigned 

MeSH terms from which we can count the number of times different term pairs co-occur in 

the form a matrix where both rows and columns are all possible MeSH terms (nearly 

26,000). Before we go into specific details, we give a high level overview of our approach to 

exploit output term co-occurrences. Intuitively, given a MeSH term that we already know 
with high confidence should be assigned to a particular abstract, other terms that frequently 

co-occur with the known term might also make good candidates for the input abstract. 

However,

1. there might be many highly co-occurrent terms; high co-occurrence does not 

necessarily mean that the new term is relevant in the context of the current 

abstract that is being assigned MeSH terms. To address this, we propose to 
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model the context using MeSH terms extracted from title and abstract using NER 

and graph-mining (Sections 3.2 and 3.3). We still need a way of applying this 

context to separate highly co-occurrent terms that are also relevant for the current 

abstract.

2. Furthermore, we also need an initial seed set of high confidence candidate terms 

to exploit the term co-occurrences. We propose to use, again, the MeSH terms 

extracted from title and abstract using NER and graph-mining. The title MeSH 

terms are directly included in the seed set of candidate terms. However, the terms 

extracted using NER from the abstract are subject to the context (as indicated in 

the first step in this list) and are only included in the seed set if they are still 

deemed relevant after applying the context4.

Given the outline explained thus far, next we present specifics of how the highly co-

occurring terms are obtained from the seed set and how the context terms (that is, MeSH 

terms from title and abstract) are used to select a few highly co-occurrent terms that are also 

contextually relevant for the current article to be indexed. Before we proceed, as a pre-

processing step, we build a two dimensional matrix ℳ5 of row-normalized term co-

occurrence frequencies where both rows and columns are all possible MeSH terms and the 

cells are defined as

Here ℳ[i][i] = 1 because the numerator is just the same as the denominator. We note with 

this definition of ℳ[i][j] is an estimate of the probability P(j-th term|i-th term). Let  and 

be the set of title and abstract MeSH terms extracted using NER, respectively, and  =  ∪ 
 be the set of context terms which includes the MeSH terms extracted from both title and 

abstract. Let α and β be the thresholds used to identify highly co-occurrent terms and to 

select a few of these terms that are also contextually relevant, respectively. Details of these 

thresholds will be made clear later in this section. Next we show the pseudocode of 

candidate term expansion algorithm.

Algorithm

Expand-Candidate-Terms ( , , α, β, ℳ[ ][ ])

1: Initialize seed list S = 

2: Set context terms  =  ∪ 

3: S.append( Apply-Context( , β, , ℳ[ ][ ]))

{Next, we iterate over terms in list S}

4This is needed because MeSH terms that are mentioned in the abstract may not be relevant to the article. An example situation is 
when a list of diseases is mentioned in the abstract although the article is not about any of them but about the biology of a particular 
protein that was implicated in all those diseases.
5We used the Compressed Sparse Row matrix class from the SciPy Python package to efficiently represent and access the 26000 × 
26000 matrix.
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4: for all terms t in S do

5:   Let H = [ ] be an empty list

6:   for each i such that ℳ[t][i] > α do

7:     H.append(i-th MeSH term)

8:   relevantTerms = Apply-Context(H, β, , ℳ[ ][ ])

9:   relavantTerms = relevantTerms − S {avoid adding existing terms}

10:   S.append(relevantTerms)

11: return S

Procedure

Apply-Context (H, β, , ℳ[ ][ ])

1: for all candidate terms t in H do

2:   Set co-occurrence score F = 0

3:   for each context term c in  do

4:     F = F + ℳ[c][t]

5:   if F/| | < β then

6:     H.delete(t) {F/| | is the average co-occurrence}

7: return H

Next, we discuss the Expand-Candidate-Terms algorithm. It takes the title and abstract 

MeSH terms as input and also the thresholds α, to extract the highly co-occurring terms with 

the seed terms, and β to apply context and prune the expanded set of terms. We initialize the 

seed set to be just the title terms (line 1). In line 3, we add to the seed set, abstract terms that 

have an average co-occurrence score ≥ β with the context terms. In lines 4–10, we expand 

the seed set to add new candidate terms. For each seed term t considered in the for loop on 

line 4, we curate a list of highly co-occurring terms according to the term pair co-occurrence 

matrix (lines 6–7). We then prune this list of terms based on their average co-occurrence 

with context terms by calling Apply-Context in line 8. To ensure termination and avoid 

looking at terms that we have already expanded, we only append terms that are not already 

in S (lines 9–10).

In the Apply-Context procedure, we add the co-occurrence scores of each term in the list 

H with all terms in the context term set  (lines 3–4). We delete all terms from H that have 

an average co-occurrence less than β. In our experiments, 0.03 ≤ β ≤ 0.05 and 0.06 ≤ α ≤ 0.1 

proved to be best ranges for the thresholds. Using very low thresholds will increase the size 

of the expanded candidate set output by Expand-Candidate-Terms (line 11). Given this 

expanded candidate set, we rank its terms to retain only a top few; in our experiments, the 

candidate sets were found to have anywhere between 25 to 200 terms while the label 

cardinality of our datasets is only close to 15.

Kavuluru and He Page 7

Nat Lang Process Inf Syst. Author manuscript; available in PMC 2017 July 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3.5 Ranking Approaches and Semantic Predications

In this section, we explore different unsupervised ranking approaches to rank the resulting 

candidate MeSH terms obtained using the methods from Section 3.4. A straightforward 

method we use is to rank them based on the average co-occurrence score computed in line 5 

(F/| |) of the procedure Apply-Context from Section 3.4; a second approach we follow is 

to to rank by the number of context terms in  with which the candidate term has a co-

occurrence value ≥ the average co-occurrence on line 5. That is the number of terms c such 

that ℳ[c][t] ≥ F/| | in Apply-Context. Both these approaches are based on our co-

occurrence frequency based methods.

We also experiment with a novel binning approach using binary relationships (popularly 

called semantic predications) extracted from the abstract text using the SemRep, a 

relationship extraction program developed by Thomas Rindflesch [11] and team at the NLM. 

Semantic predications are of the form C1 → < rel − type > → C2 discussed in Section 3.1. 

However, the relationships come from the abstract text instead of the UMLS source 

vocabularies. The intuition is that entities C1 and C2 that participate as components of 

binary relationships should be ranked higher than those that do not participate in any such 

relationship. By virtue of participating in a binary relationship asserted in one of the 

sentences of the abstract text, we believe they garner more importance as opposed to just 

being mentioned in a list of things in the introductory sentences of an abstract. Thus we 

divide the set of candidate terms from Section 3.4 into two bins. The first bin contains those 

MeSH terms that participate as a subject or an object of a semantic predication extracted 

from the text. The second bin consists of those candidate terms that did not occur as either a 

subject or an object of some predication. Terms in the first bin are always ranked higher than 

terms in the second bin. Within each bin, terms are ranked according to their average co-

occurrence score or according to the number of context terms with which the candidate term 

has co-occurrence ≥ the average. We also subdivided each main bin into two sub-bins where 

the first sub-bin consists of those terms that are extracted from the abstract (using NER) and 

the second that consists of only those terms that were extracted using the co-occurrence 

statistics. Again, ranking within sub-bins is based on scores resulting from the co-occurrence 

based expansion algorithms. Finally we used Borda’s [12] positional rank aggregation 

method to aggregate different full rankings produced by purely co-occurrence based scoring 

methods and bin-based scoring methods. In all these approaches, ties are broken using the 

average co-occurrence score and the rare ties where these scores are equal are broken by 

maintaining the original order in which terms are added in the expansion algorithm.

Remark 1—We also curate a small set of generic MeSH terms that lead to very large 

number of false positives (e.g., Disease, Persons, Patients), mostly generic terms (including 

some check-tags6) and then apply a discount to the scores of these terms if they are found in 

the candidate terms.

6Check-tags form a special small set of MeSH terms that are always checked by trained coders for all articles. Here is the full check 
tag list: http://www.nlm.nih.gov/bsd/indexing/training/CHK_010.htm
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4 Experiments, Results, and Discussion

Before we discuss our findings, we establish the notation to be used for evaluation measures. 

Let D be the set of all biomedical abstracts to be tagged with MeSH terms; Let Ei and Gi, i = 

1, …, |M|, be the set of extracted MeSH terms using our methods from the PubMed citations 

(here, abstract and title fields) and the corresponding correct gold standard terms, 

respectively, for the i-th citation. Based on methods discussed in Section 3.5, we also impose 

a ranking on terms in Bi and only use the top N terms for computing performance measures. 

Since the task of assigning multiple terms to an abstract is the multi-label classification 

problem, there are multiple complementary methods for evaluating automatic approaches for 

this task. However, since we are using an unsupervised approach, we limit ourselves to the 

micro precision, recall, and F-score used by Huang et al [2]. The average micro precision Pμ 

and recall Rμ are

where c(N, Di, Ei) is the number of true positives (correct gold standard terms) in the top N 
ranked list of candidate terms in Ei for citation Di. Given this, the micro F-score is Fμ = 

2PμRμ/(Pμ + Rμ). We also define average precision of a citation AP(Di) computed 

considering top N terms as

where  is the r-th ranked term in the set of predicted terms Ei for citation Di and the 

function  is a Boolean function with a value of 1 if  and 0 otherwise. Finally, 

the mean average precision (MAP) of the collection of citations D when considering top N 
predicted terms is given by

Remark 2—In our experiments, MeSH terms that are associated with concepts at a distance 

greater than 1 from the input concept in the graph mining approach (Section 3.3) did not 

provide a significant improvement in the results. Hence here we only report results when the 

shortest distance between the input concept and the MeSH ancestors is ≤ 1.

We used two different datasets – the smaller dataset has 200 citations and is called the 

NLM2007 dataset. The larger 1000 citation dataset is denoted by L1000. Both datasets can 

be obtained from the NLM website: http://www.ncbi.nlm.nih.gov/CBBresearch/Lu/indexing/

paperdat.zip. Next, we present our best micro average precision, recall, F-score, and MAP in 

Table 1 in comparison with the results obtained by supervised ranking method by [2] and the 
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results obtained when using NLM’s MTI program (as reported by Huang et al. in their 

paper). From the table we see that the performance of our unsupervised methods is 

comparable (except in the case of the MAP measure) to that of the MTI method, which uses 

a k-NN approach. However, as can be seen, a supervised ranking approach that relies on 

training data and uses the k-NN approach performs much better than our approaches. We 

emphasize that our primary goal has been to demonstrate the potential of unsupervised 

approaches that can complement supervised approaches when training data is available but 

can work with reasonable performance even when training data is scarce or unavailable, 

which is often the case in many biomedical applications. Furthermore, unlike in many 

unsupervised scenarios, we do not even have access to the full artifact (here, full text of the 

article) to be classified, which further demonstrates the effectiveness of our method.

Next we contrast the performance of our unsupervised methods involving co-occurrence 

statistics and semantic predication based ranking approaches with some baseline methods 

that only use NER and graph-mining based approaches in Table 2; we do not show MAP 

values because the baseline approaches do not involve a ranking scheme. We see that graph-

mining approach did not increase recall by more than 2%7. However, our co-occurrence 

based candidate term expansion (Section 3.4) improved the recall by 18% in both the 

NLM2007 and L1000 datasets with an increase in precision of at least 10% and an increase 

in F-score of at least 14%. This shows that using simplistic approaches that rely only on 

NER may not provide reasonable performance.

Whether using unsupervised or supervised approaches, fine tuning the parameters is always 

an important task. Next, we discuss how different thresholds (α and β in Section 3.4) and 

different values of N effect the performance measures. We believe this is important because 

low values for thresholds and high cut-off values for N have the potential to increase recall 

by trading-off some precision. We experimented with different threshold ranges for α and β 
and also different values of N. We show some interesting combinations we observed for the 

L1000 dataset in Table 3. We gained a recall of 1% by changing N from 25 to 35 with the 

same thresholds. Lowering the thresholds with N = 35 lead to a 5% gain in recall with an 

equivalent decrease in precision, which decreases the F-score by 5% while increasing the 

MAP score by 1%.

Finally, among the ranking approaches we tried, the best ranking method is Borda’s 

aggregation of the two ranked lists, the first of which is based on average co-occurrence 

scores and the second is the semantic predication based binning approach with average co-

occurrence as the tie-breaker within each bin. This aggregated ranking is used to obtain the 

best scores we reported in all the tables discussed in this section. The semantic predication 

based binning provided a 3% improvement in the MAP score both in the NLM2007 and 

L1000 datasets.

7We note that this is because we only used it for a specific set of qualifier terms that are in MeSH but needed a graph-based mapping 
to obtain the MeSH main headings.
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5 Conclusion

In this paper, we presented a novel unsupervised approach to assigning medical subject 

headings (MeSH terms) to biomedical articles. We deviate from the traditional k-NN 

approach and supervised machine learning approaches and use named entity recognition, 

relationship extraction, and term pair co-occurrence statistics to perform a constrained 

expansion of a seed set of terms. We use semantic predications to bin candidate terms and 

then applied average co-occurrence scores (computed using normalized co-occurrence 

frequencies with certain context terms) to rank terms within the bins. We then used Borda’s 

rank aggregation method to combine different ranked lists. Micro measures obtained using 

our methods are comparable to those obtained using k-NN based approaches such as the 

MTI program from NLM. More advanced learning-to-rank approaches did better than our 

methods. However, we believe our methods are an important contribution because they do 

not use any pre-labeled training data and are more suitable when training data is not 

available or is very limited, which can arise in biomedical and clinical domains. 

Furthermore, our methods can complement supervised approaches for labels with fewer 

training examples.
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Table 3

Different combinations of N, α, and β

L1000 dataset

Rμ Pμ Fμ MAP

N = 25, α = 0.10, β = 0.05 0.51 0.33 0.40 0.36

N = 25, α = 0.08, β = 0.04 0.56 0.29 0.38 0.38

N = 35, α = 0.08, β = 0.04 0.57 0.28 0.38 0.38

N = 35, α = 0.06, β = 0.03 0.62 0.23 0.33 0.39
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