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Abstract

We compare the performances of well-known frequentist model fit indices (MFIs) and several 

Bayesian model selection criteria (MCC) as tools for cross-loading selection in factor analysis 

under low to moderate sample sizes, cross-loading sizes, and possible violations of distributional 

assumptions. The Bayesian criteria considered include the Bayes factor (BF), Bayesian 

Information Criterion (BIC), Deviance Information Criterion (DIC), a Bayesian leave-one-out 

approach with Pareto smoothed importance sampling (LOO-PSIS), and a Bayesian variable 

selection method using the spike-and-slab prior (SSP; Lu, Chow, & Loken, 2016). Simulation 

results indicate that of the Bayesian measures considered, the BF and the BIC showed the best 

balance between true positive rates and false positive rates, followed closely by the SSP. The 

LOO-PSIS and the DIC showed the highest true positive rates among all the measures considered, 

but with elevated false positive rates. In comparison, likelihood ratio tests (LRTs) are still the 

preferred frequentist model comparison tool, except for their higher false positive detection rates 

compared to the BF, BIC and SSP under violations of distributional assumptions. The root mean 

squared error of approximation (RMSEA) and the Tucker-Lewis index (TLI) at the conventional 

cut-off of approximate fit impose much more stringent “penalties” on model complexity under 

conditions with low cross-loading size, low sample size, and high model complexity compared 

with the LRTs and all other Bayesian MCC. Nevertheless, they provided a reasonable alternative 

to the LRTs in cases where the models cannot be readily constructed as nested within each other.
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Introduction

Model selection has been one of the most widely discussed and debated issues in the history 

of psychometrics/quantitative psychology. Broadly speaking, the goal of model selection or 

comparison is to determine which of the candidate models provides a parsimonious and 

“good enough” fit for the data. Practically, a model is selected if certain criteria exceed 

conventional cut-offs or thresholds as being acceptable. Of course, what is considered 

“acceptable” or “good enough” is itself a subject of controversy.

Various model fit indices (MFIs) have been proposed in the structural equation modeling 

(SEM) and factor analytic literature to address the goodness-of-fit and model selection 

problems in factor analysis (FA) models and other latent variable models. One measure with 

a long history in the psychometric literature is the chi-square goodness-of-fit test, which 

evaluates the discrepancy between the sample covariance matrix (which constitutes the so-

called saturated model) and the fitted covariance matrix (Hu & Bentler, 1998). One problem 

with the chi-square goodness-of-fit test is that it tends to produce significant results for 

larger sample sizes, leading to model rejection even when differences between the data and 

the model are slight (Bollen, 1989; Hu & Bentler, 1995; Lee, 2007). The ratio between the 

chi-square statistic and the degrees of freedom was proposed to alleviate the problem 

(Carmines, McIver, Bohrnstedt, & Borgatta, 1981; Marsh & Hocevar, 1985; Wheaton, 

Muthén, Alwin, & Summers, 1977), but no clear guideline exists on what cut-off to use to 

strike the best balance between lowering type-I error rates and maximizing power. A related 

test is the likelihood ratio test (LRT) in the form of a chi-square difference test (Neyman & 

Pearson, 1933), which is based on the premise that when certain regularity conditions are 

met, the difference in chi-square values between a more general model and a nested 

constrained model is asymptotically chi-square distributed with degree of freedom (dfs) 

equal to the number of parameter constraints (Ferguson, 1996; Savalei & Kolenikov, 2008; 

Wilks, 1938).

Other well known frequentist MFIs within the structural equation modeling framework 

include the Root Mean Squared Error of Approximation (RMSEA, James H. Steiger, 1990), 

Standardized Root Mean Square Residual (SRMR, Jöreskog & Sörbom, 1996), Non-normed 

Fit Index (NNFI or TLI, Tucker & Lewis, 1973), Comparative Fit Index (CFI, Bentler, 

1990), among others. Considerable research has been devoted to study the empirical 

properties of these indices via Monte Carlo simulations (see e.g., Gerbing & J. C. Anderson, 

1992; Hu & Bentler, 1998, 1999; Marsh, Balla, & McDonald, 1988; Mulaik et al., 1989). 

These MFIs may be classified as either absolute fit indices (e.g., SRMR, RMSEA), which 

are designed to evaluate how well a fitted model reproduces the sample data (or in other 

words the saturated model; Bollen, 1989); or incremental fit indices (e.g., CFI and TLI), 

which serve to compare a fitted model to a null independence model (Bentler & Bonett, 

1980), or other related variations (Sobel & Bohmstedt, 1985). In both cases, these MFIs 

operate by assuming the existence of a null model – whether the null model is the fitted 

model or a simpler baseline model. As such, they are designed to assess the (approximate) 

fit of a single fitted model. Thus, even though they have been used in practice to compare the 

degree of misfit between fitted models that may or may not be nested within a more general 

model (e.g., Hu & Bentler, 1998), the theoretical underpinnings of these MFIs are at odds 
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with the goal of standard model comparisons. That is, in a model comparison context, the 

operating “null hypothesis” may be that the fit of any two models is the same; thus, when 

MFIs are used for this purpose, they are characterized by several unresolved problems. One 

problem is that the cut-off thresholds used with each of these indices to guide model 

selection are based on empirical simulation studies; thus, their theoretical properties are less 

well understood. Moreover, most MFIs do not appropriately quantify the sampling variation 

and uncertainty that arises from testing several candidate models using the same data.

Model selection can also be handled by model comparison criteria (MCC), which are widely 

used in selecting models that fall outside the realm of traditional FA or SEM models (e.g., 

mixture models). The Akaike information criterion (AIC, Akaike, 1973) and the Bayesian 

Information Criterion (BIC, Schwarz, 1978), for instance, are examples of such MCC that 

are widely used in the context of frequentist model comparison. Well-known MCC widely 

used in Bayesian model comparison include the BIC, Deviance Information Criterion (DIC, 

Spiegelhalter, Best, Carlin, & Van Der Linde, 2002), Bayes factor (BF; Kass & Raftery, 

1995), Lv measure (Ibrahim, Chen, & Sinha, 2001; Y.-X. Li, Kano, Pan, & Song, 2012), 

widely applicable information criterion (WAIC, Vehtari, Gelman, & Gabry, 2016b), and 

Bayesian leave-one-out (LOO, Gelfand, Dey, & Chang, 1992; Vehtari et al., 2016b) cross-

validation indices, among others. These MCC do not require the candidate models to be 

nested models. Even though many of these MCC are well-known and widely used for 

Bayesian model comparison purposes, measures such as the BIC and the DIC do not make 

use of full posterior distributional information in quantifying the degree of model fit. As 

such, it is difficult to estimate the uncertainty around these measures of model fit. This is 

also in contrast to the Bayesian philosophy that there may be multiple plausible null models/

hypotheses at work, all of which can be evaluated by means of their posterior model 

probabilities. This has led to more recent developments of newer and more robust LOO 

cross-validation measures, such as the LOO with Pareto-smoothed importance sampling 

(LOO-PSIS, e.g., Vehtari, Gelman, & Gabry, 2016a, 2016b), which do utilize full 

distributional information and are equipped with standard errors to quantify the randomness 

around them. Another important development in the Bayesian model comparison literature is 

fueled by adaptations of variable selection methods to perform simultaneous explorations of 

a much broader range of models to accomplish the goal of model selection (Lu et al., 2016; 

Mavridis & Ntzoufras, 2014; B. O. Muthén & Asparouhov, 2012).

Even though the theoretical underpinnings of some of these model selection methods and 

their relative performance as model comparison tools are relatively well documented in the 

statistical literature for particular types of models (e.g., regression models; Ando, 2010; 

Burnham & D. R. Anderson, 2002; Claeskens & Hjort, 2008), some of these measures 

remain unfamiliar to many psychometricians. The performance of these measures in 

comparison to frequentist MFIs in fitting FA and related latent variable models also remains 

unknown and unexplored. In addition, the relative performance of newer LOO cross-

validation measures such as the LOO-PSIS proposed by Vehtari et al. (2016a) in comparison 

to other broadly utilized Bayesian MCC is also unknown.

Our goals in the present article are four-fold. First, we seek to compare the strengths and 

weaknesses of different Bayesian MCC in detecting cross-loading structures in FA model, 
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including the relatively recent LOO-PSIS approach proposed by Vehtari et al. (2016a, 

2016b). Our second goal is to compare the performance of these Bayesian criteria to selected 

frequentist indices recommended by Hu and Bentler (1998, 1999) obtained using the 

maximum likelihood estimator under less ideal scenarios than those considered previously 

by these authors – specifically, in situations involving more complex cross-loading 

structures, weaker cross-loading sizes, and smaller sample sizes. Our third goal is to 

compare the sensitivity and robustness of the frequentist and Bayesian approaches to 

violations in distributional and assumptions. Finally, we seek to investigate the performance 

of a Bayesian variable selection method using the spike and slab prior as a computational 

engine for calculating the BF (Lu et al., 2016) in fitting confirmatory FA models.

Model Selection in FA

Factor analysis is a popular multivariate statistical technique for dimension reduction 

whereby multivariate observed indicators are reduced to a lower-dimensional set of latent 

factors through a model expressed as:

(1)

where n is the sample size, yi is a p × 1 vector of observed indicators, μ is a p × 1 vector of 

intercepts, Λ is a p × q loading matrix that shows the linkages between the observed 

indicators and the latent factors, ωi is a q × 1 vector of latent factors, εi is a p × 1 vector of 

measurement errors. It is assumed that ωi ~ Nq(0,Φ), εi ~ Np(0,Ψ), and ωi and εi are 

independent. In addition, constraints are needed to identify the model in Equation (1), which 

may be specified with respect to elements in Λ, Φ or Ψ. In this paper, we adopt the common 

assumptions that Φ is a positive definite matrix, Ψ is a diagonal matrix, and the need to 

impose q2 constraints on the loadings – including the requirement for one main loading of 

each latent factor to be fixed at 1.0, and q(q − 1) additional cross-loadings to be fixed at 0 at 

appropriate places.1

Model selection in FA comprises primarily of decisions on the dimension of ωi (i.e., the 

number of factors to extract and retain) and the structure of the loading matrix Λ. Here, we 

focus on the second issue. The structure of Λ provides a glimpse into the meanings of the 

factors, the patterns of linkage among manifest indicators and factors, and the measurement 

quality of the indicators. We focus on confirmatory factor analysis (CFA; Jöreskog, 1969) in 

which a set of candidate models are predetermined and compared. Issues pertaining to 

model selection in the context of exploratory FA (EFA) such as rotational or identification 

constraints (Jennrich & Sampson, 1966), and Bayesian approaches to handling these issues 

(Lu et al., 2016; Mavridis & Ntzoufras, 2014; B. O. Muthén & Asparouhov, 2012) are 

beyond the scope of this paper and are not addressed here.

1Some researchers have also proposed a list of sufficient conditions to ensure identification without label-switching and sign reversal 
problems (see e.g., conditions C2 and C* in Peeters, 2012). Such a specification requires that q submatrices of Λ be full rank, where 
each submatrix is formed by the rows that are fixed to zero in the kth column and then the zeros in the kth column are removed 
(condition C2), k = 1, …, q. Another condition (C*) requires that the loading matrix has q − 1 fixed zeros in each column and one 
fixed non-zero value in each column, and that the non-zero elements are located at different rows. The models we considered satisfy 
these sufficient conditions.
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Hu and Bentler (1998, 1999) studied the performance of various frequentist model fit indices 

in CFA settings. In the present study, we extend their simulation results to scenarios that 

push the limits of CFA. That is, we consider conditions that include both relatively simple 

structures of Λ, as well as Λ structures with substantially higher number of cross-loadings 

(e.g., 1, 3, 7) and much weaker cross-loading strengths. In particular, we draw on a 

motivating empirical example using data from a popular learning strategies scale to illustrate 

the prevalence of these scenarios in real-world data, some of the challenges researchers face 

in using common model selection approaches for FA in such contexts, and some possible 

ways of addressing these difficulties.

Bayesian Model Comparison Criteria (MCC)

The basic idea of Bayesian analysis is one that is well covered in many of the articles in this 

special issue. Let θ be a vector of parameters that include those parameters in μ, Λ, Φ, Ψ in 

model (1). For Y = (y1, …, yn)T, Bayesian analysis is usually based on the posterior 

distributions of the parameters, p(θ|Y), which depend on the likelihood, p(Y|θ), and the prior 

distribution, p(θ), through the Bayes’ theorem

(2)

The likelihood for model (1) is

(3)

Various prior distributions of θ may be used. One popular option, due to its inherent 

computational advantage, is to use conjugate prior distributions (see e.g., Lee, 2007; B. O. 

Muthén & Asparouhov, 2012) for Φ, the p diagonal elements of Ψ, the intercept μj (j = 1, 

…, p), and the loadings λjk (j ∈ {1, …, p}; k ∈ {1, …, q}). These conjugate priors take the 

form of:

(4)

where IG and IW stand for inverse-gamma and inverse-Wishart distributions, respectively. 

ρ0 > 0, α1j > 0, α2j > 0, λ0jk, , μ0j,  and positive definite matrix Φ0 are 

hyperparameters whose values are based on prior knowledge.

Estimation and statistical inference in a Bayesian setting typically revolve around the 

posterior distribution p(θ|Y). The mean or mode of p(θ|Y) is often used as the Bayesian 

point estimate. The percentiles of p(θ|Y) are used to form credible intervals. In many 

Lu et al. Page 5

Psychol Methods. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



models, these quantities may not be computed analytically. However, simulation methods 

may be used to draw random samples from p(θ|Y) to approximate these quantities. Markov 

chain Monte Carlo (MCMC) algorithms (Gelfand & Smith, 1990; S. Geman & D. Geman, 

1984; Hastings, 1970) are some examples of such methods.

For model selection purposes, we consider the following MCC commonly adopted in the 

Bayesian literature: the BF, BIC, DIC, and the LOO-PSIS, all of which can be calculated 

using MCMC samples from the posterior distribution. Model fitting was performed using R 

and a sample R script for fitting one particular CFA model is included in Supplementary 

section A. In the remainder of this section, we outline the basic properties of the Bayesian 

MCC considered here and associated procedures as well as software options for computing 

them.

Bayes factor (BF)—Given a particular model, M, the posterior distribution of M, P(M|Y), 

provides a natural way to characterize the plausibility of the model. The BF essentially 

compares the posterior probabilities of two models, say M1 and M2, as:

(5)

where P(Ms) is the prior probability of model Ms, s = 1, 2, and P(Y|Ms) is a normalizing 

constant for model s that is obtained by integrating (or “averaging over”) all the modeling 

parameters in θs (including those in μ, Λs, Φ, Ψ) out of the joint distribution of P(Y, θs|Ms).
2

The BF is a popular criterion for pairwise, confirmatory model comparison purposes in 

Bayesian settings. It has been shown to be an effective MCC in various parametric models, 

including fixed effect models (Morey & Rouder, 2015), random effect models (Song & Lee, 

2006), mixture models (Berkhof, Van Mechelen, & Gelman, 2003), EFA (Lopes & West, 

2004), as well as CFA (Lee, 2007). However, the BF is not always the preferred MCC in all 

applications. For instance, computation of the BF requires the prior distribution of the 

parameters to be reasonably informative. Using BF with non-informative prior distributions 

tends to favor M1 (usually the null model) – an issue known as the Jeffreys-Lindley-Bartlett 

paradox (Berger, 2004). Relatedly, the BF also does not work well for comparing 

nonparametric models (Carota, 2006).

For computation of the BF, we use the likelihood function in (3) in which the latent factor 

vectors, Ω = (ω1, …,ωn), have been analytically integrated out and calculation of P(Y|Ms) 

does not require additional integration over Ω. However, even in this simpler case where the 

likelihood function is available in closed form, computation of the BF can still be 

cumbersome due to difficulties in computing the normalizing constants in (5). One possible 

approach is to approximate the normalizing constants using bridge sampling (Meng & 

2In the current study, we only consider comparing models with different loading structures. Hence, only θ and Λ are marked with 
subscript s to indicate that these elements are specific to model Ms.
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Wong, 1996). Lopes and West (2004) studied a variety ways to calculate the BF for EFA, 

and showed that the bridge sampler performs well. Specifically, the normalizing constants 

can be expressed as the ratio

where ps(θs) and ps(Y|θs) are the prior distribution of parameters and likelihood function of 

the sth model; gs(θs) is a density function from which random samples can be easily 

generated, usually chosen to be close to the posterior distribution3. αs(θs) is an arbitrary 

function with non-zero denominator4, chosen to bridge the difference between gs(θs) and 

αs(θs)ps(θs)ps(Y|θs), and that between ps(θs|Y), and αs(θs)gs(θs). The expectations in the 

numerator and the denominator are taken with respect to gs(θs) and the posterior distribution 

of the sth model, respectively.

In short, bridge sampling facilitates high-dimensional integration by replacing procedures 

for taking expectations involving formidable density functions with procedures for taking 

empirical averages over draws from density functions easily simulated with MCMC 

sampling (e.g., gs(θs)). As with importance sampling methods (Casella & Robert, 1999), the 

similarity of the distributions enclosed in brackets and the density functions of the 

expectation is important to ensure the efficiency of the approximation. Concrete steps for 

computing BF are given in Section B.1 in the supplementary material.

BIC—The BIC, another popular model comparison criterion, may be regarded as an 

approximation of the BF. Unlike BF, BIC does not require informative prior distributions or 

face the computational challenges of designing sophisticated algorithms and generating 

additional MCMC samples to integrate out the modeling parameters. BIC is computed as a 

function of the likelihood function in Equation (3) evaluated at the posterior means θ̄s, 
taking into consideration model complexity as characterized by the number of parameters as 

(see Section C of the supplementary material):

(6)

where ||Λs||0 is the number of parameters in Λs in this particular context..

DIC—The DIC was developed as the Bayesian counterpart of the AIC that is a well-known 

model comparison criterion widely used in frequentist analysis. However, the AIC is not 

applicable to models with informative priors, such as hierarchical models (Spiegelhalter et 

al., 2002). DIC is computed as a function of the likelihood function in Equation (3) 

3As an example, we assumed gs(θs) = gs1(μ)gs2(Λs)gs3(Ψ)gs4(Φ) in the present study. gs1, gs2 are multivariate normal distributions 
and gs3 is the Gamma distribution, and gs4 is the inverse Wishart distribution. The parameters in these distributions are determined by 
matching the moments to those of the empirical distributions of the posterior samples.
4In this article, we use αs(θs) = (ps(θs)ps(Y|θs)gs(θs))−1/2, which is the geometric estimator. Please refer to Lopes and West (2004) 
and Meng and Wong (1996) for further descriptions and other estimators based on different αs(θs).
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evaluated at the posterior means θ̄s and the model complexity characterized by the effective 

number of parameters (see Section C of the supplementary material) as:

(7)

where the first term is the same as the BIC, and the second term, pD = Eθs|Y[−2 log ps(Y|θs)] 

+ 2 log ps(Y|θs̄), is a measure of model complexity known as the effective number of 

parameters.

The DIC has become a popular Bayesian model comparison criterion because of its 

similarity to AIC, general applicability to a wide range of models, and availability in 

standard MCMC packages such as OpenBUGS (Lunn, Spiegelhalter, Thomas, & Best, 2009) 

and JAGS (Plummer et al., 2003). Despite the DIC’s practical advantages, its theoretical 

justification is relatively weak and it has known limitations in some modeling scenarios, e.g., 

in mixture models and models with missing data and latent variables (Celeux, Forbes, 

Robert, & Titterington, 2006). In addition, the DIC tends to select over-fitted models. Here, 

because our model of interest does have a likelihood expression in closed form where the 

latent variables are integrated out, we calculated the DIC using Equation (3) directly with 

our own R script (see Sections B.3 and C of the supplementary material) rather than using 

the DIC output from JAGS.

Bayesian LOO cross-validation—Cross-validation is an intuitive approach for model 

validation using data that are independent of the data sets used in model fitting. Practically, 

the empirical data set is usually divided into a training and a testing data set. LOO cross-

validation is a popular way of implementing cross-validation based on the idea of using the 

data from all but one subject, denoted as Y−i, as the training data set and data of the 

remaining subject, yi, as the testing data set,. This process is repeated successively for each 

subject and the overall predictive performance of the n subjects is used as the cross-

validation index. Bayesian LOO estimation uses the posterior predictive probabilities to 

quantify prediction performance as

(8)

Direct evaluation of (8) requires applying Bayesian analysis to Y−i for i = 1,…, n, which is 

time consuming. Importance sampling techniques may be used to calculate (8) using MCMC 

samples from p(θ|Y). However, Gelfand et al. (1992) pointed out that the importance 

sampling approach is unstable and may have high or infinite variance. Recently, Vehtari et 

al. (2016b) proposed a LOO approach with Pareto smoothed importance sampling (LOO-

PSIS) to obtain a reliable estimate of (8). An R package, loo (Vehtari et al., 2016a), is 

provided to calculate the LOO-PSIS cross-validation index. The R code utilizing the loo 
package to obtain the LOO-PSIS cross-validation index is provided in Section B.4 of the 

supplementary material.5
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Model Selection through Variable Selection with Regularization Methods

Model comparison and variable selection are naturally connected because models are 

characterized by parameters and related variables, e.g., predictors or factors. However, the 

two approaches are implemented in very distinct ways. Model comparison is usually 

conducted in a more confirmatory way where a set of candidate models is prespecified and 

model choice depends on the criteria computed for each candidate model. Variable selection, 

in contrast, takes a more exploratory approach. Variables are the main focus and are selected 

directly. Classic variable selection approaches may select the final “preferred” model 

starting from the most general model that encompasses all plausible sub-models (backward 

stepwise regression), or starting from the simplest model and increasing the number of 

predictors gradually (forward stepwise regression), or using both strategies (bidirectional 

selection). Modern variable selection approaches start with the most general model with a 

huge number of variables, and the final set of retained variables defines the chosen model. 

This process is usually implemented with some regularization or penalty function of choice 

to penalize solutions with particular structures that are at odds with a researcher’s prior 

preference or beliefs about the properties of a good model (Bickel et al., 2006). Bayesian 

regularization (Polson & Scott, 2010) is accomplished by specifying the penalty functions as 

prior distributions in Bayesian models (Leng, Tran, & Nott, 2014; Q. Li & N. Lin, 2010; 

Park & Casella, 2008). Thus, Bayesian variable selection methods differ from traditional 

Bayesian methods in that the prior distributions not only specify the distributions of 

unknown parameter values, but also affect the model structure by helping to exclude 

unimportant parameters more effectively. Lu et al. (2016) provided an overview of the use of 

frequentist and Bayesian variable selection methods with applications to FA and outlined the 

connections between some MCC and variable selection methods. Using results from a 

Monte Carlo simulation, these authors showed that selecting FA structures using Bayesian 

variable selection approaches leads to greater sensitivity with similar false detection rates 

than frequentist EFA methods in most of the conditions considered.

Even though the primary strength of variable selection approaches resides in their ability to 

flexibly and efficiently evaluate a range of candidate models through one-pass fitting of the 

most general candidate model, such approaches can also be applied to a relatively restricted 

set of models and may be contrasted with model comparison approaches. Here we focus on 

a Bayesian variable selection approach using the spike and slab prior (SSP, Ishwaran & Rao, 

2005). Lu et al. (2016) applied the SSP in a more exploratory sense (i.e., as a hybrid of EFA 

and CFA). Here we focus on using the SSP to supplement results from confirmatory FA. The 

SSP is assigned to the elements in the loading matrix that are free in the most general 

candidate model and are fixed to zero in the most restrictive candidate model – or in the 

present context, the cross-loadings. The SSP approach may also be used as a convenient 

computational engine for estimating the BFs of multiple nested FA candidate models 

simultaneously. Compared to the BF, the SSP can be implemented with relatively 

uninformative priors. In addition, the SSP approach offers additional exploratory advantages 

by simultaneously estimating the BFs of other models which subsume the most restrictive 

5Another related Bayesian model comparison criterion that has recently received much attention is the widely applicable or Watanabe-
Akaike information criterion (WAIC; Watanabe, 2010). As the WAIC is asymptotically equal to the LOO-PSIS and it was shown to be 
less robust than the LOO-PSIS, we only compare the performance of the LOO-PSIS with the other MCC and MFIs.
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candidate model and are subsumed by the most general candidate model. These related 

models may differ from the theoretically inspired confirmatory models in more subtle ways 

and may represent potentially interesting models. Using the SSP eliminates the need to 

compute the BFs of these models in multiple passes.

SSP for the cross-loadings consists of two possible components: (1) the “spike” component, 

which is a point mass at zero corresponding to the prior belief that the cross-loading should 

be fixed at zero; and (2) the “slab” component – a wider normal distribution reflects the 

belief that the cross-loading should be estimated from data because it may deviate 

substantially from 0. Specifically, the prior is expressed as

(9)

where λjk denotes the loading in the jth row and kth column of Λ; δ0 is a point mass 

function at 0;  is a variance parameter that is substantially greater than 0; rjk is a binary 

latent variable commonly used in the formulation of mixture models (with 1 representing 

membership to the slab component and 0 indicating otherwise); pjk are hyperparameters 

reflecting the user’s prior knowledge or subjective belief and 0.5 is usually used. Model 

selection using the SSP is based on the rijs as rij = 0 and rij = 1 indicate λjk = 0 and λjk ≠ 0, 

respectively, corresponding to the exclusion or inclusion of λjk in the model.

Let R be a vector containing the rjk for all the free cross-loadings. Different values of R 
correspond to different loading structures of Λ. For a specific R̃ = (r̃jk), let MR̃ be the 

corresponding FA model of interest. The posterior probability of model MR̃, p(MR̃ |Y), may 

be approximated by

(10)

where  denotes the MCMC samples of rjk at the tth iteration. Equation (10) offers a quick 

alternative way to calculate the posterior model probabilities that appear in the BF in 

Equation (5) between all pairs of potential models. As R is estimated and updated in every 

MCMC iteration, the SSP simultaneously generates MCMC samples for multiple candidate 

models. The posterior probabilities of other models that are not considered as candidate 

models under a confirmatory setting but can be indexed by R can also be calculated, which 

offers some additional exploratory ability beyond the hypothesized CFA models of interest. 

However, because the BF for each submodel evaluated under the SSP approach is typically 

computed with a subset of the full MCMC samples, SSP-related measures may perform 

slightly differently than the BFs computed using bridge sampling – one aspect we seek to 

clarify by means of a simulation study.
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In addition to serving as a computational engine for the BF, the posterior model probabilities 

available from the SSP also provide a helpful measure in and of themselves to quantify 

model selection uncertainty. Calculation of the posterior probabilities using the MCMC 

samples from a FA with prior (9) is shown in Section B.5 in the supplementary material. It is 

worth noting that informative prior distribution is required for the SSP when the SSP is used 

to calculate posterior model probabilities like the BF. However, the SSP provides other 

measurements of the cross-loading selection uncertainty, e.g., posterior inclusion probability 

(sample mean of , t = 1, …, N1), which do not require informative priors. In addition, the 

SSP approach may be regarded as a Bayesian model averaging (BMA, Wasserman, 2000) 

procedure, which serves to draw inferences by incorporating information and uncertainties 

from multiple models.

Several other advantages may be gained from using the SSP. First, model selection and 

parameter estimation can be done in one step. Second, variable selection uncertainty is 

automatically built into the parameter estimation process; and finally, it helps avoid double-

use of the data (i.e., first for model exploration purposes and then for parameter estimation 

once a final model has been chosen).6 Further information about the advantages, 

computational details and sampling procedures for implementing this approach are 

presented in the Discussion section and can also be found in Lu et al. (2016).

Simulation Study

We designed various simulation settings to compare the strengths and weaknesses of the 

frequentist MFIs (in two ways) and Bayesian MCC in detecting cross-loading structures in 

FA model. We investigated the false positive rates, sensitivity and robustness of these 

approaches in the scenarios with different factor loading structures, cross-loading sizes, 

sample sizes and distributional conditions to compare underfitted and overfitted models. 

Guidelines for using frequentist MFIs and Bayesian MCC in FA model were summarized 

based on the simulation results.

Simulation Design

Complexity of Cross-Loading Structure—We considered three factor loading 

structures in our simulation study. The structures of the loading matrices, Λ, were defined to 

be

6However, if the SSP is first used to identify potential models and Bayesian MCC are then used to refine model selection based on the 
exploratory model identified using the SSP, the data are still used twice in this case. If at all possible, independent samples should be 
used in such two-stage procedures, as we will illustrate in the context of our empirical example.
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(11)

where the elements marked with an asterisk were fixed at the values indicated to yield q2 

constraints for identification purposes. These loading matrices satisfy the identification 

conditions by Peeters (2012).

The elements that were equal to 1 were main-loadings, and the elements ‘x’ were potential 

cross-loadings. The first factor loading structure contained only one non-zero cross-loading 

and is referred to herein as the “Single Cross-Loading” condition. The second factor loading 

structure, with three non-zero cross loadings, are referred to herein as the “Multiple Cross-

Loading” condition. The cross-loadings in the first two conditions were all positive. The 

other parameters were set to μj = 0, ψj = .3 for j =1, …,9, and 

. The last factor loading structure, which was designed 

to mimic more complex cross-loading structures in empirical scenarios, consisted of seven 

cross-loadings that were either positive or negative, and is denoted herein as the “Complex 

Cross-Loading” condition. The other parameters were set to μj = 0, ψj = .6 for j = 1, …12, 

and  to mirror the 

estimates from the empirical study.

Sample Size—For the simple and multiple cross-loading conditions, three sample sizes 

(100, 200, and 300) were considered. For the complex cross-loading condition, three sample 

sizes (500, 800, and 1200) were considered. Larger sample sizes were considered for the 

complex cross-loading condition to mirror the characteristics of our motivating empirical 

example. Our preliminary simulation also confirmed that model comparison involving a 

loading structure of comparable complexity to this condition did not show very clear 

differentiation at lower sample sizes.

Cross-Loading Size—To manipulate the cross-loading size, we generated simulated data 

using four possible magnitudes of cross-loadings, namely with x = 0.0, 0.1, 0.2, and 0.3. 

These magnitudes were selected for two reasons. First, cross-loadings in the empirical 

studies are usually smaller compared to the main-loadings, as was the case in the empirical 

study of this paper. Second, differences among the model comparison procedures were 

expected to be more apparent in this range. The condition with x = 0 represented the case 
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where the underlying model is the null model (Model M0). Other models with x ≠ 0 are all 

referred to broadly as Model M1.

Distributional Condition—We also compared the performance of the fit indices/MCC 

under a condition with correctly specified distributional assumptions (the factor scores and 

residuals were all normally distributed), and another condition where some of these 

assumptions were violated. Specifically, we studied a similar setting as the fifth 

distributional setting used in Hu, Bentler, and Kano (1992) in which the factors and residuals 

showed dependencies on each other and were characterized by heavy tailed distributions. To 

create these characteristics, each element of the factor and error vectors were divided by the 

same random variable drawn from a  distribution.

Estimation—For each of the data generating conditions described above, 100 replications 

were generated. Frequentist MFIs were obtained by fitting the pertinent confirmatory FA 

model in Mplus (L. K. Muthén & B. O. Muthén, 1998) and extracting the relevant MFIs 

output by the program, including RMSEA, TLI, CFI, SRMR, and the goodness of fit chi-

square statistic for performing likelihood ratio tests (LRTs). The estimation is based on 

maximum likelihood. Bayesian CFA was conducted and the corresponding MCC were 

computed using our own code written in R (R Core Team, 2013), including the SSP. The R 

programs are included as supplementary materials on the journal website.

For Bayesian estimation purposes, we adopted the same estimation procedures as described 

in detail in Lu et al. (2016). Briefly, our goal was to obtain samples from p(Ω,μ,Λ, R,Φ,Ψ|
Y) with the Gibbs sampler, where Ω = (ω1, …,ωN). That is, starting from initial values of 

{Ω(0),μ(0),Λ(0), R(0), Φ(0),Ψ(0)}, we iteratively sample {Ω(t),μ(t),Λ(t), R(t),Φ(t),Ψ(t)} from the 

full conditional distributions by: (1) sampling Ω(t) from p(Ω|Y,μ(t−1),Λ(t−1), 
R(t−1),Φ(t−1),Ψ(t−1)); (3) sampling {μ(t),Λ(t), R(t),Ψ(t)} from p(μ,Λ, R,Ψ|Y,Ω(t)); and (2) 

sampling Φ(t) from p(Φ|Y,Ω(t)). Analytic details of these full conditional distributions can be 

found in Lu et al. (2016), and we refer the reader to the steps annotated as “steps 1 – 3” in 

the sample code for details on sampling. In Bayesian CFA where R is fixed, R is omitted in 

these full conditional distributions and is not updated. We set the hyperparameters in (4) as 

α1j = 11, α2j = 3, ρ0 = 7, Φ0 = Φ1, λ0jk = μ0j = 0, and . Φ1 was set to be 3 

times the true value of Φ. For the Bayesian variable selection method with SSP, we used the 

prior in (9) for the ‘x’ elements in (11) with  and pjk = 0.5. The  is chosen to mimic 

the prior variance in the CFA where the loading is estimated.

After N0 burn-in samples were discarded, the empirical distribution of the remaining N1 

samples of {μ(t),Λ(t), R(t),Φ(t),Ψ(t)} for which 1 < t ≤ N1 can be taken to be an 

approximation of the posterior distribution (see step labeled as “Post burn-in summary” in 

the supplementary R code). Many other quantities which involve integration with respect to 

the posterior distributions may be estimated with MCMC samples. The precise sample sizes 

for burn-in and inferential purposes varied by the complexity of the factor loading condition. 

For the Single and Multiple cross-loading conditions we used N0 = N1 = 4000, whereas for 

the Complex cross-loading condition, we used N0 = 5000 and N1 = 20000. The 
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autocorrelations among the MCMC samples were not strong and thinning did not have 

significant effects on the estimates of parameters and MCC. With one core of a Intel E5520 

CPU (a server CPU produced in the first quarter of 2009), the MCMC sampling and MCC 

calculation took about 40 and 8 seconds for the simple and multiple conditions, and 160 and 

40 seconds for the complex condition, respectively.

To check convergence, we calculated the estimated potential scale reduction (EPSR, 

Gelman, Meng, & Stern, 1996) values based on three MCMC chains starting from different 

initial values for each data set in the “Complex Cross-Loading” condition with a sample size 

of 500 and cross-loadings of 0.1. This was one of the most challenging conditions 

considered in our study due to the condition’s relatively small cross-loading size and factor 

variance, large unique variance and high modeling complexity. The EPSR values of all 

parameters were smaller than 1.2 after the burn-in period, which indicates that the three 

chains have converged. We also performed similar convergence checking by randomly 

sampling a simulated data set in each condition to ensure that sufficient burn-in periods have 

been specified for these conditions. In light of previous results showing the stability of 

MCMC convergence patterns across Monte Carlo replications (Lee, 2007; B. O. Muthén & 

Asparouhov, 2012), we only used one MCMC chain for estimation and inferential purposes 

in the remaining simulation study.

Model Comparison Procedures—The use of the frequentist MFIs and Bayesian MCC 

requires pairwise comparison of two candidate models. Data were simulated from one of 

two possible models, i.e., Model M0 and Model M1. Comparisons were performed between 

Models M0 and M1 to assess the different measures’ ability to select the correctly specified 

model. In addition to these two candidate models, we also fit a third candidate model, Model 

M2, to data simulated using Models M0 and M1. In Model M2, all the elements in the 

loading matrix except for those with asterisk in Equation 11 were freed up. This model was 

analogous in structure to an unrotated EFA model except for slight differences in the 

identification constraints imposed. Model M2 was designed to assimilate a scenario when a 

researcher was forced to select between models that might all be over-parameterized. That 

is, we used either model M0 or model M1 as the data generating model, but the researcher 

was only given the choice to choose between models M1 and M2. When M1 was the true 

model, we expect a good measure to select M1 over M2. When M0 was the true model, both 

models M1 and M2 were overparameterized models, but it is more desirable to select the 

more parsimonious M1 over M2.

Model selection using the frequentist MFIs was performed in two ways. The first way was a 

threshold-based approach in which the simplest model that passed the conventional cut-offs 

of “acceptable fit” was selected as the preferred model. These cut-off values were either 

proposed previously by researchers as rules of thumb (e.g. RMSEA < .05; Browne & 

Cudeck, 1992; J. H. Steiger, 1989) or were established based on simulations (Hu & Bentler, 

1999). We used the range of cut-offs/thresholds considered in Hu and Bentler (1999). For 

TLI, .90, .95 and .96 were used; for RMSEA and SRMR, .07, .05 and .045 were used. For 

the chi-square LRTs, .10, .05, and .001 were used as the p-values indicating significant 

difference in fit per degree change in df. The thresholds as shown here were ordered from 

the least to most restrictive thresholds.
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As noted, many of these cut-off values were established based on rules of thumb and 

simulation results. As such, the optimal cut-off values may, conceivably, vary from one 

study to another depending on the complexity of the model and other sampling constraints. 

One extreme criterion for cut-off values may be one where no thresholds are enforced, but 

rather, the model with the “best” MFIs is selected as the final preferred model, as seen in 

some empirical applications. In the second way, referred to herein as the best-fitting 
approach, the frequentist MFIs were used for model selection in similar ways to the 

Bayesian MCC. Specifically, among the candidate models, the model with the best absolute 

fit (i.e., smallest RMSEA or SRMR and largest TLI value) was chosen. In cases of identical 

absolute fit, the simpler model was chosen. We emphasize that there is no clear consensus on 

the tenability of using these goodness of fit indices in this way for comparison purposes, and 

we do not necessarily advocate this specific way of using the frequentist MFIs. But our view 

was that the simulation results could arguably provide new insights into aspects such as the 

frequentist MFIs’ sensitivity and false detection rates in comparison to those from the 

threshold-based approach as well as other Bayesian MCC for selecting the best model from 

a set of candidate models.

All Bayesian MCC were only used following the best-fitting approach. That is, for the BIC, 

DIC, and LOO-PSIS, the model with smaller values on these MCC was selected. For BF, the 

model with the larger posterior model probability was selected. For the SSP method, all 

possible models including M0 and M1 can be explored simultaneously. However, because 

the exploratory strengths have already been illustrated elsewhere (Lu et al., 2016), we focus 

here on evaluating characteristics of the SSP when used as a prior in confirmatory models. 

Specifically, as shown previously in using the SSP method, each of the “x” and 0 elements 

not marked with an asterisk in Equation (11) could be treated as free parameters to which 

the SSP was assigned when this approach is used as a one-step hybrid model exploration/

fitting tool. However, here we only used the SSP as the prior for parameters that might 

potentially be freed up in the hypothesized confirmatory models (i.e., the “x” elements that 

are fixed in M0 but freed in M1). Then, the preferred model was selected based on the 

posterior model probabilities estimated according to Equation (10) for all candidate models 

compared.

Performance Measures—The performance of different MFIs/MCC was compared in 

terms of their false positive rates and true positive rates (i.e., power or sensitivity). False 

positive rate was defined as the number of replications where model M1 was selected when 

model M0 was the true model (i.e., all the “x”s in Equation (11) should indeed be zero).7 

True positive rate was defined as the number of replications where model M1 was selected 

when model M1 was indeed the true model, i.e., all the xs in Equation (11) were free.

7False positive rate is conceptually related to the type I error rate. However, type I error rates usually appear in hypothesis testing, e.g., 
LRT, and can be controlled by the researcher. Other frequentist MFIs are based on conventional cut-off values and do not have a 
nominal type I error. Furthermore, the concept of type-I error rate is not applicable to Bayesian MCC. We used false positive rates to 
compare the performance of the MFIs and MCC because this measure is more general and has been broadly applied in the area of 
binary classification.
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Simulation Results

The threshold-based implementation of the frequentist MFIs is more in line with the 

theoretical underpinnings of these MFIs. In light of this, we organized our simulation results 

to first compare Bayesian MCC and frequentist MFIs when implemented under the 

threshold-based approach. Implications on violating distributional assumptions and model 

comparison results among over-parameterized models are highlighted within the context of 

these comparisons. This was followed by a brief summary of results from comparing the 

frequentist MFIs under the threshold-based vs. the best-fitting approach, and in relation to 

the performance of the Bayesian MCC in general.

Comparisons between the Frequentist MFIs and Bayesian MCC—The results of 

using the frequentist MFIs under the threshold approach and Bayesian MCC for pairwise 

model comparisons are shown in Figure 1. Specifically, we used the “conventional” cut-off 

values of .05 for both the RMSEA and SRMR, .95 for the TLI, and we implemented the 

LRT as the ratio between the change in χ2 goodness of fit values between Models M0 and 

M1 and the corresponding change in model degrees of freedom (dfs) as compared to a χ2 

critical value at the .05 level with 1 df.8 Each row of plots corresponds to one hypothesized 

cross-loading setting, and each column corresponds to one of four true cross-loading 

magnitudes (0, .1, .2 or .3) or cross-loading sizes. Because the true data generating model for 

all the plots in column 1 was model M0, the ordinate values (vertical axes) of all plots in this 

column depict the false positive detection rates of selecting M1 when M0 was the true data 

generating model. The second to the fourth columns of Figure 1 show the power or true 

positive detection rates (i.e., the number of replications that selected M1 when M1 was in 

fact the true model). The CFI results generally fell somewhere between those associated 

with the TLI and RMSEA, and were thus not plotted to avoid cluttering the figures.

All Bayesian MCC and threshold-based frequentist MFIs (among the lowest lines in the first 

column of Figure 1), with the exception of the DIC and LOO-PSIS, tended to select the 

parsimonious model M0 when it was indeed the true model, leading to extremely low false 

positive detection rates. Consistent with the performance of the AIC in other settings, its 

Bayesian analogue – the DIC – also showed higher false positive detection rates compared to 

the BIC, BF, and SSP, concordant with its general tendency to “under-penalize” and select 

over-parameterized models over simpler models. Interestingly, the LOO-PSIS, which was 

designed to overcome some of the limitations associated with the DIC, actually showed 

comparable or even slightly higher false positive detection rates than the DIC. The false 

positive detection rates were observed to decrease, however, with increasing complexity of 

the fitted models (and hence increased divergence from the true model, M0; see rows 2 and 3 

of column 1 in contrast to row 1). The order of the sensitivity of the Bayesian MCC 

8This heuristic way of rescaling the LRT statistics has been used in some applications (e.g., McArdle, Johnson, Hishinuma, 
Miyamoto, & Andrade, 2001) to facilitate comparisons of misfit when multiple parameters were simultaneously restricted to take on 
constrained values. It was motivated by the property that realizations from a chi-square distribution with higher dfs (i.e., df > 1), when 
divided by their corresponding dfs, yield lower proportions (< 5%) of cases exceeding the 95% cut-off value from a chi-square 
distribution with 1 df – in other words, traditional LRTs are less conservative as a test for detecting non-zero cross-loadings when 
there are many potential cross-loadings to be tested. We used the rescaled LRT test statistics (with differences in chi-square values 
divided by the difference in dfs) to control for the potential inflation in false detection rates under violations of distributional 
assumptions and account for the difference in model complexity, i.e., different numbers of non-zero cross-loadings.
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generally agrees with that of the false positive rates. When either the sample size or 

difference between the candidate models (e.g., cross-loading size or loading structure) are 

small, no Bayesian MCC dominate the other with both lower false positive rate and higher 

sensitivity. Using different MCC reflects the preference of more complex or parsimonious 

models. When the sample size and the model difference are large, the sensitivities of all 

Bayesian MCC gradually converge to 1, and the ones with smaller false positive rates are 

more preferable.

As noted earlier, the SSP approach generally involves simultaneous explorations of all 

possible cross-loadings to be freed up starting from the most general candidate model. 

Interestingly, the posterior model probabilities as calculated by the SSP actually led to better 

sensitivity compared to those obtained for the BF via bridge sampling, especially under 

simpler cross-loading structures and smaller cross-loading sizes. One possible explanation is 

that using bridge sampling to directly approximate the normalizing constants in (5) may be 

less accurate than formulating the calculation through the index variable R as in (10) 

because the choices of αs() and gs() are crucial for the performance of the bridge sampler, 

but may be difficult to optimize in practice.

Of all the frequentist MFIs, the rescaled LRT evaluated at the p-value cut-off of .05 yielded 

the best overall performance in the absence of distributional violation – demonstrating 

sensitivity comparable to SSP and slightly greater than the BF and BIC, but also slightly 

higher false positive detection rates in the “Single Cross-Loading” condition. The RMSEA 

(under the threshold-based approach evaluated at the conventional cut-off of .05) generally 

showed comparable false positive detection rates to BIC, BF and SSP, but had distinctly 

lower sensitivity in most conditions than Bayesian MCC and LRT (especially when the 

loading values were ≤ 0.2 and sample sizes were smaller than 200).

The sensitivity of the threshold-based MFIs was low in conditions with small cross-loading 

sizes, namely, when the cross-loadings were less than or equal to 0.2. In most of these cases, 

the MFIs obtained from fitting the misspecified Model M0 – when the more complex Model 

M1 was the true model – tended to pass the conventional thresholds of approximate fit, 

leading to the false selection of M0 as the preferred model. The poor sensitivity of RMSEA, 

SRMR and TLI in certain situations can be clarified by fitting the misspecified Model M0 to 

population covariance matrices generated using M1. Results from Table 1 indicated that even 

in the absence of sampling errors, no frequentist MFI demonstrated misfit that exceeded 

their threshold levels when the true loading values were 0.1; signs of misfit only began to 

surface in certain conditions with loading values of 0.2 and above for RMSEA and SRMR, 

and with loading values of 0.3 for TLI. Thus, the lower sensitivity of these frequentist MFIs 

reflects the property of these indices to prefer more parsimonious models under conditions 

with small cross-loading sizes (or specifically, small amounts of misfit relative to the df of 

the model). This property is not unlike that shown by the BF, the BIC and the SSP, except 

that the nature of the penalty – as dependent on the model df – differs slightly from that 

associated with the Bayesian MCC, which depends more heavily on the interplay between 

sample size and model complexity.
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One drawback of the threshold-based MFIs was that the threshold was determined 

heuristically or based on simulation. Altering the cut-offs concerning changes in model fit 

led to changes in true positive and false positive detection rates. Figure 2 showed the 

sensitivity of the MFIs under the three thresholds. The solid, dashed, and dotted lines with 

each symbol represented the sensitivity of each MFI given the most restrictive to the most 

liberal thresholds. The simulation results showed that changing the thresholds of MFIs did 

not substantially change how the sensitivity of these MFIs compared to those of the LRT and 

Bayesian MCC. Given more liberal thresholds, the sensitivity of the LRT increased toward 

those of the DIC and LOO-PSIS. However, its false positive rates also increased. More 

liberal thresholds for RMSEA, SRMR and TLI did not always improve sensitivity because 

the simpler model M0 also became more likely to pass the threshold and be selected. 

Another problem with using predetermined cut-offs with TLI and SRMR for model selection 

purposes was that the sensitivity of selecting the better model did not increase with sample 

size. Hence, model selection is inconsistent with these two indices. Overall, the “ideal” cut-

offs for the RMSEA as well as the TLI appeared to vary depending on cross-loading size, 

sample size, and the nature and complexity of the model at hand. The lack of theoretical 

justification on what the optimal cut-off values might be hinders the effective application of 

MFIs in model comparison of FAs.

Under Violations of Distributional Assumptions—In Figure 3 we compare the 

Bayesian MCC and threshold-based frequentist MFIs under violations of the normality and 

independence assumptions of the factor scores and residuals. Overall, the false positive rates 

of selecting model M1 over M0 increased slightly for all Bayesian MCC and frequentist 

MFIs. The DIC, LOO-PSIS, SSP, and LRT had greater increases in false positive detection 

rates under the specified distributional assumptions compared to the other measures 

considered.

Sensitivity estimates for detecting M1 when M1 was indeed the true model were largely 

similar to those observed in the absence of distributional violations. For Bayesian measures, 

such as the BF, BIC and SSP, there were actually some slight increases in sensitivity when 

the cross-loading sizes were small but decreases in sensitivity when cross-loading sizes were 

large. This might be due to the possibility that the distributional violations led to 

underestimation of the sampling variability of the parameters, thereby accidentally 

increasing sensitivity when the cross-loading magnitudes were small. At larger true cross-

loading sizes, however, slightly reduced sensitivity might have been observed as biases in 

point estimates began to lead some of these measures to choose the wrong, under-

parameterized model. Sensitivity estimates associated with the LRT remained consistently 

higher than those associated with other threshold-based frequentist MFIs. The LRT, despite 

its strong sensitivity estimates, yielded higher false positive rates under the distributional 

violations than the BF and BIC.9 Its false positive detection rates were generally similar to 

those observed with the SSP. Thus, compared to other frequentist MFIs, the performance of 

the LRT remained relatively robust under the violations of distributional conditions 

considered. The sensitivity of RMSEA increased much more slowly under the distributional 

9That was the case for both the traditional (with change in model χ2 compared to χ2 critical values at dfs = the change in dfs between 
models) or the rescaled LRT test statistics shown in the figures.
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violations in the simple and multiple cross-loading conditions. In contrast, the false positive 

rates of TLI were low and the sensitivity was relatively high compared to the other MFIs in 

the multiple and complex cross-loading conditions. The TLI may thus be preferred over the 

RMSEA in these conditions.

Comparing among Over-Parameterized Models—The conclusions were similar 

regardless of whether M0 or M1 was the true model. Here we omit the figures that show the 

number of replications where Model M1 was selected because they consisted of overlapping 

flat lines at 100 for all Bayesian MCC and frequentist MFIs except for the RMSEA and are 

thus not very informative. Specifically, all Bayesian MCC and frequentist MFIs, with the 

exception of the RMSEA implemented under the threshold-based approach, preferred M1 

over M2 in almost all replications. Under the “Single” and “Multiple” cross-loading 

conditions but not the “Complex” cross-loading condition, RMSEA actually selected the 

overparameterized Model M2 over the more parsimonious (i.e., offering closer 

approximation to the true Model M0) or true Model M1 in approximately 20% of the 

replications in the condition with n = 100. These results were somewhat unexpected, but 

closer inspection of the Monte Carlo estimates revealed that when the sample size was as 

small as n = 100, the RMSEA estimates were generally larger compared to conditions with 

larger n, and there was a greater range of variability in RMSEA values across replications. 

The RMSEA estimates from Model M1 would, at times, exceed the threshold value of 0.05 

by chance but the RMSEA estimates for the over-parameterized Model M2 were smaller 

than 0.05 (many times as small as <.00), thus resulting in the selection of Model M2 over 

Model M1 in a small number of replications. Overall, however, all Bayesian and frequentist 

model selection indices appeared to perform satisfactorily in selecting the model that offered 

a more parsimonious approximation to the true model when used to select among over-

parameterized models.

Performance of Frequentist MFIs under the Threshold-Based vs. the Best-Fitting Approach

We calculated the highest true positive and false positive rates among the three thresholds of 

each threshold-based MFI in each condition and compared them to the RMSEA, SRMR and 

TLI with best-fitting approach. The results across different sample and cross-loading sizes in 

the absence of distributional violations were shown in Figure 4 and the results with 

violations of distributional assumptions were shown in Figure 5. The false positive rates and 

sensitivity under the best-fitting approach were shown with solid lines, whereas the maxima 

of the threshold-based approaches among the three thresholds in each condition were shown 

in dashed lines. For false positive rates, we only showed those in the range of 0% to 20% to 

better demonstrate the differences. The false positive and true positive rates of the SRMR 

under best-fitting approach were between 80% to 100%, those of the TLI were between 30% 

to 40% and those of the RMSEA were about 20% in all the conditions.

In the absence of distributional violations, implementing the MFIs as the “best-fitting” 

approach led to high sensitivity in the smallest sample sizes and cross-loading sizes 

considered with elevated false positive detection rates compared to the Bayesian MCC. This 

pattern illustrated that these MFIs, when used as “best-fitting” approaches, did not penalize 

complex model well. Under the violations of distributional assumptions considered, 
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sensitivity generally reduced for the TLI with the best-fitting approach. The reduction in 

sensitivity was not as notable for the best-fitting RMSEA approach, even though using the 

RMSEA as a best-fitting approach did yield increased false positive detection rates that now 

paralleled those of the TLI (between 40% and 60%). Across all conditions and approaches, 

the SRMR consistently performed worse than the RMSEA or the TLI. Specifically, the 

SRMR as implemented under the best-fitting approach consistently yielded over 80% of 

false detection rates across all conditions, and under the threshold approach yielded 

distinctly lower sensitivity estimates than all other frequentist MFIs. Overall, of all the 

frequentist MFIs considered, the LRT considered (based on the change in model fit per df of 

change in model complexity) appeared to yield the best balance between true positive and 

false positive detection rates, and remained relatively robust under the violations of 

distributional violations considered.

Summary of Simulation Results

When sample sizes and cross-loading sizes were small, neither frequentist MFIs nor 

Bayesian MCC could simultaneously achieve low false positive detection rates and high 

sensitivity while still being robust to distributional violations. All else considered, the 

Bayesian MCC demonstrated several advantages compared to the frequentist MFIs in a 

number of aspects: (1) Bayesian MCC generally showed higher sensitivity estimates 

especially in conditions with smaller sample and cross-loading sizes; (2) they were more 

robust to violations of distributional assumptions compared to the frequentist MFIs, and (3) 

they were designed specifically for model comparison purposes and are not prone to the 

difficulties that arise in choosing between the threshold-based and best-fitting approaches.

The relatively new and less widely known LOO-PSIS was found to have false positive 

detection rates and true positive rates that closely paralleled those associated with the DIC. 

Of all the measures considered, the BF (as approximated using bridge sampling or the SSP), 

the BIC, and the LRT emerged as the best approaches in terms of balancing true positive 

rates and false positive detection rates. Both the BF and the BIC closely paralleled the LRT 

when cross-loading size and sample sizes were large, but generally preferred more 

parsimonious models under weaker signals and smaller sample sizes. In cases where the use 

of LRT is not viable and other MCC are unavailable, the RMSEA shows the best overall 

performance of all the threshold-based approaches considered, except under conditions with 

violations of distributional assumptions, and when the number of cross-loadings to be 

detected is large, in which case the TLI tended to show higher sensitivity than the RMSEA. 

The best-fitting approaches in general were characterized by higher true positive but also 

very high false positive rates. Thus, we recommend using the best-fitting approach only as a 

way of screening for plausible effects to be cross-validated in future studies. The SRMR 

consistently showed less satisfactorily performance than other frequentist measures 

considered. We do not recommended its use as a model comparison measure especially 

when implemented as a best fitting approach.

With the current choices of density functions for the bridge sampling and the distinct prior 

used in the SSP, we found that the SSP was not only a viable computational engine for 

calculating the BF under confirmatory settings, its sensitivity estimates actually 
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outperformed those associated with the BF as computed via bridge sampling under simpler 

cross-loading structures and lower cross-loading sizes. Using the SSP eliminates the need to 

select appropriate density functions in the bridge sampling, which can affect the 

performance of the BF in critical ways. As the model space became more complicated, the 

differences between the SSP and the BF diminished because the larger model space 

introduced more uncertainty that affected the accuracy of the SSP as compared to the BF. In 

other exploratory cases in which the SSP is used to explore a much broader range of models 

than the limited number of candidate models compared using the BF, we would expect the 

BF to outperform the SSP.

Empirical Example

Method

Our simulation results helped elucidate the relative performance of the frequentist MFIs and 

Bayesian MCC under conditions where these fit measures could be reasonably compared. In 

many empirical applications, however, the challenges faced by researchers may be more 

complex than those considered in our simulation study. We present one such empirical 

example, and provide additional guidelines and insights on ways to better capitalize in 

practice on the strengths of the fit measures.

Our empirical example involves three subscales from the Motivated Strategies for Learning 

Questionnaire (MSLQ, Artino Jr, 2005; Pintrich & De Groot, 1990). The three scales are 

rehearsal, elaboration, and effort regulation (see Appendix for items), and they are related to 

self-regulation strategies. The respondents were approximately 2000 students enrolled in a 

large introductory science class at a major university.

We first considered two confirmatory models and evaluated their frequentist MFIs and 

Bayesian MCC. The two models, denoted herein as M1 and M2, are characterized by the 

factor loading structures shown in Table 2. The 1s and 0s shown in the loading matrices 

were fixed at the valuesbased on confirmatory knowledge and fulfilled the sufficient 

conditions in Peeters (2012) for identification. M1 was the expected structure based on the 

common use of the scale. M2 was a confirmatory model where the effort regulation scale 

split into two factors potentially related to positive and negative effort regulation strategies.

We split the data in half to yield testing and cross-validation data sets to illustrate model 

selection difficulties that researchers might face with real data. In our case, neither of the 

two confirmatory models yielded frequentist MFI values close to the conventional threshold 

values of approximate fit (see Table 3). Moreover, LRT, the frequentist measure with the best 

overall performance based on our simulation results, cannot be easily applied in this case to 

compare Models M1 and M2 (or generally models positing different numbers of latent 

factors) because constraining the former to be nested within the latter requires setting the 

correlation between the third and the fourth latent factor to 1.0. This puts the correlation 

parameter on the boundary of its permissible values, thus violating one of the regularity 

conditions needed for applying the LRT (Savalei & Kolenikov, 2008).
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This scenario is not uncommon in empirical studies: if all of the absolute/incremental 

frequentest MFIs suggested that the confirmatory models did not provide a reasonable 

description of the data, how might one proceed from here? Exploratory approaches based on 

modification indices (Sörbom, 1989) could be used to improve the fit of the confirmatory 

models, but this approach has its own issues (e.g., difficulties in quantifying the uncertainties 

associated with modification indices, especially when used in a stepwise manner to explore 

the gain in fit from freeing up non-orthogonal parameters; Lu et al., 2016).

To resolve these dilemmas, we applied the Bayesian SSP approach to the testing data set to 

identify the cross-loadings with posterior inclusion probabilities larger than 0.5. In 

particular, SSP was assigned to all the cross-loadings fixed at zero in Model M2 except for 

q(q − 1) cross-loadings fixed at zero and q main-loadings fixed at one (leading to q2 

identification constraints). This yielded Model M3 (see Table 3), with 9 additional cross-

loadings as indicated. We then used the second data set for estimation and simultaneous 

comparisons of Models M1, M2, and M3.

The frequentist MFIs were calculated in Mplus with maximum likelihood estimation. We 

used an informative prior distribution to compute the Bayesian MCC. The hyperparameters 

in (4) were chosen such that the prior means were in the middle of the range of the 

parameters and the informativeness of the prior distributions was modest compared to the 

data. Specifically, we used μ0j = 0, λ0jk = 0 , α1j = 7, α2j = 3; ρ0 = 5 and Φ = 

0.5I3 were used for M1, and ρ0 = 6 and Φ = 0.5I4 were used for M2 and M3, where Ik was a 

k × k identity matrix. 5000 burn-in samples were discarded, and an additional 95,000 

samples were collected to calculate the Bayesian MCC. The MCMC samples were thinned 

by 10, resulting in 9,500 samples.

Results

Table 3 showed the results of the Bayesian MCC and frequentist MFIs for all pertinent 

model comparisons. All Bayesian MCC and threshold-based MFIs found M1 inferior to M2. 

However, M1 and M2 did not meet conventional thresholds for approximate fit in both the 

testing and cross-validation data sets, demonstrating, again, some of the difficulties in using 

threshold-based MFIs in practice. In contrast, Model M3 identified using the SSP approach 

satisfied all the traditional cut-offs of RMSEA, SRMR, and CFI based on results from the 

cross-validation data set. All Bayesian MCC, best-fitting MFIs and LRT also suggested that 

M3 showed considerable improvements over M2.

Parameter estimates for M2 and M3 are summarized in Table 4. Although in M2 the items 

loaded well on their respective factors, there were substantial factor correlations and the 

model did not have particularly good fit. M3 used cross-loadings to account for the unique 

variances and correlations in M2. For example, for items 4 and 8, the unique variances 

dropped substantially when they were allowed to cross-load – both were positively 

associated with the rehearsal factor and negatively loaded with positive effort regulation as 

captured in the fourth factor. Clearly these items (along with Item 5, 6 and 9) carried 

additional meanings to those assumed by the a priori simple structure.
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These competing models had different interpretations and implications for how learning 

strategies will predict performance. A recent study (Cai & Zhu, 2017) found a suppression 

pattern when predicting reading achievement in PISA 2009 data using scales very similar to 

the three analyzed here. The patterns of positive and negative loadings in M3, along with the 

strong positive correlation between factors 1 and 4, were consistent with what was found by 

Cai and Zhu.

Discussion

Summary and Practical Guidelines

In this article, we reviewed popular Bayesian model comparison methods, discussed their 

connections, and compared their performance to commonly adopted frequentist MFIs as 

implemented using the threshold-based and best-fitting approaches. Our simulation results 

indicated that of the measures considered, the BF and the BIC showed the best balance 

between true positive and false detection rates. The SSP was found to be a viable 

computational engine for the BF, and its sensitivity estimates even surpassed those 

associated with the BF as computed using bridge sampling under conditions with simpler 

cross-loading structure and lower cross-loading size, despite slightly elevated false positive 

rates under violations of distributional assumptions. The LOO-PSIS shows comparable 

performance to the DIC, and both are characterized by the highest sensitivity among all the 

Bayesian MCC considered, but at the expense of slightly elevated false positive rates. 

Consolidating results from our simulation and empirical studies, we have compiled a list of 

practical guidelines and suggestions for the use of these fit measures in future studies:

1. When sample sizes and cross-loading sizes are relatively large, the sensitivity of 

the Bayesian MCC and LRT are similar. The false positive rate plays a more 

important role. When the number of non-zero parameters to be detected is small, 

BIC and BF may be considered; when this number is medium or large, SSP, DIC, 

and LRT may be considered.

2. When sample sizes and cross-loading sizes are relatively small, some trade-offs 

will inevitably have to be made in choosing among the various measures, and 

where one lands on this continuum depends on the goals and priorities of the 

researcher. For instance, the BIC or BF may be prioritized if the bigger concern 

is to prevent potential false positive errors. In contrast, it may be useful to 

complement the BF and/or the BIC with the LRT, the DIC or LOO-PSIS when 

the goal is to maximize sensitivity.

3. Under the kind of violations of normality and independence assumptions we 

considered, the order of sensitivity of the Bayeisan MCC and LRT are similar to 

the case without distributional violation and the previous suggestions still apply. 

However, given the inflation in false positive rates, methods with low false 

positive rates should generally be preferred. The false positive rates of DIC and 

LOO-PSIS are much inflated and are not recommended in these conditions. 

When the number of non-zero parameters to be detected is small and medium, 

BIC and BF may be considered; when this number is medium or large, the SSP 

may be considered.

Lu et al. Page 23

Psychol Methods. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4. In cases where the LRT cannot be used but a researcher wishes to consider 

information from frequentist MFIs, the threshold-based RMSEA or TLI may be 

used for model comparison purposes if both the cross-loading size and sample 

size are large. The TLI may be preferred over the RMSEA in terms of sensitivity 

under the kind of distributional violations we considered, and when the number 

of non-zero parameters to be detected is medium or large.

5. All frequentist MFIs with the best-fitting approach yielded very high false 

positive rates; this approach is thus not recommended except for exploring 

potential parameters.

6. The SSP can be used for model exploration purposes followed by careful cross-

validation.

For researchers interested in implementing the SSP-based variable selection 

approach, we note that this method as it stands cannot be implemented using 

existing general MCMC software such as OpenBUGs, JAGS or MPlus. In 

addition, many of the Bayesian MCC considered in the present article, except for 

DIC, are not routinely output by general MCMC software. Mplus, for instance, 

only outputs the DIC and the BIC. All the Bayesian MCC considered in the 

present article have been implemented in the R scripts we provide on the 

website.

Limitations of the Present Study

Some limitations of the current study can be overcome in future studies. First, our 

conclusions and suggestions were guided primarily by Monte Carlo simulation studies and 

practical difficulties encountered in a substantive context. Generalizations to other models 

such as structural equation models, and models with categorical data are worth pursuing. In 

addition, we only considered a limited number of violations of normality and independence 

assumptions, and conclusions may differ for other kinds of distributional violations (e.g., as 

considered in Hu & Bentler, 1999). It is also worth comparing the performance of more 

advanced frequentist methods designed specifically to handle non-normality, such as scaled 

LRTs (see e.g., Satorra, 2000; Satorra & Bentler, 1988, 2010; Satterthwaite, 1941; Wu & J. 

Lin, 2016), with the performance of the Bayesian MCC.

Other limitations of the present study also warrant careful investigation in future studies. For 

instance, we used point estimates of the frequentist MFIs and Bayesian MCC for model 

comparison but did not investigate the randomness of these quantities. Accounting for the 

randomness in model comparison may offer more comprehensive model assessment. The 

randomness of most MFIs is hard to measure except for the RMSEA, the confidence interval 

of which can be estimated (Browne & Cudeck, 1992). In comparison, the BF is based on 

posterior model probabilities which naturally measure the model comparison uncertainty. 

The LOO-PSIS, based on the predictive probabilities, also offers a standard error estimate. 

Another Bayesian MCC not presented in this paper is the Lv measure (Ibrahim et al., 2001), 

which quantifies its uncertainty with a calibration distribution. However, the associated 

computation may be time-consuming.
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The current study focused on model comparison methods. We did not consider or include a 

comparison with Bayesian goodness-of-fit indices such as posterior predictive checks 

(Gelman et al., 1996), which provide randomness quantities not available for many 

frequentist MFIs. However, similar to the reasons for not using frequentist MFIs under the 

best-fitting approach, we do not recommend using this method for model comparison 

purposes because no effective penalty for model complexity has been incorporated. While 

some conventional guidelines for acceptable fit do exist, the feasibility of using these 

thresholds for model comparison purposes warrants further investigation.

In the present study, we estimated the BF with bridge sampler, which may not be very 

accurate due to the discrepancy between the density function of the expectation and the 

function in the expectation. Calculation of the normalizing constants has been a challenging 

problem in Bayesian computation. Other methods have been proposed to improve the 

calculation of the normalizing constants such as path sampling (Gelman & Meng, 1998). 

The idea of path sampling is to construct an ordered series of models (e.g., between M1 and 

M2 in (5)) and reduce the difference of each pair of adjacent models to increase the 

performance in approximating the expectations. Path sampling may lead to more accurate 

estimates of BF at the expense of much higher computational costs because estimation and 

inference are conducted for every model in the series. Dutta and Ghosh (2013) showed that 

the construction of the path may also cause additional problems for estimating the 

expectation. Due to the time-consuming nature of the path sampling and the large number of 

settings and replications in our analysis, we only considered the bridge sampling and showed 

that the SSP provides a viable way of computing the BF. The comparison of various 

methods for computing the normalizing constant in the BF is beyond the scope of this paper 

but should be considered in more detail in future studies.

As Bayesian MCC depends on the posterior distributions and hence the prior distributions, 

prior specifications can be expected to have some effects on the performance of the Bayesian 

MCC. The BF tends to select simpler models under a non-informative prior, which limits its 

use when informative prior distributions of parameters are not available. The BIC, DIC, and 

Bayesian LOO are based on the expectations of the parameters with respect to their posterior 

distributions. When the sample size is large, the posterior distributions are dominated by the 

likelihood rather than the prior distributions. In this case, these Bayesian MCC should not be 

very sensitive to the prior distributions. When sample size is limited or the model is 

complex, these Bayesian MCC may be sensitive to the prior distributions, but this prior 

sensitivity is not necessarily a disadvantage under limited information from the sample 

(Vanpaemel, 2010).

All model selection approaches noted in the study – including the LRTs, MFIs and MCC – 

are mostly confirmatory measures that serve to select the “best” model from a small set of 

candidate models. In some contexts, CFA may use too many confirmatory constraints on the 

loadings, which induce local modes in the likelihood and cause estimation problems 

(Millsap, 2001). The number of viable models may be too large to afford a confirmatory 

route to model testing. Of the many Bayesian variable selection techniques in the literature 

(Lu et al., 2016; Mavridis & Ntzoufras, 2014; B. O. Muthén & Asparouhov, 2012; Park & 

Casella, 2008), we only showed the performance of one such techniques – the SSP – in the 
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restricted context of our empirical example. However, despite the “stylistic” difference 

between model comparison and variable selection approaches, they use related tools that all 

subsume under the framework of regularization/penalized methods. For instance, even 

though it may not be apparent to the reader at this point, both the AIC and the BIC can be 

structured as regularization approaches with penalty functions involving the number of 

parameters, also known as the L0-norm of θ. Of direct interest to factor analytic researchers 

is the fact that rotation in EFA may also be understood as a special case of the regularization 

framework wherein the penalty function serves to “shrink” the estimated factor structures 

toward some desirable theoretical structures quantified by certain simplicity function. As 

such, the SSP can also be used for model exploration in similar ways (though not identical) 

to EFA. Elsewhere, we have shown that the SSP leads to more parsimonious estimation and 

higher sensitivity in identifying important cross-loadings compared to EFA (Lu et al., 2016).

Conclusions

The performance of various frequentist MFIs has been one of the most widely examined 

topics in the history of the psychometric literature. Discussions on the various Bayesian 

MCC and proposals for newer variations have also remained a popular topic in the statistical 

literature for decades. Despite the (largely) parallel proliferation of research findings in these 

two areas, the present article is one of the first at attempting to bridge the gap between the fit 

measures/model comparison tools used in these two worlds. As much as possible, we have 

striven to take on an impartial tone and use performance measures that apply generally to the 

two camps of fit measures. Of course, our study is by no means exhaustive. Nevertheless, we 

hope to have provided the reader with some useful insights and guidelines, and that our work 

will continue to inspire more investigations into ways to capitalize and build on the strengths 

of both frequentist and Bayesian fit measures.
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Refer to Web version on PubMed Central for supplementary material.
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Appendix. List of Items in the Empirical Study

• When I study for this class, I practice saying the material to myself over and 

over.

• When studying for this course, I read my class notes and the course readings 

over and over again.

• I memorize key words to remind me of important concepts in this class.

• I make lists of important items for this course and memorize the lists.

• When I study for this class, I pull together information from different sources, 

such as lectures, readings, and discussions.

• I try to relate ideas in this subject to those in other courses whenever possible.

• When reading for this class, I try to relate the material to what I already know.

• When I study for this course, I write brief summaries of the main ideas from the 

readings and my class notes.

• I try to understand the material in this class by making connections between the 

readings and the concepts from the lectures.

• I try to apply ideas from course readings in other class activities such as lecture 

and discussion.
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• I often feel so lazy or bored when I study for this class that I quit before I finish 

what I planned to do. (reverse coded)

• I work hard to do well in this class even if I don’t like what we are doing.

• When course work is difficult, I either give up or only study the easy parts. 

(reverse coded)

• Even when course materials are dull and uninteresting, I manage to keep working 

until I finish.
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Figure 1. 
The number of replications where model M1 was selected by different frequentist MFIs and 

Bayesian MCC as the preferred model over M0 based on 100 replications with normally 

distributed factor scores and errors. The first, second and third rows represent the results 

from the conditions assuming “Single,” “Multiple,” and “Complex” cross-loading structures 

respectively. The columns show the conditions with different sizes of cross-loading effects, 

as shown in the title of each figure. The frequentist MFIs here were used to perform model 

comparison using the threshold-based approach with the default thresholds.
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Figure 2. 
The sensitivity of the MFIs under the three thresholds where Model M1 was true and was 

selected based on 100 replications with normally distributed factor scores and errors. The 

solid, dashed, and dotted lines with each symbol represent the sensitivity of each MFI given 

the most restrictive to the most liberal thresholds. The first, second and third rows represent 

the results based on the true data generating model from the “Single Cross-Loading”, 

“Multiple Cross-Loading”, and “Complex Cross-Loading” conditions, respectively. The 

columns show the situations with different sizes of cross-loading effects, as shown in the 

title of each figure.
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Figure 3. 
The number of replications where model M1 was selected by different frequentist MFIs and 

Bayesian MCC as the preferred model over M0 based on 100 replications with non-normally 

distributed and dependent factor scores and errors. The first, second and third rows represent 

the results from the conditions assuming “Single,” “Multiple,” and “Complex” cross-loading 

structures respectively. The columns show the conditions with different sizes of cross-

loading effects, as indicated by the title of each figure. The frequentist MFIs here were used 

to perform model comparison using the threshold-based approach with the default 

thresholds. We selected more restrictive ranges for the vertical axes to better highlight subtle 

differences among most of the fit measures. For measures whose false positive rates fell out 

of the range used in the first column, the false positive rates of the DIC and LOO-PSIS were 

in the ranges of [35, 40]. [25, 35] and [15, 35] for the three cross-loading conditions, 

respectively.
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Figure 4. 
The number of replications where Model M1 was selected by different frequentist MFIs as 

the preferred model using both threshold-based and best-fitting approaches based on 100 

replications with normally distributed factor scores and errors. The first, second and third 

rows represent the results based on the true data generating model from the “Single Cross-

Loading”, “Multiple Cross-Loading”, and “Complex Cross-Loading” conditions, 

respectively. The columns show the situations with different sizes of cross-loading effects, as 

indicated by the title of each figure. The numbers of best-fitting approaches were shown 

with solid lines, whereas the maxima of each threshold-based approach among the three 

thresholds in each condition were shown in dashed lines. We selected more restrictive ranges 

for the vertical axes to better highlight subtle differences among most of the fit measures. 

For measures whose false positive rates fell out of the ranges shown, the false positives were 

about 80, 100, and 100 for the SRMR (best-fitting approach) in the simple, multiple and 

complex conditions, respectively. Those of the TLI (best-fitting approach) were about 30, 40 

and 40, respectively, and those of the RMSEA (best-fitting approach) were about 20 in all 

conditions.
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Figure 5. 
The number of replications where model M1 was selected by different frequentist MFIs 

using both the threshold-based and best-fitting approaches as the preferred model based on 

100 replications with non-normally distributed and dependent factor scores and errors. The 

first, second and third rows represent the results based on the true data generating model 

from the “Single Cross-Loading”, “Multiple Cross-Loading”, and “Complex Cross-

Loading” conditions, respectively. The columns show the situations with different sizes of 

cross-loading effects, as indicated by the title of each figure. The numbers of best-fitting 

approaches were shown with solid lines, whereas the maxima of each threshold-based 

approach among the three thresholds in each condition were shown in dashed lines. We 

selected more restrictive ranges for the vertical axes to better highlight subtle differences 

among most of the fit measures. For measures whose false positive rates fell out of the 

ranges shown, the false positives were about 90, 100, and 100 for the SRMR (the best-fitting 

approach) in the simple, multiple and complex conditions, respectively. Those of the TLI 

and RMSEA (best-fitting approach) were about 40, 40 and 50, respectively; and those of the 

LRT (threshold-based approach) were about 30 in all conditions.
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	The threshold-based implementation of the frequentist MFIs is more in line with the theoretical underpinnings of these MFIs. In light of this, we organized our simulation results to first compare Bayesian MCC and frequentist MFIs when implemented under the threshold-based approach. Implications on violating distributional assumptions and model comparison results among over-parameterized models are highlighted within the context of these comparisons. This was followed by a brief summary of results from comparing the frequentist MFIs under the threshold-based vs. the best-fitting approach, and in relation to the performance of the Bayesian MCC in general.Comparisons between the Frequentist MFIs and Bayesian MCC—The results of using the frequentist MFIs under the threshold approach and Bayesian MCC for pairwise model comparisons are shown in Figure 1. Specifically, we used the “conventional” cut-off values of .05 for both the RMSEA and SRMR, .95 for the TLI, and we implemented the LRT as the ratio between the change in χ2 goodness of fit values between Models M0 and M1 and the corresponding change in model degrees of freedom (dfs) as compared to a χ2 critical value at the .05 level with 1 df.88This heuristic way of rescaling the LRT statistics has been used in some applications (e.g., McArdle, Johnson, Hishinuma, Miyamoto, & Andrade, 2001) to facilitate comparisons of misfit when multiple parameters were simultaneously restricted to take on constrained values. It was motivated by the property that realizations from a chi-square distribution with higher dfs (i.e., df > 1), when divided by their corresponding dfs, yield lower proportions (< 5%) of cases exceeding the 95% cut-off value from a chi-square distribution with 1 df – in other words, traditional LRTs are less conservative as a test for detecting non-zero cross-loadings when there are many potential cross-loadings to be tested. We used the rescaled LRT test statistics (with differences in chi-square values divided by the difference in dfs) to control for the potential inflation in false detection rates under violations of distributional assumptions and account for the difference in model complexity, i.e., different numbers of non-zero cross-loadings. Each row of plots corresponds to one hypothesized cross-loading setting, and each column corresponds to one of four true cross-loading magnitudes (0, .1, .2 or .3) or cross-loading sizes. Because the true data generating model for all the plots in column 1 was model M0, the ordinate values (vertical axes) of all plots in this column depict the false positive detection rates of selecting M1 when M0 was the true data generating model. The second to the fourth columns of Figure 1 show the power or true positive detection rates (i.e., the number of replications that selected M1 when M1 was in fact the true model). The CFI results generally fell somewhere between those associated with the TLI and RMSEA, and were thus not plotted to avoid cluttering the figures.All Bayesian MCC and threshold-based frequentist MFIs (among the lowest lines in the first column of Figure 1), with the exception of the DIC and LOO-PSIS, tended to select the parsimonious model M0 when it was indeed the true model, leading to extremely low false positive detection rates. Consistent with the performance of the AIC in other settings, its Bayesian analogue – the DIC – also showed higher false positive detection rates compared to the BIC, BF, and SSP, concordant with its general tendency to “under-penalize” and select over-parameterized models over simpler models. Interestingly, the LOO-PSIS, which was designed to overcome some of the limitations associated with the DIC, actually showed comparable or even slightly higher false positive detection rates than the DIC. The false positive detection rates were observed to decrease, however, with increasing complexity of the fitted models (and hence increased divergence from the true model, M0; see rows 2 and 3 of column 1 in contrast to row 1). The order of the sensitivity of the Bayesian MCC generally agrees with that of the false positive rates. When either the sample size or difference between the candidate models (e.g., cross-loading size or loading structure) are small, no Bayesian MCC dominate the other with both lower false positive rate and higher sensitivity. Using different MCC reflects the preference of more complex or parsimonious models. When the sample size and the model difference are large, the sensitivities of all Bayesian MCC gradually converge to 1, and the ones with smaller false positive rates are more preferable.As noted earlier, the SSP approach generally involves simultaneous explorations of all possible cross-loadings to be freed up starting from the most general candidate model. Interestingly, the posterior model probabilities as calculated by the SSP actually led to better sensitivity compared to those obtained for the BF via bridge sampling, especially under simpler cross-loading structures and smaller cross-loading sizes. One possible explanation is that using bridge sampling to directly approximate the normalizing constants in (5) may be less accurate than formulating the calculation through the index variable R as in (10) because the choices of αs() and gs() are crucial for the performance of the bridge sampler, but may be difficult to optimize in practice.Of all the frequentist MFIs, the rescaled LRT evaluated at the p-value cut-off of .05 yielded the best overall performance in the absence of distributional violation – demonstrating sensitivity comparable to SSP and slightly greater than the BF and BIC, but also slightly higher false positive detection rates in the “Single Cross-Loading” condition. The RMSEA (under the threshold-based approach evaluated at the conventional cut-off of .05) generally showed comparable false positive detection rates to BIC, BF and SSP, but had distinctly lower sensitivity in most conditions than Bayesian MCC and LRT (especially when the loading values were ≤ 0.2 and sample sizes were smaller than 200).The sensitivity of the threshold-based MFIs was low in conditions with small cross-loading sizes, namely, when the cross-loadings were less than or equal to 0.2. In most of these cases, the MFIs obtained from fitting the misspecified Model M0 – when the more complex Model M1 was the true model – tended to pass the conventional thresholds of approximate fit, leading to the false selection of M0 as the preferred model. The poor sensitivity of RMSEA, SRMR and TLI in certain situations can be clarified by fitting the misspecified Model M0 to population covariance matrices generated using M1. Results from Table 1 indicated that even in the absence of sampling errors, no frequentist MFI demonstrated misfit that exceeded their threshold levels when the true loading values were 0.1; signs of misfit only began to surface in certain conditions with loading values of 0.2 and above for RMSEA and SRMR, and with loading values of 0.3 for TLI. Thus, the lower sensitivity of these frequentist MFIs reflects the property of these indices to prefer more parsimonious models under conditions with small cross-loading sizes (or specifically, small amounts of misfit relative to the df of the model). This property is not unlike that shown by the BF, the BIC and the SSP, except that the nature of the penalty – as dependent on the model df – differs slightly from that associated with the Bayesian MCC, which depends more heavily on the interplay between sample size and model complexity.One drawback of the threshold-based MFIs was that the threshold was determined heuristically or based on simulation. Altering the cut-offs concerning changes in model fit led to changes in true positive and false positive detection rates. Figure 2 showed the sensitivity of the MFIs under the three thresholds. The solid, dashed, and dotted lines with each symbol represented the sensitivity of each MFI given the most restrictive to the most liberal thresholds. The simulation results showed that changing the thresholds of MFIs did not substantially change how the sensitivity of these MFIs compared to those of the LRT and Bayesian MCC. Given more liberal thresholds, the sensitivity of the LRT increased toward those of the DIC and LOO-PSIS. However, its false positive rates also increased. More liberal thresholds for RMSEA, SRMR and TLI did not always improve sensitivity because the simpler model M0 also became more likely to pass the threshold and be selected. Another problem with using predetermined cut-offs with TLI and SRMR for model selection purposes was that the sensitivity of selecting the better model did not increase with sample size. Hence, model selection is inconsistent with these two indices. Overall, the “ideal” cut-offs for the RMSEA as well as the TLI appeared to vary depending on cross-loading size, sample size, and the nature and complexity of the model at hand. The lack of theoretical justification on what the optimal cut-off values might be hinders the effective application of MFIs in model comparison of FAs.Under Violations of Distributional Assumptions—In Figure 3 we compare the Bayesian MCC and threshold-based frequentist MFIs under violations of the normality and independence assumptions of the factor scores and residuals. Overall, the false positive rates of selecting model M1 over M0 increased slightly for all Bayesian MCC and frequentist MFIs. The DIC, LOO-PSIS, SSP, and LRT had greater increases in false positive detection rates under the specified distributional assumptions compared to the other measures considered.Sensitivity estimates for detecting M1 when M1 was indeed the true model were largely similar to those observed in the absence of distributional violations. For Bayesian measures, such as the BF, BIC and SSP, there were actually some slight increases in sensitivity when the cross-loading sizes were small but decreases in sensitivity when cross-loading sizes were large. This might be due to the possibility that the distributional violations led to underestimation of the sampling variability of the parameters, thereby accidentally increasing sensitivity when the cross-loading magnitudes were small. At larger true cross-loading sizes, however, slightly reduced sensitivity might have been observed as biases in point estimates began to lead some of these measures to choose the wrong, under-parameterized model. Sensitivity estimates associated with the LRT remained consistently higher than those associated with other threshold-based frequentist MFIs. The LRT, despite its strong sensitivity estimates, yielded higher false positive rates under the distributional violations than the BF and BIC.99That was the case for both the traditional (with change in model χ2 compared to χ2 critical values at dfs = the change in dfs between models) or the rescaled LRT test statistics shown in the figures. Its false positive detection rates were generally similar to those observed with the SSP. Thus, compared to other frequentist MFIs, the performance of the LRT remained relatively robust under the violations of distributional conditions considered. The sensitivity of RMSEA increased much more slowly under the distributional violations in the simple and multiple cross-loading conditions. In contrast, the false positive rates of TLI were low and the sensitivity was relatively high compared to the other MFIs in the multiple and complex cross-loading conditions. The TLI may thus be preferred over the RMSEA in these conditions.Comparing among Over-Parameterized Models—The conclusions were similar regardless of whether M0 or M1 was the true model. Here we omit the figures that show the number of replications where Model M1 was selected because they consisted of overlapping flat lines at 100 for all Bayesian MCC and frequentist MFIs except for the RMSEA and are thus not very informative. Specifically, all Bayesian MCC and frequentist MFIs, with the exception of the RMSEA implemented under the threshold-based approach, preferred M1 over M2 in almost all replications. Under the “Single” and “Multiple” cross-loading conditions but not the “Complex” cross-loading condition, RMSEA actually selected the overparameterized Model M2 over the more parsimonious (i.e., offering closer approximation to the true Model M0) or true Model M1 in approximately 20% of the replications in the condition with n = 100. These results were somewhat unexpected, but closer inspection of the Monte Carlo estimates revealed that when the sample size was as small as n = 100, the RMSEA estimates were generally larger compared to conditions with larger n, and there was a greater range of variability in RMSEA values across replications. The RMSEA estimates from Model M1 would, at times, exceed the threshold value of 0.05 by chance but the RMSEA estimates for the over-parameterized Model M2 were smaller than 0.05 (many times as small as <.00), thus resulting in the selection of Model M2 over Model M1 in a small number of replications. Overall, however, all Bayesian and frequentist model selection indices appeared to perform satisfactorily in selecting the model that offered a more parsimonious approximation to the true model when used to select among over-parameterized models.
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