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Abstract

Smallpox vaccine is highly effective, inducing protective immunity to smallpox and diseases
caused by related orthopoxviruses. Smallpox vaccine efficacy was historically defined by the
appearance of a lesion or “take” at the vaccine site, which leaves behind a characteristic scar. Both
the take and scar are readily recognizable and were used during the eradication effort to indicate
successful vaccination and to categorize individuals as “protected.” However, the development of a
typical vaccine take may not equate to the successful development of a robust, protective immune
response. In this report, we examined two large (>1,000) cohorts of recipients of either Dryvax®
or ACAM2000 using a testing and replication study design and identified subgroups of individuals
who had documented vaccine takes, but who failed to develop robust neutralizing antibody titers.
Examination of these individuals revealed that they had suboptimal cellular immune responses as
well. Further testing indicated these low responders had a diminished innate antiviral gene
expression pattern (/FNA1, CXCL10, CXCL11, OASL) upon /in vitro stimulation with vaccinia
virus, perhaps indicative of a dysregulated innate response. Our results suggest that poor activation
of innate antiviral pathways may result in suboptimal immune responses to the smallpox vaccine.
These genes and pathways may serve as suitable targets for adjuvants in new attenuated smallpox
vaccines and/or effective antiviral therapy targets against poxvirus infections.

Address correspondence to: Gregory A. Poland, M.D. Director, Mayo Vaccine Research Group, Mayo Clinic, Guggenheim 611C, 200
First Street SW, Rochester, MN 55905, Phone: (507) 284-4968, Fax: (507) 266-4716, poland.gregory@mayo.edu.

Conflict of Interest/Disclosures

Dr. Poland is the chair of a Safety Evaluation Committee for novel investigational vaccine trials being conducted by Merck Research
Laboratories. Dr. Poland offers consultative advice on vaccine development to Merck & Co. Inc., CSL Biotherapies, Avianax,
Dynavax, Novartis Vaccines and Therapeutics, Emergent Biosolutions, Adjuvance, Microdermis, Segirus, NewLink, Protein Sciences,
GSK Vaccines, and Sanofi Pasteur. Dr. Kennedy has received grant funding from Merck Research Laboratories to study mumps
vaccine responses. Drs. Poland and Ovsyannikova hold two patents related to vaccinia and measles peptide research. Dr. Jacobson is a
member of a Safety Review Committee and a Data Monitoring Committee for several vaccine studies conducted by Merck Research
Laboratories. The other authors do not have any conflict of interest. Dr. Poland’s consultant activities and this research have been
reviewed by the Mayo Clinic Conflict of Interest Review Board and are conducted in compliance with Mayo Clinic Conflict of
Interest policies.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kennedy et al. Page 2

Keywords

Smallpox; Smallpox Vaccine; Vaccinia virus; Antibody Formation; Immunity; Cellular; Immunity;
Humoral; Antibodies

Introduction

Prior to the intensive eradication effort in the 1960s and 1970s, variola major virus, the
causative agent of smallpox, killed hundreds of millions of individuals and left survivors
with serious sequela, including extensive scarring and blindness [1]. A less severe strain,
variola minor, began circulating in America/Africa in the early 1900s.[1] Early efforts to
curb the disease through variolation, and later vaccination, led to the eradication of smallpox
in 1980 [1, 2]. The potential for variola virus to be used as a biological weapon [3], as well
as outbreaks of zoonotic poxviruses in the Americas, Africa, and Asia [4], has led to a
resurgence of research aimed at early detection, the development of next-generation
vaccines, and effective therapeutic agents [5].

Smallpox vaccine elicits robust adaptive immune responses in the majority of recipients [6].
CD4* and CD8* T cell responses peak weeks after immunization, while antibody (Ab)
responses can be seen as early as four days after vaccination [7], but take several weeks to
reach peak titers [1, 8]. Cellular immune responses to poxviruses slowly decline over a
period of decades and are believed to play a greater role in resolution of the initial infection
than protection upon subsequent exposure [9, 10]. Humoral immunity to poxviruses is
remarkably long-lived, with evidence that antibody levels can be maintained for 60-90 years
[11, 12]. Antibodies to both forms of viral particles, intracellular mature virions (IMV) and
extracellular enveloped virions (EEV), are required for optimal protection [13, 14]. Upon
revaccination, anamnestic antibody responses are seen within four days of immunization.
[15]

Traditionally, the presence of a “take” (i.e., the formation of the classic Jennerian pustule at
the vaccination site) was used as a marker for vaccine efficacy and taken as evidence of
protection against smallpox [1]. However, the evidence that a local reaction to smallpox
vaccine is absolute proof of immunity relies on historical anecdote and population-level
epidemiology, rather than individual scientific substantiation.

Historically, neutralizing antibody titer has also been used as a marker of protection for
many vaccines. Studies have documented very low serum titers of neutralizing Abs in fatal
cases of smallpox [1, 16], with a definite relationship between Ab titer and clinical severity
of illness [16]. Neutralizing antibody titers have also been used as a prognostic indicator of
disease progression [15]. Prospective studies have attempted to define a neutralizing
antibody titer that provides protection against smallpox [17, 18]. These studies involved
small numbers of subjects, but a titer of >1:32 is commonly used as an estimate of protective
immunity. It is possible that higher levels of humoral immunity would be necessary to
protect someone from a high-dose pathogen exposure due to an act of bioterrorism.
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The two historical definitions of protection (“take” and neutralizing Ab titer > 1:32) are not
directly related, and the localized reaction at the vaccination site is not necessarily indicative
of a systemic humoral immune response [19]. In a cohort of > 1,000 smallpox vaccine
recipients, we identified a small subset of individuals with a documented vaccine take, but
extremely low neutralizing Ab titers. A similar population was identified in a second cohort
of 1,058 smallpox vaccine recipients. These findings indicate that vaccine take may not
necessarily be an accurate representation of vaccine-induced immunity. The purpose of this
study was to better characterize the immune responses (both humoral and cellular) of these
individuals. A better understanding of how and why some individuals do not develop robust
immune responses following smallpox vaccination may provide insights into the drivers of
poxvirus immunity, provide possible biomarkers of response, and provide insight into the
design of novel vaccine candidates.

Materials and Methods

Study Subjects

Details on the Dryvax cohort (n=1,076) and the ACAM2000 cohort (n=994) have been
previously reported [20, 21]. We secured Institutional Review Board approval from both the
Mayo Clinic and the Naval Health Research Center (NHRC) for all procedures. Each
participant gave written informed consent prior to enrollment. All subjects were between 18
and 40 years of age and had received a single documented dose of Dryvax® or
ACAM2000® at least 30 days, and not more than four years, prior to recruitment.

Virus Stocks and Inactivation

The NYCBOH strain of vaccinia virus (purchased from ATCC; Manassas, VA), the vSC56
strain of vaccinia virus (obtained from Dr. Bernard Moss, NIAID), and the IHD-J strain of

vaccinia virus (obtained from Dr. Don Gammon, University of Massachusetts) were grown,
purified, and titered according to established protocols [22]. The NYCBOH strain was then
inactivated using psoralen and UV light, resulting in a six log reduction in viral infectivity

[23].

Neutralization assay

Humoral immunity was measured using a vSC56 vaccinia-based assay as previously
described [20]. Sera were tested three times (Dryvax cohort) or twice (ACAM2000 cohort).
The EEV plaque reduction neutralization test was performed as described [13] using an anti-
L1R Ab instead of the 2D5 MAD, and with a 36-hour incubation period.

Cytokine responses

ELISA assays were used to detect levels of cytokine secretion upon /n vitro vaccinia
stimulation, and were optimized and performed as described [24]. IFN+y secreting cells were
detected using both total PBMC IFNy ELISPOT and CD8* IFNy ELISPOT Kits as
previously described [25].
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Microarray gene expression

Gene expression analysis was conducted as previously described [26]. Briefly, PBMCs were
stimulated for 18 hours with or without inactivated vaccinia virus (MOI = 0.5). RNA Protect
Reagent was added to cell cultures. RNA was isolated using the RNeasy Plus kits (Qiagen,
Valencia, CA) and quantified using Nanodrop spectrophotometer and labeling and
hybridization of the Affymetrix HG-U133Plus_2 chips took place at Mayo Clinic’s Medical
Genome Facility. Arrays were scanned using a GeneChip Scanner 2000, data were extracted,
quality controlled, and used for expression analysis.

Statistical methods

Categorical data were summarized using both frequencies and percentages, while continuous
variables were described with medians and inter-quartile ranges (IQRS). Immune response
outcomes were utilized as previously reported [26, 27].

We compared distributions of demographic and clinical characteristics across normal and
low responders using Fisher’s exact tests. Associations of humoral protection with cytokine
secretion and ELISPOT measures were evaluated using linear regression models. Formal
evaluations used linear mixed effects models to simultaneously model all six observations
per subject with an unstructured within-person variance-covariance matrix. These repeated
measures models compare differences between the two stimulation states within each
subject among groups of individuals categorized by immune status (“normal” and “low”
response). Analyses were adjusted for gender, which was the only demographic and clinical
variable found to be significantly associated with immune response. Inverse cumulative
normal (probit) data transformations were utilized to correct for the skewness present in the
cytokine and ELISPOT data. ELISPOT and ELISA responses are reported as the median
number and interquartile ranges of spot forming units per well and pg/ml, respectively.
Negative ELISA values indicate that, on average, unstimulated secretion values were higher
than stimulated values.

Gene expression data quality-control and normalization methods were previously reported
[26]. Per-gene linear mixed effects models [28] were used to assess significance response to
stimulation for the normal responders relative to the low responders, using a random effect
to account for the within subject correlation. Genes were ranked by p-values and false-
discovery rate [29]. The statistical packages R and SAS® were used for analyses.

Pathway analysis was performed with MetaCorre using a reference gene list after filtering
out unexpressed and probe-sets with “Absent calls” using Affymetrix microarray suite
version 5 software, as implemented in dChip. Probesets not present in at least half of the
samples were removed from analysis. Of the 31,728 probe sets (reference list) that passed
filtering, 589 had p < 0.25 and were used as focus genes.
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Demographic differences between subjects

1,076 recipients of a single dose of Dryvax®, who had a documented vaccine “take,” were
recruited and neutralizing antibody titers and a panel of cytokine ELISA and ELISPOT
assays were performed to characterize vaccinia-specific immune responses. Each subject had
detectable Ab titers above the background level of response found in unvaccinated subjects,
confirming successful vaccination. A small percentage (1.8%; 19/1,076) of the study
population had neutralizing Ab titers below 1:32. For this study, these 19 subjects are
labeled as “low responders,” according to the definition of Mack et a/. [18], and have a
median IDsq (serum dilution inhibiting 50% of viral activity) of 27.3 (IQR:24.2-29.5). The
remaining 1,052 subjects were classified as “normal responders” and had a median D5 of
134.5 (IQR: 80.5-207.3). Demographic variables for the two groups were broadly similar
(Table 1) in terms of ethnicity, race, and age. Consistent with a previous report indicating
that females exhibit higher antibody responses, [30] only one of the low responders was
female. Gender was used as a covariate in all subsequent models.

The neutralizing antibody assay measures neutralizing antibody titers to IMV rather than
EEV. Our initial hypothesis was that a more complete measure of humoral immunity would
correlate better with vaccine take. Therefore, we performed plaque reduction neutralization
assays using EEV stocks of vaccinia IHD-J pre-treated with anti-L1R Ab as described in the
Methods section. Sixteen individuals from the low responder group (those with sufficient
serum to test) had a mean EEV IDgq of 17.2. Only 7 of those 16 (43.8%) subjects had
detectable anti-EEV Ab. In contrast, in a random sampling of 62 normal responders, 50/62
(80.6%) of these subjects had detectable anti-EEV Ab. This group had an average EEV IDs
of 85.8, which is five times higher than the low responder group (p=0.005, Fisher’s Test).

Markers of cellular immunity in low responders

Although vaccine safety is dependent on cellular immunity,[31] T cell responses have been
shown to be unnecessary for protection against orthopoxvirus challenge [32]. However,
vaccine take has been correlated with the development of cellular immunity, [33] leading us
to question whether or not our putative low responders had normal cellular immunity.
Consequently, we examined cytokine secretion and IFN-y ELISPOT responses to enumerate
cytokine-producing T cells (Figure 1 and Table 2). Of the cytokines showing significant
differences between the two groups, IFNa is produced during early innate responses to viral
infection, while IFN-y, IL-2, and IL-4 are closely associated with T cell function. Our IFNy
ELISPOT (both the total PBMC response and the CD8+ T cell response) results
corroborated our cytokine secretion data, showing significantly fewer IFNy producing cells
(See Table 2) in the low responders.

Replication of study findings in an independent cohort

We examined an additional, separate cohort of 994 military personnel who had received the
ACAM2000® smallpox vaccine (Table 1). Upon examination, this cohort also had a group
of individuals (n=38) with neutralizing antibody titers below the 1:32 threshold. Upon
comparison of this low responder group (with a median D5 of 26.6) with the rest of their
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cohort (with a median IDgq of 120.9), we identified significantly fewer IFNy producing
CD8* T cells (p=0.012) and lower IFN~y secretion levels (p=0.046). Although the
ACAM2000 low responders exhibited the same trend for lower PBMC IFNy ELISPOT
counts, as well as reduced IL-1pB, I1L-2, IL-12p40 and TNFa secretion, the differences did
reach statistical significance. All comparisons were from mixed models with an unstructured
covariance matrix that adjusted for gender.

Evaluation of gene expression

Our next hypothesis was that the low responders had a deficiency in innate immune
responses to vaccinia and that this deficiency interfered with the development of robust
adaptive immunity following vaccination. A subset of the Dryvax cohort (those with the
highest and lowest neutralizing Ab titers) had microarray data available that could be used to
examine this question. [34] This subset included 11 of the low responders and 15 of the
normal responders, providing an opportunity to search for differences in gene expression
that might correlate with the lower immune responses. The data were first analyzed on an
individual gene level with the most significant (p < 0.01) genes comprising chemokine genes
(CXCL11, CXCL10, CCL2), antiviral genes (IFNA1, OASL), apoptosis genes (COP1,
DDX17, NLRP1, TNFSF10), and genes involved in transcriptional and translational activity
(EEF1A1, EIF3B, PNPT1, RPL3) all exhibiting greater upregulation (5 — 50%) in normal
responders compared to low responders (Table 3).

We performed a MetaCore pathway analysis and identified nine pathways with differential
expression (Table 4), including Type | IFN signaling; proinflammatory (IL-1 and 1L-6)
pathways; CXCR4 signaling; IL-17 and apoptotic pathways. We also identified 10 GeneGo
Disease categories with p < 0.05 (Table 4) that are primarily involved in the stimulation of
innate immune pathways following viral infection.

Discussion

In our Dryvax® cohort (n=1,076), we identified 19 low responders with neutralizing Ab
titers < 1:32, despite a documented vaccine “take.” We identified a similar group of low
responders in recipients of ACAM2000®. Classically, this cutoff was used as a correlate of
protection, and was developed from Mack et a/. [18] The two different correlates of immune
protection, vaccine take, and neutralizing antibody titers do not measure the same immune
outcomes. In fact, relying solely on antibody titer may be misleading, as it ignores cellular
immune processes that may contribute to protection from secondary exposure [35]. Our low
responders also exhibited significantly lower levels of key cytokines involved in innate
(IFNa) and cellular (INF-y, IL-2, IL-4) responses. It may be that these individuals have
deficient innate responses to poxviruses that hamper optimal development of humoral and
cellular immunity. The availability of a second cohort of smallpox vaccine recipients
(n=994) allowed us to perform a replication study, wherein we identified an even larger
group (n=38) of low responders subjects. As with the initial cohort, these low responders
also had diminished CD8* T cell ELISPOT responses and IFN+y secretion. Most of the other
immune outcomes also exhibited a reduced response, but the reduction did not meet
statistical significance (e.g., IL-2 secretion reduced by 50%: p=0.055). As noted earlier, we
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and others have described sex-based differences in humoral immunity to smallpox
vaccination [30,36,37]. Sex differences have also been noted for numerous other vaccines as
well [38, 39] and is an important factor that deserves to be studied in greater detail and taken
into account when developing vaccination schedules and dosage recommendations,
evaluating adverse event rates, and when planning clinical trials of new vaccines.

Our results (Table 4) indicate these low responders had a diminished innate antiviral gene
expression pattern (/FNA1, CXCL10, CXCL11, OASL) upon /n vitroviral stimulation,
perhaps indicative of a dysregulated innate response. IP10 (CXCL10) levels have been
shown to increase in primary smallpox vaccine responders 7-12 days after vaccination and
were associated with fatigue and lymphadenopathy.[40] Vaccinia virus expressing the
murine homolog of IP-10 (Crg-2) is attenuated in mouse models of infection,[41] which
indicates that this chemokine mediates anti-poxvirus activity. In normal responders,
CXCL11 exhibited a 49% increase in expression upon viral stimulation compared to a 6%
increase in low responders (p = 1.9 x 107%). Enhanced CXCL11 expression is indicative of
more robust chemokine activity in response to viral infection; perhaps this is a result of the
higher levels of IFN+y and IFNa seen in the normal responders. CD38, an activation marker
integral to calcium signaling found on T cells, B cells, NK cells, and neutrophils [42],
exhibited higher expression in normal responders (23% increase versus a 3% in low
responders: p-value 0.006) and is also suggestive of greater immune activation after vaccinia
virus stimulation, and may reflect the development of an early population of vaccinia-
specific CCR5TCD38* Thi effector cells [43].

We also performed pathway analyses in order to gain insight into the functional effects of
the differential gene expression patterns [44]. Pathways involved in IL-6, IL-17 signaling,
IFNa/B signaling, CXCR4 and APRIL, and BAFF signaling also exhibited differential
expression. Median IL-6 secretion in our low responders was only 70% of that seen in our
normal responders; however, due to small subject numbers, this difference was not
statistically significant. IL-17 induces production of proinflammatory mediators such as
IL-6, TNFa, and MCP-1, and is involved in both resistance to poxvirus infection and viral
clearance through NK and CD8+ cells [45, 46].

Perhaps most interesting was the differential expression of the IFNa/p pathway. This type |
interferon pathway is crucial to immunity to poxviruses [47]. Type | IFNs promote robust
humoral immunity through the induction of B cell activation, differentiation, isotype
switching and the enhancement of immunologic memory and long-term antibody production
[48], and contributes to CMI through the upregulation of costimulatory ligands and antigen
presentation molecules on antigen presenting cells. The lower antibody titers and reduced
markers of cellular immunity in our low responders may be a result of suboptimal activation
of these critical immune pathways. Adjuvants or cytokine replacement therapies in
conjunction with vaccination may serve to correct this low response phenotype. This is an
especially attractive option with the safer, yet less immunogenic attenuate smallpox vaccines
(MVA, LC16m8, NYVAC). Our data provide a tantalizing hint that several innate signaling
and lymphocyte survival pathways are indeed responsible for the noted differences in
immune outcomes among the normal and low responders to smallpox vaccine. Further
studies focused on specific cell types isolated from these individuals may provide additional
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mechanistic details regarding the differential transcriptomic response contributing to the
divergent vaccine outcome in these subjects.

From a population standpoint, only 1.8% (19/1,076) of the vaccinated individuals in the
Dryvax cohort, and 4.3% (49/1,128) of the ACAM2000 cohort, had these extremely low
humoral and cellular responses. Given the ease of visual identification of a vaccine “take” as
an indicator of smallpox vaccine efficacy and the fact that the licensed smallpox vaccines
were successful in eradicating smallpox, it is unlikely that this small number of low
responders will alter public health policy regarding smallpox vaccination. Interestingly, the
ACAM2000® subgroup was larger than and Dryvax low-responder group. Although the two
vaccines contain the same strain of vaccinia virus and elicit a similar spectrum of immune
response, they are not identical vaccines. In fact, ACAM2000 elicited lower neutralizing
antibody titers and take rates than Dryvax during clinical trials of diluted vaccines [49, 50].
However, the results suggest that one must use caution in equating a vaccine take with
“protection,” an area that warrants further investigation. When used outside of the healthy
population that we studied, it is likely that larger “low-responder” rates would result.
Furthermore, these results, obtained with vaccines based on the New York City Board of
Health (NYCBOH) strain, may not necessarily hold true for other less immunogenic vaccine
strains. In addition, some newer attenuated smallpox vaccines are injected and, therefore, do
not elicit a vaccine take. Vaccine take can also be impaired in the presence of pre-existing
poxvirus-specific Ab [51]. In these cases, relying on direct measures of humoral and/or
cellular immunity may serve as better markers of vaccine immunogenicity and protection
than simply relying on “take” rates.

The strengths of this study are the relatively large cohorts of vaccine recipients, the fairly
comprehensive assessment of immune responses to smallpox vaccine (IFNg ELISPOT,
secretion of Th1/Th2/pro-inflammatory cytokines, and humoral Ab measurements) and the
available transcriptomic data that provided an opportunity to examine gene expression
differences between low and normal responders. The availability of a second cohort in which
we were able to identify a similar population allowed us to replicate our initial findings. The
primary limitation is the small number of low responders. Even with cohorts of more than
1,000 subjects, we only identified 19 and 38 subjects in our respective cohorts. This small
sample size affected our statistical power to detect biologically relevant effect sizes. Despite
this, our data suggest that innate antiviral responses are critical for the development of robust
adaptive immunity. Further investigation into the possible mechanisms involved in this
extremely low immune responsiveness to smallpox vaccine may help elucidate important
mechanisms of immune response and protection to poxviruses and may provide novel
biomarkers for developing and testing new smallpox vaccines. In addition, it may provide
quick, simple tests that predict non-response such that alternative vaccination schedules
(increased dose, novel adjuvant use, prime-boost immunizations) could be employed to fully
protect these individuals.

In conclusion, we identified a small population of individuals who develop inadequate
humoral and cellular immune responses, despite the formation of the classical vaccine
“take” following smallpox vaccination. These data highlight the incomplete understanding
that we currently have regarding protective immunity to poxviruses. In order to better
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understand this low-responder phenomenon, we examined gene expression data to test the
hypothesis that deficiencies in innate immune pathways might be responsible for the low
responder phenotype. Our data indicate that the low-responder group has significantly
diminished innate antiviral activity upon viral stimulation. This may correlate with the
reduced adaptive immune responses to the vaccine. These genes or pathways may serve as
useful early biomarkers capable of predicting response to the vaccine. Furthermore, they
may provide targets for adjuvants that can be utilized in next-generation vaccines to
appropriately enhance immune responses in vaccinated subjects. For example, vaccinia-
stimulated /FNA expression is impaired in our low responders, a defect that may be rectified
through the use of adjuvants targeting the STING pathway. STING has been shown to play
an important role in antiviral responses to poxvirus infection [52]. Further investigation is
likely to identify additional critical determinants of robust, durable immunity to the
smallpox vaccine. Given the broad-spectrum, nonspecific nature of innate immunity, these
finding may be applicable to other viral vaccines as well.
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Figure 1. Distribution of Cytokine Responsesin Normal and L ow Responders
Box plots show secretion levels (in pg/ml) for the indicated cytokines. The thick horizontal

bar inside the box represents the median level of cytokine secretion, the lower and upper
limits of the box define the 25! and 75t percentile, respectively. The whiskers extending
from the plots represent 1.5X the interquartile ranges with black dots representing data
points outside of the 1.5X IQR limit. The bottom two panels show ELISPOT results (spot
forming units per 2 x 10° cells) for both CD8* T cells and total PBMCs.
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Differential Pathway Expression in Normal and Low Responders.

Table 4

Pathway p-value
Immune response — I1L-17 signaling pathways 0.0005
Immune response — IFNa/p signaling pathway 0.0006
G-protein signaling — Proinsulin C peptide signaling 0.001
Immune response — IL-6 signaling pathway 0.002
Cytokine Production by Th17 cells in CF 0.003
Immune response — CXCR4 signaling via second messenger 0.004
Immune response — Signaling pathway mediated by I1L6 and IL-1 | 0.003
Glycolysis and gluconeogenesis 0.003
Apoptosis and survival — APRIL and BAFF signaling 0.003

MetaCore pathway analysis performed as described in the Methods section.
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