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A B S T R A C T

Breast cancer is a heterogeneous disease that can be divided in subtypes based on histol-

ogy, gene expression profiles as well as differences in genomic aberrations. Distinct global

DNA methylation profiles have been reported in normal breast epithelial cells as well as in

breast tumors. However, the influence of the tumor methylome on the previously de-

scribed subgroups of breast cancer is not fully understood. Here we report the DNA meth-

ylation profiles of 80 breast tumors using a panel of 807 cancer related genes interrogating

1505 CpG sites. We identified three major clusters based on the methylation profiles; one

consisting of mainly tumors of myoepithelial origin and two other clusters with tumors

of predominantly luminal epithelial origin. The clusters were different with respect to es-

trogen receptor status, TP53 status, ErbB2 status and grade. The most significantly differen-

tially methylated genes including HDAC1, TFF1, OGG1, BMP3, FZD9 and HOXA11 were

confirmed by pyrosequencing. Gene Ontology analysis revealed enrichment for genes in-

volved in developmental processes including homeobox domain genes (HOXA9, HOXA11,

PAX6, MYBL2, ISL1 and IPF1) and (ETS1, HDAC1, CREBBP, GAS7, SPI1 and TBX1). Extensive

correlation to mRNA expression was observed. Pathway analyses identified a significant

association with canonical (curated) pathways such as hepatic fibrosis including genes

like EGF, NGFR and TNF, dendritic cell maturation and the NF-kB signaling pathway. Our

results show that breast tumor expression subtypes harbor major epigenetic differences

and tumors with similar gene expression profiles might belong to epigenetically different

subtypes. Some of the transcription factors identified, with key roles in differentiation

and development might play a role in inducing and maintaining the different phenotypes.
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1. Introduction

methylation status of 1505 CpG sites in 807 cancer related
DNA methylation, histone modifications and other epigenetic

modifications shape the chromatin topologywhichdetermines

the cellular phenotype and controls its gene expression pat-

terns (Jovanovic et al., 2010). Best studied in cancer is the aber-

rant DNA methylation that occurs in CpG islands in the

proximity of promoters and that is considered a major mecha-

nism for the loss of gene function (Jones andBaylin, 2007).More

than one hundred genes have been shown to be either

hypermethylated or hypomethylated in breast carcinomas

(Hinshelwood and Clark, 2008). Gene expression analysis of

breast tumors has identified different breast cancer subgroups

belonging to estrogen receptor (ER) negative basal-like and the

ER positive luminal subgroups (Perou et al., 2000) with differ-

ences in outcome (Sorlie et al., 2001). DNAmethylation analysis

usingmethylation-specific digital karyotypingof normal breast

tissue has identified cell-type and differentiation specific DNA

methylation and gene expression patterns that are also found

in breast carcinomas (Bloushtain-Qimron et al., 2008).

Global DNA hypomethylation of breast tumors has been as-

sociated to stage, tumor size and tumor grade (Soares et al.,

1999). Single gene studies revealed that methylation of CDH1

and BRCA1 were associated with ER status (Birgisdottir et al.,

2006; Caldeira et al., 2006). Tumors with ESR1 and CDH1 meth-

ylation were also associated with significantly lower hormone

receptor levels, younger age at diagnosis and the presence of

mutant TP53 (Li et al., 2006). CDH1methylation was also signif-

icantly associated with primary breast tumors with lympho-

vascular invasion, as well as tumors with infiltrating ductal

histology, that were ER negative (Shinozaki et al., 2005). Hyper-

methylation of CDKN2A tended to be more frequent among ER

negative cases than ER positive cases and hypermethylation of

RARb2 was inversely associated with histological and nuclear

grade of breast cancer (Tao et al., 2009). A panel of 35 genes an-

alyzed for their DNA methylation status formed two clusters

which differed in function of the hormone receptor status,

with RASSF1A, SOCS1 and BCL2 being the best predictors of

the hormone receptor status, and PGR, TFF1 and CDH13 most

significantly associated with ER status (Widschwendter et al.,

2004). Methylation patterns of a panel of five genes including

CDH13,MYOD1, PGR, BRCA1 andHSD17B4were shown to be dif-

ferent according to ErbB2 status (Fiegl et al., 2006). Our studies

on the methylation of selected genes including RASSF1A,

FOXC1, ABCB1, GSTP1, RARb2, and CDH1 suggest that methyla-

tion events occurs as early as in ductal carcinoma in situ

(DCIS). In DCIS and early invasive breast cancer, FOXC1,

GSTP1,ABCB1 and RASSF1Amethylationwere found to be asso-

ciated with TP53 status and FOXC1, ABCB1, PPP2R2B and PTEN

methylation to be associated to ER status (Muggerud et al.,

2010). In locally advanced breast cancer patients treated with

doxorubicin, methylation of GSTP1 and ABCB1 were found to

be independent prognostic factors and we found DNAmethyl-

ation patterns in single genes to be associated to TP53 and ER

status as well as tumor expression subtypes (Dejeux et al.,

2010; Ronneberg et al., 2008). A concomitant methylation sta-

tus was observed for several genes although residing on differ-

ent chromosomes. With this in mind we conducted a higher

throughput methylation analysis approach to investigate the
genes including tumor suppressor genes, oncogenes, genes in-

volved in DNA repair, cell cycle control, differentiation, apo-

ptosis, X-linked, and imprinted genes in a series of 80

primary breast carcinomas from the Oslo Micrometastases

study. The full study comprises over 900 breast cancer cases

with information about presence of disseminated tumor cells

(DTC), long term follow-up for recurrence and overall survival.

A subset of approximately 140 patients is represented with

fresh frozen samples from the primary tumor, matched blood,

and micrometastases and has been used in parallel pilot stud-

ies of (Borgen et al., 1998), whole genome mRNA expression

(Naume et al., 2007), array CGH (Russnes et al., 2010), whole ge-

nome SNP and SNP-CGH (Enerly et al., 2010), whole genome

miRNA expression analyses (Enerly et al., 2010) and high

throughput sequencing (Stephens et al., 2009). In this paper

we report the results of one of two independent DNA methyl-

ation studies performed on this information-rich set employ-

ing the Illumina GoldenGate array. The complementary

results of a parallel study, using MOMA microarray methodol-

ogy are reported in the concurrently submitted paper by Kama-

lakaran et al (Kamalakaran et al., 2010). Themain objectives of

the study were to identify 1) breast tumor sub-classification

based on methylation profiles 2) differentially methylated

genes as independent prognosticmarkers for survival 3) differ-

entially methylated genes associated with hormone receptor

status, TP53 mutation status, ErbB2 positivity and regulation

of mRNA expression in cis.
2. Results

2.1. Tumor classification based on DNAmethylation and
comparison to classification based on gene expression

Unsupervisedhierarchical clustering grouped the tumors based

on their methylation profiles in 664 cancer related genes into

three major clusters (Figure. 1A). This classification was com-

pared to the breast tumor subtypes as previously determined

by gene expression profiling (Naume et al., 2007). Each tumor

had been assigned to a tumor subclass based on the correlation

to previously defined expression centroids (Sorlie et al., 2003).

Cluster 1 (n ¼ 27) contained 68.0% Luminal-A tumors, 20.0% Lu-

minal-B tumors, and 12.0% Normal-like tumors. Cluster 2

(n ¼ 29) contained 41.5% ErbB2-like tumors and 24.1% Basal-

like tumors, 17.2%Luminal-B tumors, 10.3%Normal-like tumors

and 6.9% Luminal-A tumors. This cluster also contained the 4

normal breast samples. Cluster 3 (n¼ 24) contained 69.6%Lumi-

nal-A tumors, 17.5% Basal-like tumors, 4.3% ErbB2-like tumors,

4.3% Luminal-B and 4.3% Normal-like tumors. A strong concor-

dance between the methylation and expression based classifi-

cation was observed (Table 1A, p ¼ 2.29 � 10-6 and Figure. 1B),

with the ErbB2 positive tumors almost exclusively found in

methylation Cluster 2. Interestingly, Luminal-A were split be-

tweenCluster1 and3aswell as basal-like tumorsbetweenClus-

ter 2 and3 suggesting that despite thestrong concordance to the

mRNAexpression clusters additional informationwasprovided

by the clustering bymethylation. This is illustrated by the trend

that Luminal-A tumors with different methylation profiles
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Figure 1 e Hierarchical clustering by DNA methylation. (A) Hierarchical clustering of 80 breast tumors and 4 normal breast tissue samples using

1016 CpG sites in 664 genes. DNA methylation separates the tumors in 3 major clusters. (B) Primary tumor characteristics are indicted: tumor

subclass: Dark blue (Luminal-A), light blue (Luminal-B), pink (ErbB2-like), red (Basal-like), green/teal (Normal-like), white (not classified);

nodal status: node negative (white), node positive (black); histological grade: grade 1 (white), grade 2 (grey), grade 3 (black); estrogen receptor
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Table 1 e Distribution of the breast tumor subtypes between the
methylation clusters for both the (A) intrinsic gene list classifier and
the (B) PAM50 gene list classifier. P-value is determined by chi-
square test.

Cluster 1 Cluster 2 Cluster 3 Total
A

Luminal-A 17 2 16 35

Luminal-B 5 5 1 11

ErbB2-like 0 12 1 13

Basal-like 0 7 4 11

Normal-like 3 3 1 7

Unclassified 2 0 1 3

Total 27 29 24 80

p-value 2.29Ee06

B

Luminal-A 10 1 8 19

Luminal-B 12 0 5 17

ErbB2-like 2 8 2 12

Basal-like 0 14 4 18

Normal-like 1 3 2 6

Unclassified 2 3 3 8

Total 27 29 24 80

p-value 1.85Ee06.
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(Cluster 1 or 3) differ in survival (Figure. 1E; p ¼ 0.084) (Fleischer

et al., 2010). Further we have reanalyzed the association be-

tween methylation and mRNA expression clusters with the

PAM50 classification (Table 1B). What one can observe is that

while the number of Luminal-A tumors is reduced by the

PAM50 classification, it does not remove the split of the Lumi-

nal-A cases between Cluster 1 and Cluster 2. The difference in

survival isalsoobservable, yetnot significantdue to lownumber

of samples in each group (results not shown). A subsequent val-

idation of the clustering by an absolute quantitative methyla-

tion analysis by pyrosequencing (see below) recapitulated the

observed classification and its association to expression sub-

classes (Figure. 1G). All normal samples examined here showed

low variability and clustered together (Figure. 1).

2.2. Survival analysis

KaplaneMeier analyses revealed a significant difference for

a number of single genes (listed in Supplementary Table 1).

Since we observed concomitant methylation of a large number

of apparently unrelated genes itmight be arbitrarywhich genes

will display strongest effect on survival when analyzed individ-

ually in each studied patientmaterial.We therefore considered
status: ER negative (white), ER positive (black); ErbB2 status: negative (wh

(black); Disseminated tumor cell (DTC) status: white (negative), black (po

differentially methylated within the clusters. High degree of methylation (r

highly methylated in Cluster 1. The second node (red bar) is highly methylat

the three array based methylation clusters. (E) Overall survival of only the

Hierarchical cluster showing all genes. (G) Hierarchical clustering was rec

genes in 120 patients (a subset of the same 84 samples shown in figure). Th

the original clusters. Samples that fell into different clusters dependent on

indicated below the tree: Dark blue (Luminal-A), light blue (Luminal-B),

Overall survival for all 80 patients divided between the three clusters based
it asmore appropriate to apply aweighted approach to all genes

in a multiple regression model with correlated predictors indi-

cating how well the entire set predicts the outcome variable.

Therefore the entire sets and not single geneswere used to per-

form both unsupervised (Figure. 1D, E and H) and supervised

(Figure. 2) survival analysis to examine thepotential differences

in overall survival (OS) for the different clusters of patients.

For clusters based both on all genes and 27 genes analyzed

by pyrosequencing, survival analyses show a trend for Cluster

2 to have shorter survival compared to the other clusters

(Figure. 1D and H) (Fleischer et al., 2010). Including a super-

vised approach using a family of penalties according to the

LASSO method we computed Cox regression coefficients

from LASSO. Using this method we could identify a list that

collectively influences overall survival (Supplementary Table

2). Then we applied a weighted clustering of these coefficients

to divide the patients into “high risk” and “low risk” patient

groups. Thus we identified clusters of genes the methylation

of which could collectively be associated with differences in

survival (Figure. 2).

Multivariate survival analysis was performed to study the

influence of known survival factors such as ER, TP53mutation,

lymph node status, grade and tumor size on the observed sur-

vival differences in both breast cancer specific death and re-

lapse free survival in the three methylation clusters as well

as for the two clusters obtained by Ridge and LASSO. The anal-

yses show that the Hazard ratios for the methylation clusters

are influenced by TP53 and ER status as well as grade (which is

the only independent marker in this analysis). ErbB2 and tu-

mor size did not change the coefficients of the clustermarkers

meaning that the observed differences in survival are not

influenced by ErbB2 and size (results not shown).

2.3. Identification of differentially methylated genes
between the clusters

The two most notable cluster nodes with apparent differences

in methylation profiles are shown in Figure. 1C. The first node

(node correlation ¼ 0.56, illustrated at the upper panel in

Figure. 1C and blue vertical bar on Figure. 1F) consists of 36

CpG sites with higher methylation in methylation Cluster 1.

The second node (node correlation ¼ 0.53, lower panel

Figure. 1C and red vertical bar on Figure. 1F) containing 44

CpG sites is characterized by higher methylation in Cluster 2

compared to Cluster 1 and Cluster 3. To identify all genes ac-

counting for the epigenetic differences between the clusters

we performed multiclass SAM on the 3 major clusters. The

analysis revealed 265 CpG sites representing 211 different
ite), positive (black); TP53 mutation status: wild type (white), mutated

sitive). (C) Nodes of CpG sites with high nodal correlation that are

ed), low degree of methylation (green). The first node (blue bar) is

ed in Cluster 2. (D) Overall survival for all 80 patients divided between

luminal-A tumors belonging to either methylation Cluster 1 or 3. (F)

apitulated with pyrosequencing methylation analysis of 27 validated

e colour of the branches corresponds to where the sample belonged in

the method are also marked with an asterisk (*). Tumor subclass is

pink (ErbB2-like), red (Basal-like), green/teal (Normal-like). (H)

on methylation analyses by pyrosequencing.
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Figure 2 e KaplaneMeyer plots for the high and low risk patient

clusters defined by supervised LASSO regression on weighted

clustering of the genes.
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Entrez GeneIDs to be differentially methylated between the

three clusters. The 10 CpG sites in 8 genes with the highest

score included CpGs in the promoter regions of WNT1, ASCL2,

LYN, IRAK and ETS1 and the first exon of COL1A2, SFRP1, LAT.

Gene family members were differentially methylated between

the clusters such as HOX familymembersHOXA5 andHOXA11,

as well as other members of the wingless family such as

WNT10B and WNT2. These CpG sites were all hypomethylated

in Cluster 2 and Cluster 3 compared to Cluster 1. The full list

of genes differentially methylated between the clusters is

given in Supplementary Table 3. All genes (n ¼ 123) with FDR

<5% at SAM list of most differentially methylated and unique,

i.e. associated only to methylation class were subjected to

GO and pathway analysis .We performed a GO term analysis

using the differentially methylated genes between the

clusters identifying 15 different significantly enrichedGO terms

(Supplementary Table 4). These terms included processes re-

lated to extracellular matrix, membranes and collagen. Other

processes were related to developmental, neurological and

multiorganismal processes as well as ion transport and protein

secretion. A pathway analysis of a subset of 141 CpG islands

representing 123 Entrez GeneIDs uniquely linked to themethyl-

ation clusters, i.e. associated only to methylation status and

not to TP53mutation or ER status, identified a significant asso-

ciation with canonical (curated) pathways such as hepatic

fibrosis/hepatic stellate cell activation, dendritic cell matura-

tion and the NF-kB signaling pathway (the five most signi-

ficantly associated canonical pathways are included in

Supplementary Table 5A).
2.4. Correlation to mRNA expression in cis

2.4.1. Spearman correlation
First we matched the exact gene names from the methylation

(Illumina) and mRNA expression (Agilent) arrays through the

Accession code/UID on each array. Like this matching pairs
were identified for 807 CpGs that were individually associated

in cis to one of the 537 unique reference genes present on the

array. We then correlated the estimated methylation percent-

ages (b-values) of these 807 CpG sites (using both promoter and

exonic CpGs). The individual Spearman correlation for each

CpG transcript pair was calculated and was in a normal-like

distribution around zero (Supplementary Figure. 1A). Plotting

the p-values for these correlations against their correlation

values also yielded a normal-like distribution around zero

but with a tail towards negative correlations with low p-values

(Supplementary Figure. 1B). Using a false discovery rate (FDR)

threshold of 5% we identified a list 20 CpG transcript pairs

where 18 of these showed a strong negative correlation. The

full list of all associations is given in (Supplementary Table 6A).

2.4.2. eQTL analysis
Correlation analyses of the exact matching CpG-methylation

pairs would reveal only the dependencies between changes

in expression andmethylation in the same gene. We therefore

performed a more broad analysis in cis, where we allowed

a CpG- to be with a maximum distance of 1 mega base from

a transcript, resulting in an input file of 1324 CpG sites

and 665 transcripts. The eQTL analysis revealed a total of

4676 significant hits ( p � 0.05) (Figure. 3A). The p-value density

plot displayed an overrepresentation of p-values below the

nominal p-value threshold (Figure. 3B), with the best p-value

( p¼ 1.9� 10�8) being for a CpG site in the BCR gene (Breakpoint

Cluster Region gene) whose methylation pattern associated

with the mRNA expression level of several immunoglobulin

genes residing in close proximity to the CpG site. The eQTL re-

sults visualized as a scatter plot with location of CpG cites on

the X-axis and transcript location on the Y-axis (sorted by ge-

nomic position) are given in Figure. 3C. Different levels of sig-

nificance are plotted using different colors. Figure. 3D gives

the number of CpG sites linked to each transcript in cis. The

hotspot threshold (the dotted line) is set at > 10 transcripts,

and the CpG sites are sorted by their genomic location. Since

1 mega base can be too liberal window of analysis we further

restricted the analysis to the significant cis associations whose

CpG transcript pairs matched by their HUGO gene symbol and

identified 226 significant hits in 157 different genes

(Supplementary Table 6B). A single CpG site could be found

to maximum associate with the expression of 4 different

probes from the same transcript all coding for the same im-

mune related gene, HFE. For a single transcript, the highest

number of association to different methylation sites was

seen for RUNX3 and P2RX7 gene (3 CpG sites each).

2.5. Primary tumor characteristics, disseminated tumor
cell (DTC) status and nodal status in relation to methylation
clusters

We compared the methylation based clusters to the corre-

sponding primary tumor characteristics as well as presence

of DTC and nodal status. Cluster 1 and Cluster 2 were signifi-

cantly different when comparing the distribution of grade 3

tumors (vs. grade 1 and grade 2 tumors combined)

( p ¼ 0.0009). No difference was seen between Cluster 2 and

Cluster 3 with respect to grade. Significant differences in the

distribution of ER and ErbB2 were identified in analogy to

http://dx.doi.org/10.1016/j.molonc.2010.11.004
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Figure 3 e (A) Manhattan plot displaying the genome-wide result of the linear regression assaying the association between methylation and mRNA

expression in cis. The x-axis displays the location of CpGs sites sorted by chromosomal position, and y-axis gives the negative log10 p-value. While

the grey dotted line denotes the nominal p-value threshold, the red dotted lines indicates the Bonferroni threshold. A total of 4676 significant

associations ( p-value £ 0.05) in cis (by position) were observed. The grey dotted peak on chromosome 22 is the CpG probe residing in the

breakpoint cluster region gene (BCR), associated with the expression of several immunoglobulin genes residing in close proximity to the CpG site.

On chromosome 6 the light blue peak represent two CpGs site in DDR1 and LY6G6E, located in the major histocompatibility complex (MHC)

class III region, whose methylation pattern associate with expression of several surrounding genes, including members of the HLA family. The

rusty red peak on chromosome 16p is caused by the association with methylation of PRSS8 and expression of several integrins including ITGAD,

ITGAL, ITGAM and ITGAX. The blue peak on chromosome 17q is for a CpG site in CSF3 whose methylation level significantly correlate with the

expression of several genes in the ErbB2 amplicon including ERBB2 and GRB7 (CSF3 is commonly amplified together with ErbB2 amplification).

(B) The p-value distribution of the linear regression analysis, demonstrating an overrepresentation of p-values below the nominal p-value

threshold. (C) eQTL results visualized as a scatter plot with location of CpG cites on the x-axis and transcript location on the y-axis (sorted by

genomic position). Different levels of significance are plotted using different colors. (D) The number of CpG sites linked to each transcript in cis.

The hotspot threshold (the dotted line) is set at > 10 transcripts, and the CpG sites are sorted by their genomic location.
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what is known for the mRNA based classification with Cluster

1 containing more estrogen receptor positive tumors when

comparing to Cluster 2 ( p ¼ 1.0 � 10�5) and Cluster 3

( p ¼ 0.0068) (Figure. 1B and Table 2). TP53 mutation status

was significantly different between methylation Cluster 1

and Cluster 2 ( p ¼ 0.005) but not between the Cluster 1 and

Cluster 3 ( p ¼ 0.34) and Cluster 2 and Cluster 3 ( p ¼ 0.097).

No difference in DTC status or nodal status was seen between

the clusters.

2.6. Methylation profiling in relation to estrogen receptor
status and TP53 mutation status

SAM analysis was performed dividing the tumors into groups

based on their ER status and TP53 mutation status. A total of

109 CpG sites (in 85 unique Entrez GeneIDs) were differentially

methylated between TP53mutated and TP53wild type tumors

at FDR 5%. The CpG sites with the highest scores included the
promoter CpG sites of HDAC1, PROM1, TMEFF1, TWIST, CCL3,

CCNA1, OSM, TRIM29 and MFAP4 as well as the first exon of

SLC14A1. These CpG sites were all hypomethylated in tumors

with mutations in TP53. There were also 5 CpG sites that were

significantly hypermethylated in TP53 mutated tumors in-

cluding the promoter CpGs in EPHX1, P2RX7, RARA and SPI1

as well as the CpG site in the first exon of THPO. The full list

of CpG sites is given in Supplementary Table 7. The GO terms

extracted from the TP53 list containedmany processes related

to transcription, transcription factor activity and DNA binding

as well as receptor binding. Similar to the terms related to the

clusters this list also contained terms related to developmen-

tal processes, multiorganismal processes and ion transport

(Supplementary Table 8). Pathway analysis of 25 genes repre-

senting 26 CpG islands unique to the TP53 list, i.e. associated

only to TP53 mutation status (Figure. 4) revealed a significant

association with the canonical (curated) pathway hepatic fi-

brosis/hepatic stellate cell activation, GM-CSF signaling and

http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
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Table 2 e Associations of primary tumor characteristics and the
different tumor subtypes. Asterisks indicate from which Fisher
Exacts test the p-value is derived.

Cluster 1 Cluster 2 Cluster 3 p-value

TP53 status

WT 22** 12** 17

MT 5** 16** 8 p ¼ 0.0051**

ErbB2 status

Neg 20** 15** 19

Pos 2** 10** 3 p ¼ 0.040**

ER status

Neg 2**/* 18** 10*

Pos 25**/* 9** 14* p ¼ 1.0 � 10-5**/

p ¼ 0.0068*

Grade

1 þ 2 22** 10** 14

3 5** 18** 8 p ¼ 9.1 � 10-4**
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TGF-b signaling (the five most significantly associated canon-

ical pathways are included in Supplementary Table 5B).

A total of 171 CpG sites representing 151 Entrez GeneIDs

were differentially methylated between estrogen positive

and negative tumors at FDR 5%. The 10 CpG sites with the

highest score included the CpG sites in the promoter region

of STAT5A, WNT1, DAPK1, ALPL, IFNGR2, IGFBP7, ST6GAL1

and TMEFF1 as well as CpG sites in the first exon of FZD9

and RASSF1. These CpG sites were all hypermethylated in ER

positive tumors compared to ER negative tumors. There

were also CpG sites in P2RX7, SPI1 and LMTK2 (one per gene)

that were hypomethylated in ER negative tumors. The full

list of CpG sites differentially methylated between ER negative

versus ER positive tumors is given in Supplementary Table 9.

The ER list was significantly enriched in GO processes related

to the extracellular matrix, cell cycle arrest, transcription fac-

tor activity and DNA binding as well as processes related to

development (Supplementary Table 10). A unique subset of

the ER list containing 51 CpG islands representing 50 genes

(Figure. 4) associated only to ER status (and not TP53mutation

or methylation class) revealed in pathway analysis a signifi-

cant association to canonical pathways such as VDR/RXR acti-

vation, acting cytoskeleton signaling and macropinocytosis

signaling (for the five most significantly associated canonical

pathways see Supplementary Table 5C).
2.7. Combined analyses of differentially methylated
genes common to both multiclass, ER and TP53 related SAM
lists

Given the significantly different distribution of TP53 and ER

status in the three methylation subclasses described above

we observed a not unexpected extensive overlap in the SAM

lists derived from the comparison between the methylation

clusters (multiclass list), TP53 mutation and ER status with

53 CpG sites being found on all three lists at FDR 5%

(Figure. 4). At FDR 5% we could also identify CpG sites that

were common between the multiclass list, and the TP53 or

ER list (16 and 53 CpG sites, respectively).
A combined GO analysis using only the 53 unique overlap-

ping Entrez GeneIDs that were common to all three (multi-

class, ER and TP53 related) SAM analysis was performed

(Figure. 4). This analysis revealed enrichment of processes

related to development and differentiation only (Table 3A).

There was a substantial overlap in these developmental

and differentiation gene lists where 60% of the genes being

represented in 4 of the 6 GO terms. If genes appearing in at

least two of the gene lists (Figure. 4, n ¼ 124) were used in

GO term analysis, the most significantly enriched biological

process was related to the term developmental processes

(Table 3B). Several other terms related to multicellular or

skeletal development as well as cell differentiation were

also significantly enriched as well as terms related to the cel-

lular component category including the terms collagen and

extracellular matrix. Two terms related to molecular func-

tion were also significantly enriched, notably transcription

factor activity and sequence specific DNA binding. Of the 20

genes related to transcription factor activity (also present in

the GO term developmental process) 6 were homeobox do-

main genes namely, HOXA9, HOXA11, PAX6, MYBL2, ISL1

and IPF1. Several other transcription factors with important

functions in differentiation or developmental processes

could be identified including ETS1, HDAC1, CREBBP, GAS7,

SPI1 and TBX1. 10 of the transcription factors are known

Suz12 targets in ES stem cells (ISL1, CEBPA, HOXA11, IPF1,

HOXA9, RUNX3, ERG, RARA, TBX1 and PAX6) (Huang et al.,

2009). We performed a t-test comparison between the RNA

expression of some of these transcription factors in the dif-

ferent methylation clusters. The results for some genes are

illustrated in Supplementary Figure. 1C. RUNX3, ISL1 and

RARA were significantly differentially expressed between

the clusters with high expression of ISL1 and RUNX3 in the

Cluster 2 whereas RARA exhibited higher expression in Clus-

ter 1 and Cluster 2 (Supplementary Figure. 1C).

2.8. Chromosome wide islands of methylation

The correlation between the degree of methylation in all stud-

ied CpG islands was calculated and a heatmap of the correla-

tion coefficients is shown in Figure. 5. Although the array did

include only selected genes related to carcinogenesis one can

observe concomitantmethylation of different loci on different

chromosomes, as well as clustered in particular loci.

2.9. Validation of array based methylation analysis by
pyrosequencing

In order to confirm the findings from the Illumina GoldenGate

microarray study we designed a validation assay both to ob-

tain more quantitative data and to increase sample size. A to-

tal of 120 samples (including the 80 cases and 4 controls

analyzed by microarray) were used to re-analyze by pyrose-

quencing 27 genes chosen from the array results because

they were differentially methylated according to clusters,

ER/PR status or survival. The overall clustering was recapitu-

lated as shown above (Figure. 1G). For each gene, association

analyses were done comparing methylation levels between

different categories within clinical parameters. The genes

(15) that were differentially methylated and contributed

http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004


Figure 4 e Venn diagram showing the comparison between the methylation clusters (multiclass list), TP53mutation and ER status with number of

overlapping CpG sites as obtained from the SAM analysis at FDR 5%. Within each circle we find illustrated the top 5 canonical pathways

significantly overrepresented in the list of CpG islands unique to the methylation cluster, ER and TP53 list respectively.
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most significantly to the formation of methylation clusters

assessed by array showed associations to mRNA subclasses

and histological grade when analyzed by pyrosequencing as

well (Table 4). The validation of the clustering by this absolute

quantitative methylation analysis by pyrosequencing of only

27 genes recapitulated the observed classification and its asso-

ciation to expression subclasses (Figure. 1G). Direct correla-

tion between pyrosequencing and Illumina GoldenGate was

performed and all genes were significantly correlated with a -

correlation r ranging from 0.6 to 0.8 (Figure. 6) except for IL8

where poor correlationwas observed. For this genewe discov-

ered an SNP underlying the primer. A significant negative cor-

relation was obtained when comparing levels of DNA

methylation with levels of mRNA expression for all genes

(R < �0.216, p < 0.027) except BMP3 (R ¼ 0.14, p ¼ 0.027).
3. Discussion

Gene expression analysis of breast tumors has identified dif-

ferent breast cancer subgroups (Perou et al., 2000) that display

differences in outcome (Sorlie et al., 2001). DNA methylation

analysis of 1505 CpG islands in a panel of 807 cancer related

genes performed here shows that breast tumors have differ-

ent epigenetic profiles that relate to those previously identi-

fied by gene expression subgroups of breast cancer but

might yield additional information. The same result was

obtained by another independent DNA methylation study of

thismaterial despite a differentmethodology (MOMA, exploit-

ing MspI represented CpG islands on Nimblegene arrays)

resulting in 600 features summarizing the top 500 most

http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004


Table 3 eGO terms significantly enriched (A) for the 53 genes that were common for the 3 different SAM analysis performed and (B) for the 124
genes that where overlapping in the Multiclass analysis and ER and TP53 analysis.

Category Term Count p-value Fold Enrichment

A

GOTERM_BP_ALL GO:0007275wmulticellular organismal development 31 0.005 1.46

GOTERM_BP_ALL GO:0032502wdevelopmental process 36 0.007 1.34

GOTERM_BP_ALL GO:0032501wmulticellular organismal process 34 0.014 1.32

GOTERM_BP_ALL GO:0030154wcell differentiation 25 0.021 1.45

GOTERM_BP_ALL GO:0051179wlocalization 20 0.029 1.54

GOTERM_BP_ALL GO:0048731wsystem development 25 0.046 1.36

B

GOTERM_BP_ALL GO:0032502wdevelopmental process 72 0.005 1.22

GOTERM_BP_ALL GO:0007275wmulticellular organismal development 58 0.014 1.25

GOTERM_CC_ALL GO:0044420wextracellular matrix part 7 0.017 3.06

GOTERM_MF_ALL GO:0003700wtranscription factor activity 20 0.020 1.65

GOTERM_MF_ALL GO:0043565wsequence-specific DNA binding 14 0.022 1.89

GOTERM_BP_ALL GO:0001501wskeletal development 13 0.031 1.87

GOTERM_BP_ALL GO:0032501wmulticellular organismal process 66 0.032 1.17

GOTERM_CC_ALL GO:0005581wcollagen 4 0.034 4.95

GOTERM_BP_ALL GO:0030154wcell differentiation 47 0.036 1.25

GOTERM_CC_ALL GO:0031012wextracellular matrix 13 0.043 1.79
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differentially methylated loci in the breast cancer dataset as

well as the top 100 breast cancer methylation loci most differ-

ent from normal breast from previous studies (Kamalakaran

et al., 2010). The cluster with the majority of Luminal-tumors

(Cluster 1) and that of Basal-like and ErbB2-like tumors (Clus-

ter 2) are significantly different when it comes to traditional

phenotypic characteristics such as TP53 and estrogen receptor

status (ER). In Cluster 3 however all the molecular subtypes

are present but Luminal-A-like tumors are in majority. This

cluster is not significantly different from the two other clus-

ters when it comes to TP53 mutation status but contains

slightly more ER positive tumors than Cluster 2. Also Grade 3

tumor distribution was significantly different between Cluster

1 and Cluster 2 with Cluster 2 containing themajority of grade

3 tumors. SAM analysis identified a large number of CpG sites

that were differentially methylated between the clusters in-

cluding CpG sites in the WNT pathway in genes such as

WNT1, ASCL2, LYN, IRAK and ETS1 and the first exon of

COL1A2, SFRP1, LAT. RASSF1 (Ras association domain family

1 isoform D) and retinoic receptors were other genes strongly

associated to methylation clusters as well as ER status in this

study. RASSF1A and RARb2 hypermethylation have previously

been found to be significantly more frequent in ER positive

and human ErbB2 tumors. Frequent DNA methylation in

RARb2, CDH1, ESR1, BRCA1, CCND2, CDKN2A and TWIST tu-

mors was more often found in poorly differentiated breast

cancers (Chow et al., 2005). In agreement we observed differ-

ential methylation for RARb2, CCND2 and TWIST between the

methylation classes, which also had different distribution of

grade 3.

We and others (Holm et al. (Holm et al., 2010) Bediaga et al.

(Bediaga et al., 2010) and Fleischer et al. (Fleischer et al., 2010))

recently published a similar classification of breast cancer by

DNA methylation. Holm et al. also identify three methylation

clusters with different survival although the ErbB2 group

seems less defined. Similarly to our study, targets of the poly-

comb repressor genes are found methylated. Our analysis
provides in addition methylation profiles associated with

TP53 mutation status and ER status per se and identify possi-

ble targeted pathways. Given that we demonstrate methyla-

tion patterns associated to given types of mutations, the

differences to the study of Flanagan et al. (Flanagan et al.,

2010) focuses on familial cancers carriers of BRCA1 and

BRCA2 mutations are not unexpected. Furthermore we per-

formed association of methylation clusters to mRNA classifi-

cation by both “intrinsic” gene list and Pam50. What one can

observe is that while the number of Luminal-A tumors is in-

deed reduced, it does not remove the split of the Luminal-A

cases between Cluster 1 and Cluster 2. The difference in sur-

vival is also observable, yet not significant due to low number

of samples in each group. Themost profound effect the choice

of mRNA classification had was on the distribution of the lu-

minal-B cases between the clusters. When using the intrinsic

gene classification, the Luminal-B cases were equally distrib-

uted between Cluster 1 and 2 and very few in Cluster 3, while

with the Pam50 classification they were exclusively in Cluster

1 and 3 and the difference in survival was again observable.

Whether this difference in reclassification carries a biological

meaning remains to be seen.

The distribution of the breast tumor subclasses in epigenet-

ically distinct subpopulations has also been shownby grouping

of tumors according to different histonemodifications inbreast

cancer (Elsheikhet al., 2009) asbreast tumorsweregrouped into

3 clusters based on their levels of histone modifications. The

distribution of the breast tumor subclasses in their study is

very similar to what we here observe when clustering the

tumors based on their DNA methylation profile suggesting

that differences in chromatin modifications between the clus-

ters is mirrored in the DNA methylation profiles of breast can-

cer. This report of global histone modifications revealed

differences between luminal-like and Basal/ErbB2-like tumors.

Global histone acetylation and methylation was associated

with Luminal-A-like tumors and low levels of lysine acetyla-

tion, lysine methylation were associated to basal carcinomas

http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004


Figure 5 e Genome wide correlation in methylation sorted by chromosomal position. Blue indicates no correlation, green low and red complete

correlation as determined using Spearman’s rho statistic. The overall correlation in methylation between CpG sites is low, with notable exceptions

being clusters of co-methylated loci on chromosome 5, 7, 8, 11, 12, 16 and X.
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and ErbB2 positive tumors. Since Elsheikh et al. also identified

associations between histone modifications and traditional

markers such as estrogen receptor status, ErbB2 status and

TP53 receptor status and grade (Elsheikh et al., 2009) one may

hypothesize that the epigenetic changes are in a strong inter-

play between these markers. It remains of interest to identify

the concordance between themethylation profiles and histone

modification profiles in terms of profiling of breast cancer.

Genome-wide DNA methylation analysis using methyla-

tion-specific digital karyotyping of normal breast tissue has

identified cell-type and differentiation specific DNA methyla-

tion and gene expression patterns that are also found in breast

carcinomas. CD44þ cells express geneswith known stem cell-

functionandarehypomethylatedcompared to themorediffer-

entiatedCD24þ cells.Most recently, the existence of three dis-

tinct populations of breast stem cells with putative

carcinogenicpotential hasbeendescribed: ERpositive, luminal

type, which can give rise to only luminal types of cells, ER neg-

ative, resulting in basal type and mixed, ER positive with the
potential to develop into ER negative type (Park et al., 2010a,

2010b). Interestingly, based on the profiling of differentially

methylated genes,many of whichwith key functions in devel-

opment, we also observe 3 clusters of methylation, which

according to gene expression resemble these three stem cell

types, luminal, basal and mixed. Methylation profiling of

stem cell components is required to confirm this hypothesis.

It is noteworthy that the normal samples examined here

showed low variability and clustered together with the basal-

like tumors. This observation deserves further studies of the

nature of the methylation profile in normal breast tissues.

We show here that the different subtypes of breast cancer

have a different underlying biology reflected in both methyla-

tion and mRNA expression patterns and is strongly influenced

by TP53 mutation and ER status. Associations between DNA

methylation levels of candidate genes and the status of well

known tumor characteristics such as estrogen receptor status

and TP53 mutation status has been reported by our group

(Dejeux et al., 2010; Ronneberg et al., 2008) and others. We

http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004


Table 4 e Validation by pyrosequencing: genes (15) that were
differentially methylated and contributed significantly to the
formation of methylation clusters assessed by Golden Gate array
were reanalyzed in a larger dataset by pyrosequencing. The
association to mRNA expression derived classes and grade was
confirmed. KruskaleWallis H test was used to determine the
statistical significance.

Subtypes (mRNA expression) Histological grade

p-value

BMP3 0.000 0.002

GUCY2D 0.000 0.001

GUCY2F 0.000 0.148

HDAC1 0.000 0.000

OGG1 0.000 0.000

TFF1 0.000 0.000

ASCL2 0.326 0.344

HOXA11 0.000 0.000

IGFBP7 0.000 0.003

LYN 0.000 0.000

ROR2 0.009 0.102

HCK 0.101 0.000

BCAP31 0.000 0.000

FZD9 0.000 0.001

ST6GAL1 0.000 0.000
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here report a large number of CpG sites in different genes that

are differentially methylated in tumors with different ER and

TP53 mutation status. It has proven difficult to disentangle

the ER and TP53 dependent determinants of breast cancer
Figure 6 e Scatter plots of the correlation between the Illumina data and t
profilesbasedonmRNAexpression, since therehasbeena large

number of overlapping genes, whose expression correlates to

both ER expression and TP53 mutation status. In this study

TP53 mutation and ER status shared a large number of genes

in commonwith themethylation sub-classification, suggesting

that both molecular factors contribute to the methylation pro-

file by distinctmolecular pathways. Thiswas also confirmed by

the GO analysis with the ER association being explained

through methylated genes involved in extracellular matrix

and cell-to-cell communication, while the TP53 association be-

ing mediated by methylated genes involved in transcriptional

regulation and growth factors. Whether TP53 mutation and

ER status are directly regulating gene expression patterns in

the tumors or if they are conferring their effects through

a methylation phenotype, remains to be elucidated. We have

previously shown on the example of the GSTP1 promoter that

the activity of a promoter by actively binding transcription fac-

tors (Myb) is inversely correlated to thedegreeofmethylation in

an ER status dependent manner (Ronneberg et al., 2008). This

may also be the case for other genes under ER and TP53 regula-

tion. Despite these interdependencies, we have demonstrated

that methylation of certain genes (GSTP1, ABCB1) can be inde-

pendent prognostic factors (Dejeux et al., 2010).

In this study as well as in the parallel analysis of Kamala-

karan et al. (Kamalakaran et al., 2010) we have expanded the

list of genes whose methylation profile can be used as a factor

of survival. The genes from both studies need to be confirmed

in different patient data setswith different treatment regi-

mens. Our previous analyses (Dejeux et al., 2010; Ronneberg
he pyrosequencing data for 12 of the 27 genes selected for validation.

http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
http://dx.doi.org/10.1016/j.molonc.2010.11.004
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et al., 2008) suggest that in locally advanced breast cancer pa-

tients treated with doxorubicin, methylation of GSTP1 and

ABCB1 was associated to survival possibly via treatment re-

sponse since both GSTP1 and ABCB1 have direct effect on the

therapeutic dose of the drug. Therefore on the background

of a vast concomitant methylation of functionally and topo-

logically unrelated genes, the question of which methylation

gene profiles are of predictive and which of prognostic value

needs to be addressed by studies specifically designed for

this purpose.

Since both whole genome expression andmethylation data

was available for this dataset we examined the impact of dif-

ferential DNA methylation on gene expression by correlation

and linear regression analysis. Worth noting is the in cis asso-

ciation between degree ofmethylation of the breast cancer risk

gene FGFR2 and its expression ( p¼ 0.035, Supplementary Table

S4). FGFR2 has been identified from genome-wide association

studies to be a breast cancer susceptibility gene (Easton et al.,

2007; Hunter et al., 2007) and an SNP in its promoter has previ-

ously been reported associated with expression in cis

(Nordgard et al., 2007). Also, expression of CyclinD1 on chromo-

some 11q, targeted by 2 different expression probes, was found

significantly associated with the methylation level in cis

( p ¼ 0.028 and p ¼ 0.029, respectively). The Spearman correla-

tion analysis revealedmost notably a significant association of

DNA methylation to expression for KRT5, ELK1, GSTP1, TFF2,

C4B, CCNE1, NRG1, SEMA3C which are also present on the “in-

trinsic” gene list initially reported as discriminating between

breast cancer subtypes by gene expression according to Perou

et al. (Perou et al., 2000).When comparing the list from the SAM

analysis identifying the genesmost strongly differentiating be-

tween the methylation classes at FDR 5% (the multiclass 265

SAM list) with the genes for whichmethylation and expression

were found significantly associated by the eQTL analysis (the

226 gene list based on HUGO symbols), we identified 60 genes

(more than one third of the list) to be both associated with ex-

pression and defining the methylation clusters. Further, the

following 11 genes from the multiclass 265 SAM list are on

the 561 intrinsic list defining the expression clusters: SGCE,

NRG1, LOX, KIT, GSTP1, GSTM2, GSTM1, GRB7, FLT1, CCND1,

ACTG2. Of these KIT, GSTP1, GSTM2, CCND1 and ACTG2 are

also on the eQTL list. Furthermore at least 38 unique genes

were inversely associated to expression in both our and the

Kamalakaran et al study that uses MOMA (Kamalakaran

et al., 2010) (Supplementary Table S11) which allows us to con-

clude that DNA methylation must be an important factor of

gene silencing for at least these genes. All these overlaps sug-

gest that the large degree of concordance between the two

classifications based onmRNA expression or DNAmethylation

is not surprising and provides a potential mechanism for the

differential gene expression in breast cancer.

The correlation in methylation of CDH1 and BRCA1 and es-

trogen receptor status (Birgisdottir et al., 2006; Caldeira et al.,

2006) has been reported previously andwe report here a similar

result for ESR1 and CDH1 (rho ¼ 0.45), but not for BRCA1. Also,

methylation patterns of BRCA1, ESR1 and CDH1 have been

shown to differentiate depending on ErbB2 status, and our

data implies a correlation in methylation of CDH1 with ampli-

fication of ErbB2 with (rho ¼ 0.43), but not with ESR1 or BRCA1.

Similarly, despite their presence on the array, none of the
previously defined genes predicting ER status by Widsch-

wendter et al (Widschwendter et al., 2004) was found to differ-

entiate ER positive from ER negative cells in our study using

stringent controls for multiple testing. Members of the tumor

necrosis factor receptor superfamily on chromosome 8p21.3

(TNFRSF10C, TNFRSF10D andTNFRSF10A) displayeda correlated

methylation pattern, andmethylation of TNFRSF10Cwas found

associated with expression in cis. TNFRSF10C expression has

previously been reported elevated in normal tissues as op-

posed to tumor cell lines (Sheridan et al., 1997).

Pathway analysis permitted to identify specific pathways to

be differentially activated in themethylation clusters and/or in

function of the TP53 mutation and the ER status. These results

should be interpreted with caution since they were obtained

on the background of already selected genes. However within

this selection of genes the differences were still significant.

One of the pathways that differed between the methylation

clusters was NF-kB signaling. NF-kB e a complex of inducible

transcription factorse promotes pro-inflammation, pro-angio-

genesis, cell adhesion and migration through up-regulation of

thecorrespondingpathwaysand is critical for thenormaldevel-

opment of themammary gland (Cao and Karin, 2003). The con-

stitutive activation of NF-kb has been shown to be required for

the transition from hormone dependent to hormone indepen-

dent cancer growth (Nakshatri et al., 1997), but recent results

also indicate a synergistic action of ER with NF-kb (Frasor

et al., 2009). Interestingly,mutant TP53 can induceNF kB signal-

ing favoring tumor progression (Weisz et al., 2007), identifying

NF-kbNF-kB as a factor at the crossroad of the pathways of the

major determinants of breast cancer. We also found an overlap

of 14-3-3 signaling in function of the ER and TP53 status in cor-

relation with the previously reported estrogen dependent TP53

activation (Lu et al., 2008). The VitaminD receptor (VDR) signal-

ing pathwaywas found to be differentially activated dependent

on ER status and as VDR signaling results in the downstream

modulation of the canonical Wnt pathway, the latter was also

found to be altered depending on the methylation profile. The

effect on the Wnt pathway might also be due to the common

transactivationofWntandERtargetgenesby thepolycombpro-

tein EZH2 commonly overexpressed in breast cancer (Shi et al.,

2007). Polycomb target genes and genes involved in human em-

bryonic stemcell pluripotencywerealso found tobeenriched in

the analyzed dataset. Recently, it has been shown that the TGF-

b signaling pathway leads to the induction of the HDM2 leading

to a destabilization of TP53 promoting breast carcinogenesis

(Araki et al., 2010) which might perhaps not be required in the

presence of mutated TP53 where genes of the TGF-b pathway

were found to be lessmethylated. Genes involved in Osteopon-

tin (OPN) signaling were found to be differentially methylated

depending on the methylation cluster, ER as well as the TP53

mutation status. Osteopontin is a secreted phosphoprotein

which mediates tumorigenesis, local growth, and metastasis

in a variety of cancers (Wai and Kuo, 2008). Our results are in

concordance with those obtained by immunohistochemical

staining showing a differential expression in function of the

TP53 (Rudland et al., 2002) and ER status (Barraclough et al.,

2009). In conclusion, the pathways identified through DNA

methylation analysis concern the same pathways previously

identified throughgenetic and transcriptomic studies butmight

provide novel targets for therapeutic intervention.

http://dx.doi.org/10.1016/j.molonc.2010.11.004
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4. Conclusion

In the current study we define the subclasssification of human

breast tumors based on their DNA methylation profile using

a high-throughput approach. The clusters differed in function

of their ER and TP53 status and genes driving the separation

hadasignificantoverlapwithgenesof the intrinsicgene list pro-

viding amolecular explanation for the differential gene expres-

sion. It will be interesting to compare the DNA methylation

profiles obtained in this study to genome-wide profiles indiffer-

ent breast cell types and progenitors to confirm a possibility of

cell-typespecificmethylationsignature inthedifferent clusters.

4.1. Materials and clinical endpoints

DNA from fresh frozen tumor tissue was available from 91 tu-

mors of a series of 123 tumor samples. Thesewere part of a col-

lection of 920 patients collected at Ullev�al University Hospital,

The Norwegian Radium Hospital, Baerum Hospital, Aker Uni-

versity Hospital and BuskerudHospital between 1995 and 1998

(Naume et al., 2007). DNA from normal breast tissue (N ¼ 4)

were collected at the Akershus University Hospital and in-

cluded as control to identify tumor specific methylation

events. Patients were treated according to the National Guide-

lines where postmenopausal hormone receptor (HR) positive

patients received tamoxifen only. Postmenopausal HR nega-

tive patients received CMF and premenopausal patients re-

ceived CMF followed by tamoxifen if HR positive. After

primary therapy the patients were followed at 6e12 months

intervals. Lymph nodes were examined for metastatic cells

by light microscopy of hematoxylin and eosin sections. ER

and PgR status was assessed by immunostaining. Positive

staining was reported if �10% of the tumor cell nuclei were

stained. ErbB2 amplification was assessed by FISH on tissue

microarray sections. ErbB2 positivity was scored if ErbB2/cen-

tromere ratio was �2.0. DTC status was evaluated by micros-

copy from cytospins and scored as positive if the morphology

of the cells was compatible with tumor cell morphology. For

a detailed description see (Wiedswang et al., 2003). TP53muta-

tion status was studied by TTGE analysis and dideoxy se-

quencing (AB340, Applied Biosystems) covering exon 2

through 11 (Naume et al., 2007).

4.2. DNA methylation analysis, array format

Tumor and non-tumor DNA was isolated using standard

phenol/chloroform protocols. One microgram of DNA was

bisulphite treated using the EpiTect 96 Bisulfite Kit (Qiagen

GmbH, Germany). 500 ng of bisulphite treated DNA was an-

alyzed using the GoldenGate Methylation Cancer Panel I

(Illumina Inc, CA, USA) that simultaneously analyses 1505

CpG sites in 807 cancer related genes. Typically 2 CpG sites

were analyzed per gene were one CpG site is in the promoter

region and one CpG site is in the 1st exon. The samples were

analyzed according to the manufacturer’s protocol. Bead

studio software was used for the initial processing of the

methylation data. The detection p-value for each CpG site

was used to validate sample performance and 11 samples

that were considered to be numerically distant from the
rest of the samples were removed from further analysis.

The dataset was filtered based on the detection p-value

were CpG sites with a detection p-value> 0.05 was omitted

from analysis. Pyrosequencing was analyzed as previously

described (Tost and Gut, 2007). A table with primer se-

quences is available in Supplementary Table 12.

4.3. mRNA analysis

Total RNA isolation was performed using TRIZOL (Invitrogen)

as described previously (Sorlie et al., 2006). mRNA profiling

were performed on Agilent catalogue design whole human

genome 4 � 44K oligo array. Scanning was performed on Agi-

lent scanner G2565A and signals were extracted using Fea-

ture Extraction v9.5. Data were log2 transformed, non-

uniform spots were excluded, and when averaging replicated

probes, population outliers were excluded. Probes that are

missing on more than 10 arrays were excluded. Quantile nor-

malization was performed in R using normalizeBetweenAr-

rays from the LIMMA library (Smyth, 2005) and missing

values imputed using LLS imputation (R: LLSimpute from

the pcaMethod library with k ¼ 20) (Kim et al., 2005). The

mRNA expression data has been submitted to the Gene Ex-

pression Omnibus (GEO).
5. Statistical analysis

5.1. Clustering and SAM analysis

The filtered b-values for fluorescent signal calculated as de-

scribed above were used in unsupervised hierarchical cluster-

ing analysis using the Cluster software package (Eisen et al.,

1998).OnlyCpGsiteswithmore than90%datawereused result-

ing in a list of 1016 CpG sites in 664 genes. Missing values were

imputedusing theK-nearestneighboralgorithmbefore cluster-

ing.TheCpGsitesweremeancenteredandSpearmanRankcor-

relation was used in an Average Linking Clustering approach.

Visualization was done using TreeView (http://rana.lbl.gov/

EisenSoftware.htm). SAM analysis (Tusher et al., 2001) was

used to find genes that were significantly differentiallymethyl-

ated between tumors of different TP53 status, Estrogen Recep-

tor status, grade, BM status as well as to find differences

between methylation clusters. Two-class SAM was performed

using Wilcoxon-test for identifying differentially methylated

genes with 100 permutations. Multiclass SAM was performed

using T-test statistics. Missing values in the SAM analysis

were permutated using the K-nearest neighbor algorithm. A

5% FDR threshold was used in the SAM analysis.

5.2. Survival analysis

KaplaneMeier analyses for a significant difference to single

genes were performed by Matlab. Ridge and LASSO regres-

sion analysis (van Houwelingen et al., 2006) present

a weighted approach indicating how well the entire set of

predictors predicts the outcome variables. For the analysis,

‘Microsurv’ package by R and Matlab scripts (Bovelstad

et al., 2007) was used. The package has been developed

for some dimension reduction or parameter shrinkage

http://rana.lbl.gov/EisenSoftware.htm
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estimation technique to obtain gene parameter estimates

and adopt the Cox proportional hazard’s model. These coef-

ficients were then subjected to hierarchical clustering as de-

scribed above. Log Rank test was performed in Matlab and

SPSS version 15.0.
5.3. GO term enrichment analysis on differentially
methylated genes

We used the David Database (Dennis, Jr. et al., 2003; Huang

et al., 2009) to determine the enrichment of gene ontology

terms in the genes that were common for the lists of genes dif-

ferentially methylated between the clusters, TP53 and estro-

gen receptor status. David calculates an enrichment score

and enrichment p-value for each GO term to highlight the

most relevant GO terms associated with the gene list in use.

We used the unique Entrez GeneIDs from each list and com-

pared to the unique GeneIDs representing the total list of

genes on the Illumina array. Genes with more than one CpG

site were listed only once in the analysis. We used the Illu-

mina 807 gene list as background; a list that is already

enriched for cancer related genes. We performed functional

annotation clustering with default settings. Termswith an en-

richment score p-value <0.05 were listed.
5.4. Ingenuity pathway analysis

Data was analyzed utilizing Ingenuity Pathway Analysis (IPA,

http://www.ingenuity.com/). To assess the level of represen-

tation of our selected gene sets in already defined, canonical

(curated) pathways we performed a core analysis as described

by IPA. The only filter used for this analysis was “only consider

molecules and/or relationships where species ¼ Human”. The

analysis included both direct and indirect relationship as well

as endogenous chemicals. The significance of the association

between our defined datasets and the canonical pathways are

assessed in two manners by the software: 1) the ratio of the

number of molecules from our gene lists that map to a given

canonical pathway and 2) Fisher’s exact test p-value, indicat-

ing the likelihood that the association between the genes in

our gene sets and a specific canonical pathway are explained

by chance alone.
5.5. eQTL analysis

The potential association betweenmethylation and expression

was investigated using assayed by the linear regression model

function as implemented in the eMap library (http://www.bio-

s.unc.edu/wwsun/software.htm) and run in R version 2.10.

Probeswithmore than 20% undetermined spots were excluded

from the analysis. A transcript and a methylation site was

regarded as being in cis if the distance between the center of

the transcript and the CpG site was less than one mega base

apart. Potential cis associations were also investigated by

matching with HUGO gene symbols. A multiple-comparison

correction was performed by using Bonferroni correction. The

eQTL analysis included n ¼ 40,996 transcription probes, i.e. all

probes with annotation data from Agilent expression arrays

(i.e. chromosome and position information).
5.6. Spearman correlation

Spearman correlationwas used to estimate the correlation be-

tween matched exact gene names from the methylation (Illu-

mina) and mRNA expression (Agilent) arrays through the

Accession code/UID on each array and was performed in Mat-

lab. Spearman’s rho statistic was also used to estimate a rank-

based measure of association between methylation sites

across all chromosomes through the genome. In the case of

missing values, the ranks were calculated based on pairwise

completeness with re-ranking for each pair (R version 2.10).

The result was visualized (Figure. 5) using a custom Python

script. Probes with more than 90% undetermined spots

(n ¼ 56) were excluded from the analysis.
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