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A B S T R A C T

A typical array experiment yields at least tens of thousands of measurements on often not

more than a hundred patients, a situation often denoted as the curse of dimensionality.

With a focus on prognostic multi-biomarker scores derived from microarrays, we highlight

the multidimensionality of the problem and the issues in the multidimensionality of the

data. We go over several statistical challenges raised by this curse occurring in each step

of microarray analysis on patient data, from the hypothesis and the experimental design

to the analysis methods, interpretation of results and clinical utility. Different analytical

tools and solutions to answer these challenges are provided and discussed.

ª 2011 Federation of European Biochemical Societies.

Published by Elsevier B.V. All rights reserved.
1. Introduction In this paper, we focus on biomarkers that affect the out-
A typical microarray experiment yields currently some tens

of thousands of measurements e or even millions of geno-

types e on often not more than a hundred patients, a situa-

tion often denoted as the curse of dimensionality. At the end

of the road the experimenters try to summarize the huge

magnitude of information in a parsimonious equation or

multi-biomarker score. It is desirable that this biomarker

score will be reproducible, sensitive and specific for its asso-

ciation with a clinical endpoint, with an important impact

on treatment decisions from a clinical and economic

viewpoint.
; fax: þ32 2 538 08 58.
e (S. Michiels).
ation of European Bioche
come or prognosis of individual patients in terms of a clinical

endpoint (“prognostic” biomarkers) and to a lesser extent on

biomarkers that are related to the effect of a specific treatment

on a clinical endpoint (“predictive” biomarkers, more broadly

called treatment “effect modifiers” outside the oncology field).

Array technologies are expected to obtain reliable information

for developing such biomarkers and to open the door to

patient-specific personalized medicine. Microarray experts

have even hailed the possibility of conducting clinical trials

with only a few patients (Liu and Karuturi, 2004). As of

September 2010, 31,633 peer-reviewed articles containing the

words “gene” and “microarray” can be found in PubMed.
mical Societies. Published by Elsevier B.V. All rights reserved.
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A closer look at the literature reveals many conflicting re-

sults. When different analysis teams start from the same

raw microarray data, completely opposite results in terms of

prognostic value can be obtained (Coombes et al., 2007). On

the other hand, when the analysis strategy is fixed, subtle

changes in the patient data used for determining the bio-

marker score can lead to remarkably different gene lists and

prediction results (Michiels et al., 2005).

Replication in independent patient series is also often lack-

ing (Ioannidis et al., 2009).

The most famous applications of multi-biomarker scores

are found in breast cancer where different gene classifiers

have been developed to address the same clinical question

of whom to treat with adjuvant chemotherapy. However be-

cause of imperfect concordance between the tests, this might

lead in the future to a situation in which different predictive

tests may lead to different treatment decisions for one and

the same patient (Koscielny, 2008, 2010). All taken together,

this calls for some careful attention to the different steps of

microarray analysis.

Many papers have nicely reviewed in detail how to analyze

typical microarray data experiments (Allison et al., 2006;

Reimers, 2010; Simon et al., 2003), to interpret them

(Michiels et al., 2007) and to report the results (Dupuy and

Simon, 2007). We will not go into the important transition

from themicroarray images to data ready to be used for statis-

tical analysis (Owzar et al., 2008).

In this paper, we voluntarily start with playing the devil’s

advocate: using a provocative point of view to illustrate the

multidimensionality of the problem.Wewill then go over sev-

eral statistical challenges raised by this multidimensionality.

What are the specific analytical tools and solutions that

have been proposed and what their problematic is. Can we

come up with better ones? We will go over these challenges

occurring in each step of microarray analysis on patient

data, from the hypothesis and the experimental design to

the analysismethods, interpretation of the results and clinical

utility.
2. Playing the devil’s advocate: the
multidimensionality of the problem

For the last few years, the medical literature has been in-

vaded by microarray studies aimed at defining gene profiles

to discriminate between good and poor prognosis tumors.

The biological postulate underlying prognostic microarray

studies is that all tumors acquire a metastasis phenotype

through the same unique mechanism, and that gene expres-

sion data in tumor tissue obtained at resection of the primary

tumor can be used to clearly distinguish tumors that will re-

lapse from those that will not. The results of the pioneering

prognostic microarray study concerning breast cancer (van

’t Veer et al., 2002) are considered proof of concept and

have led to general acceptance of the postulate. However,

the performances of microarray studies are poorer than ini-

tially thought and published gene signature lists are unstable

(Michiels et al., 2005). Some of the multi-biomarker scores do

show consistent prognostic value such as is the case in breast

cancer, but until the recent advent of large validation studies,
microarray studies have not allowed a significantly better

prognostic classification than conventional prognostic

models (Albain et al., 2010; Buyse et al., 2006). In addition, it

has been shown that almost all first-generation gene signa-

tures in breast cancer provide a quantitative read-out of the

same biological pathway of proliferation (Haibe-Kains et al.,

2008; Wirapati et al., 2008). As of today we are still in need

of a precise estimation of the incremental value (EGAPP

Working Group, 2009; Koscielny and Michiels, 2010;

Marchionni et al., 2008). Moreover, by assuming a unique

mechanism for the metastasis phenotype, the microarray

postulate is in contradiction with the concept of cancer het-

erogeneity, and consequently with the need for individual-

ized treatments. This would mean that, without rejecting

the potential interest of microarrays, true critical consider-

ation, incorporating, and not opposed to, full clinical evi-

dence is now necessary. For example, early detection and

screening are known to be efficient strategies to reduce can-

cer mortality (CISNET Breast Cancer Collaborators, 2006;

Koscielny et al., 2009), which would imply that the prognosis

is not a built-in characteristic of a tumor, present in the

genes during the evolutionary process of the tumor. Conse-

quently either genomic characteristics of tumors change

with time or the meaning of these characteristics depends

on tumors’ clinical characteristics. In that sense the progno-

sis is a multidimensional problem, with interlaced complex

clinical and biological dimensions.
3. The multidimensionality of the data

A common objective of many -omics studies is to find the

genes that are most differentially expressed between two (or

more) classes of tumors with different characteristics: for in-

stance, between a group of tumor samples from primary cuta-

neousmelanoma patientswho developed a distantmetastasis

within 4 years after surgery and a group of tumors from pa-

tients who did not (Winnepenninckx et al., 2006). A statistic

measuring the difference in gene expression between the

two types of tumors is selected such as a standard t-statistic,

or a logrank statistic for censored survival data, or variants de-

veloped especially for microarray data. Genes are then ranked

according to this statistic, starting with themost differentially

expressed gene. A cutoff is selected leading to a list of genes

most differentially expressed. In the cutaneousmelanoma ex-

ample, the top 254 genes were selected to be differentially

expressed between the groups of patients with distant metas-

tases versus those without (all genes with an individual p-

value lower than 0.001).

When one applies a statistical test for each gene, the num-

ber of tests performed is equal to the number of genes. If

10 000 genes are studied and none are really associated with

the characteristics under study, then, taking the usual 5%

limit for a significant p-value, one expects 5% of the genes,

that is, 500 genes to appear as significantly associated with

the characteristics, all being false positives. One can lower

the p-value cutoff such as in the melanoma example above

(for which only 10 out of 10 000 genes would be expected to

be false positives at the 0.001 cutoff), but one must not forget

that lowering the p-value cutoff will reduce the number of
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false positives but can also increase the number of false

negatives.

Another solution to reduce the risk of false positives is to

select more stringent rules to define statistical significance.

The family-wise error rate criterion aims to control the prob-

ability of making at least one false positive among all bio-

markers tested. A less stringent criterion aims at the false

discovery rate or the expected proportion of false positive

genes among those declared as differentially expressed. For

instance, Benjamini and Hochberg (Benjamini and Hochberg,

1995) suggest to rank the genes according to the p-values,

starting with the most significant, and to compare the ith p-

value pi to 5% � i/n, where i is the rank in the list and n is

the total number of genes. Under some “soft” hypotheses on

possible dependence between genes, this limits to 5% on aver-

age the proportion of false positives among the genes declared

significant. Because many genes might actually have strong

correlation patterns among each other, more computer-inten-

sive permutation methods are available which control these

criteria (Ge et al., 2003).
4. Multidimensional analytical tools and
multidimensional solutions

4.1. Experimental design

Once the primary objective of the array study is chosen, an

experimental design has to be defined to control and exclude

as many biases as possible and reliably test the study hypoth-

esis (Ransohoff, 2007). Possibilities of bias start with speci-

men collection biases (Ransohoff and Gourlay, 2010).

Guidelines have been proposed for the different phases of de-

velopment (Buyse et al., 2010; Pepe et al., 2001). Here, we

adapt the phases as proposed in the cardiovascular field

with some minor modifications (Hlatky et al., 2009), displayed

in Table 1.

Possible improvements in study design include randomi-

zation of the samples to the laboratory processes, blinding

of the laboratory staff to clinical outcome, use of nested

case-control designs (Pepe et al., 2008) and alsomatched retro-

spective analyses. An expensive way to tackle the multidi-

mensionality problem is to increase the sample size of the

array experiments, which will lower the false discovery and

false negative rate (Pawitan et al., 2005).
Table 1 e Different phases of development and evaluation of a clinically
technologies.

N� Phase

1 Proof of concept Do biomarker levels differ between subjects w

2 External validation Does the biomarker predict development of fu

3 Incremental value Does the biomarker add information to establ

4 Clinical utility Does the biomarker change predicted risk suf

5 Clinical outcome Does use of the biomarker improve clinical ou

6 Cost-effectiveness Does use of the biomarker improve clinical ou

testing and treatment?
4.2. Cluster analysis or unsupervised classification

One way to reduce the multidimensionality of the data is to

transform the entire data set into a limited set of clusters

without a priori knowledge. For example, breast cancers

were among the first cancer sites to have been divided into

several subgroups using cluster analysis of microarray data

(Perou et al., 2000).

A commonly used hierarchical clustering method starts by

defining a distance between two tumors as a function of the

difference in gene expression. One then regroups the two clos-

est tumors and proceeds by regrouping tumors to obtain

a cluster tree, which can be split into branches by selecting

a cutoff distance. There aremany algorithms available for per-

forming clusterization, and for a given algorithm there are

many ways to define a cutoff distance. Furthermore, even in

the case of random noise, the technique produces a cluster

tree (Miller et al., 2002). It is thus very difficult to knowwhether

the results observed are a characteristic of the sample consid-

ered or whether theywould be reproducible in another similar

collection of tumors. One way to evaluate whether the

obtained clusters are stable or not is to perturb the original

data set by resampling and to investigate whether the same

clusters are found again (Suzuki and Shimodaira, 2006).

Clustering results have shown to be very dependent on the

type of normalizationmethod used for the array data set (Lusa

et al., 2007) and it is very hard to project the clusters to inde-

pendent data sets. Thus, unsupervised analyses pose several

problems: classification instability because the inclusion of

a new patient may modify it, arbitrariness in the choice of

the algorithm used for clustering and in the choice of the

number of classes. It seems that cluster analysis methods

have been somehow overused in the first burst of enthusiasm

for microarrays and methodologists consider that outcome-

related problems should be addressed with supervised strate-

gies as those presented in the next section (Allison et al., 2006;

Dupuy and Simon, 2007; Michiels et al., 2007).
4.3. Development of a prediction rule or supervised
classification

A popular way to tackle the multidimensionality problem in

an outcome-related array study is to develop a clinically rele-

vant multi-biomarker score or prediction rule from the data.

We encourage the pre-specification of the different compo-

nents e choice of gene selection method, prediction rule and
useful prognostic multi-biomarker score or “biomarker” using array

Elaboration

ith and without outcome?

ture outcomes in a cohort or nested case-cohort/case-cohort study?

ished, standard risk markers?

ficiently to change recommended therapy?

tcome, especially when tested in a randomized clinical trial?

tcome sufficiently to justify the additional costs of
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if necessary cutoffs e in a translational research protocol. A

metric needs also to be chosen in order to evaluate perfor-

mance of the prediction rule, such as the misclassification

rate (error rate), sensitivity and specificity, ormeasures of pre-

dictive accuracy such as area under the Receiving Operating

Characteristics curve (sensitivity versus 1 e specificity) and

explained variation (Gerds et al., 2008).

Let’s have a closer look at one of the breast cancer multi-

biomarker scores that is one of the closest to implementation

in clinical practice: van’t Veer’s 70-gene signature for predict-

ing the occurrence of distant metastasis in breast cancer pa-

tients, patented under the name MammaPrint. This multi-

biomarker score used a nearest centroid prediction rule, rela-

tively simple but still top of the cream of the published gene

signatures (Koscielny, 2010). For each new patient, the expres-

sion of the 70 genes ismeasured and a distance is calculated to

the average values of those 70 genes among the subset of pa-

tients who experienced a distant relapse in the retrospective

series used to train the prediction rule (van ’t Veer et al.,

2002). If the distance is low enough (a correlation value above

0.4) the patient will be classified as poor prognosis.

Many more complicated prediction rules have been sug-

gested in the microarray literature. The results have been ad-

equately described as a statistical tower of Babel (Allison

et al., 2006). Some microarray analysis packages present sys-

tematically the results of several classification methods for

a single data set. It is then very tempting to publish only the

best-looking result, leading to a biased evaluation of the per-

formance of the prediction rule (Ioannidis, 2005). We wrote in

2005 that, in principle, there is no biological or mathematical

reason why one particular classification method should be

better than another for the prediction of the outcome of can-

cer patients based on microarray data since there are many

possible solutions in the multidimensional gene expression

space (Michiels et al., 2005). But what is the reason that rela-

tively “simple” methods work well in the data cursed by the

multidimensionality, beyond an Occam’s razor interpreta-

tion? There is not much empirical evidence available that

more complex models would outperform simpler ones and

no one method is widely accepted as superior or optimal.

All methods, simple or complicated ones, are actually suscep-

tible to overfitting to a certain degree. The large MicroArray

Quality Consortium II, led by the FDA has recently shown

that variations on univariate gene selection methods and pre-

diction rules have only a modest impact on performance (Shi

et al., 2010) and several statistically equally good predictors

can be developed for any given classification problem

(Popovici et al., 2010).

Still the same question remains: how should the huge

amount of biomarker information be summarized into one

single multi-biomarker equation? The main types of ap-

proaches have been coined: the ‘top-down’ approach and

the hypothesis-driven or ‘bottom-up’ approach. The top-

down approach derives from a prognostic model simply by

looking for gene expression patterns associated with clinical

outcome without any a priori biological assumption, whereas

the bottom-up approach first identifies gene expression pro-

files linked with a specific biological phenotype and subse-

quently correlates these findings to an appropriately defined

clinical outcome (Liu, 2005; Sotiriou and Piccart, 2007).
5. Challenges in the transfer to the clinic

5.1. External validation

Showing that amulti-biomarker score beats chance in a single

data set was actually the easy part. The next crucial step in the

translation of gene signatures in a clinical setting is external

validation, which can be defined as providing evidence that

a prediction rule works satisfactorily on patients other than

those used to define the biomarker score (Altman and

Royston, 2000). This is needed because many different factors

can explain the separation between the distinct groups of pa-

tients: chance finding, biases, etc. (Ransohoff, 2004, 2005).

External validation requires an independent study to be pro-

spectively designed to confirm the results of a previous study,

in order to reduce the play of chance and the potential for

biases. The same methodological guidelines apply as for the

validation of classical tumor markers (REMARK NCI-EORTC

Guidelines (McShane et al., 2005)) but there have been many

easy-to-avoid mistakes in multi-biomarker score validation

studies (Michiels et al., 2007). Ideally, validation of an experi-

mental gene signature should be performed in an indepen-

dent patient population in a similar clinical setting, by an

independent research team.

Some difficulties in replication using publicly available

data sets can arise due to cross-platform differences but evi-

dence-based guidelines have been started to be developed

for performing solid meta-analyses of array data (Ramasamy

et al., 2008).
5.2. Incremental value

When a multi-biomarker score has been shown to classify

better than chance and this prognostic value has been exter-

nally validated, what is its true place in clinical practice

compared to clinical prediction methods that are already

widely established? This is one of the most important hur-

dles facing the translation of gene expression signatures

into the clinic.

One must therefore study whether these signatures add

prognostic information to the clinical decision rules in use.

It is not sufficient to perform a multivariate regression analy-

sis, for instance a Cox’s regression model, comparing the ef-

fects of the clinical prognostic factors and of the signature,

and to show that the gene signature is ‘more significant’

than the clinical factors in this model. It has even been shown

that amarker with an odds ratio of 3 is in fact a very poor clas-

sification tool and that an odds ratio of 30 or more is desirable

(Pepe et al., 2004). A biomarker is of interest only if it provides

additional prognostic value, over and above that of all easily

measured clinical and pathological characteristics of the pa-

tients. The gain in predictive accuracy by the classifier as com-

pared to established clinical prognostic factors should

therefore be quantified (Dunkler et al., 2007; Kattan, 2003), by

comparing the predictive accuracy of the two multivariate

models with and without the gene signature. The updated

prognostic model will need to be well calibrated as well by

comparing the agreement between the predicted with the ob-

served outcomes (Steyerberg et al., 2010). A multi-biomarker

http://dx.doi.org/10.1016/j.molonc.2011.01.002
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score could also be of interest if it provides a more reproduc-

ible, cheap and precise assay of an already existing tumor

measurement that has proven clinical utility so that the clin-

ical prediction rule could be updated.
5.3. Implementation in clinical practice: impact studies

The two signatures in breast cancer that have already been

used to design clinical trials are the Mammaprint score men-

tioned above and a 21-gene score called the OncotypeDX as-

say. In these two randomized trials, chemotherapy is

compared to no chemotherapy in the population of patients

classified according to the results of a genomic test.

In theory, a trial is actually not needed to validate the prog-

nostic value of a multi-biomarker score since this can be done

through multiple independent retrospective validation stud-

ies. But randomized trials can be used to validate a gene signa-

ture prospectively in the absence of high quality retrospective

material (and thus avoid all biases that may affect retrospec-

tive validation), investigate the potential of the gene signature

as an effectmodifier (e.g. associatedwith themagnitude of the

benefit of treatment) and confirm the gene signature’s clinical

utility or impact on treatment decisions. An overview of some

of the recent biomarker-based clinical trial designs can be

found in (Buyse and Michiels, 2010).
6. Conclusion

The holy grail in microarray studies seems to have been the

search for prognostic multi-biomarker scores based on retro-

spective convenience samples. But due to the multidimen-

sionality of the data, many different biomarker scores can

be constructed that all have a similar amount of prognostic

information. No single unique prognostic biomarker score

will probably exist for a given disease type. Although gene

lists seem at first sight very distinct, it could well be that

they are all a read-out from the same biological characteristic

of a tumor (such as proliferation in the early breast cancer

example).

In our view, a priori specification of the rules and methods

used to divide the data and determine the multi-biomarker

score -i.e. the selection of the genes, the prediction rule, and

the cutoffs- is an optimal approach for hypothesis-driven re-

search and, in this case, leads to the generalizability of predic-

tion accuracy estimates for future patient series. In contrast,

trying several alternative methods and choosing the most op-

timal one among them is still a goodway to generate false pos-

itive results or to support unduly optimistic views.

A great deal of the concerns raised frommultidimensional-

ity of arrays boils down to some of the basics in statistics: solid

experimental design. Array technologies do provide fascinat-

ing discoveries but we encourage the use of more informative

designs for translational research studies, such as designs

with repeated time points measuring change in gene expres-

sion before, during and after treatment in order to identify tar-

gets of new and not so new treatment regimens.
Role of the funding source

None.
Conflict of interest

None.
R E F E R E N C E S

Albain, K.S., Barlow, W.E., Shak, S., Hortobagyi, G.N.,
Livingston, R.B., Yeh, I.T., Ravdin, P., Bugarini, R.,
Baehner, F.L., Davidson, N.E., Sledge, G.W., Winer, E.P.,
Hudis, C., Ingle, J.N., Perez, E.A., Pritchard, K.I., Shepherd, L.,
Gralow, J.R., Yoshizawa, C., Allred, D.C., Osborne, C.K.,
Hayes, D.F., 2010. Prognostic and predictive value of the 21-
gene recurrence score assay in postmenopausal women with
node-positive, oestrogen-receptor-positive breast cancer on
chemotherapy: a retrospective analysis of a randomised trial.
The Lancet Oncology 11, 55e65.

Allison, D.B., Cui, X., Page, G.P., Sabripour, M., 2006. Microarray
data analysis: from disarray to consolidation and consensus.
Nature Reviews Genetics 7, 55e65.

Altman, D.G., Royston, P., 2000. What do we mean by validating
a prognostic model? Statistics in Medicine 19, 453e473.

Benjamini, Y., Hochberg, Y., 1995. Controlling the false discovery
rate e a practical and powerful approach to multiple testing.
Journal of the Royal Statistical Society Series B 57, 289e300.

Buyse, M., Loi, S., van’t Veer, L., Viale, G., Delorenzi, M., Glas, A.M.,
d’Assignies, M.S., Bergh, J., Lidereau, R., Ellis, P., Harris, A.,
Bogaerts, J., Therasse, P., Floore, A., Amakrane, M., Piette, F.,
Rutgers, E., Sotiriou, C., Cardoso, F., Piccart, M.J., 2006.
Validation and clinical utility of a 70-gene prognostic
signature for women with node-negative breast cancer.
Journal of the National Cancer Institute 98, 1183e1192.

Buyse, M., Michiels, S., 2010. Biomarkers and surrogate endpoints
in clinical trials. In: Kelly, Kevin, Halabi, Susan (Eds.),
Oncology Clinical Trials: Successful Design, Conduct and
Analysis. Demos Medical Publishing.

Buyse, M., Sargent, D.J., Grothey, A., Matheson, A., de
Gramont, A., 2010. Biomarkers and surrogate end pointsethe
challenge of statistical validation. Nature Reviews 7, 309e317.

CISNET Breast Cancer Collaborators, 2006. The impact of
mammography and adjuvant therapy on U.S. breast cancer
mortality (1975e2000): collective results from the Cancer
Intervention and Surveillance Modeling Network. Journal of
National Cancer Institute Monographs 36, 1e126.

Coombes, K.R., Wang, J., Baggerly, K.A., 2007. Microarrays:
retracing steps. Nature Medicine 13, 1276e1277, author reply
pp. 1277e1278.

Dunkler, D., Michiels, S., Schemper, M., 2007. Gene expression
profiling: does it add predictive accuracy to clinical
characteristics in cancer prognosis? European Journal of
Cancer 43, 745e751.

Dupuy, A., Simon, R.M., 2007. Critical review of published
microarray studies for cancer outcome and guidelines on
statistical analysis and reporting. Journal of the National
Cancer Institute 99, 147e157.

EGAPP Working Group, 2009. Recommendations from the EGAPP
Working Group: can tumor gene expression profiling improve
outcomes in patients with breast cancer? Genetics in Medicine
11, 66e73.

Ge, Y.C., Dudoit, S., Speed, T.P., 2003. Resampling-based multiple
testing for microarray data analysis. Test 12, 1e77.

http://dx.doi.org/10.1016/j.molonc.2011.01.002
http://dx.doi.org/10.1016/j.molonc.2011.01.002
http://dx.doi.org/10.1016/j.molonc.2011.01.002


M O L E C U L A R O N C O L O G Y 5 ( 2 0 1 1 ) 1 9 0e1 9 6 195
Gerds, T.A., Cai, T., Schumacher, M., 2008. The performance of
risk prediction models. Biometrical Journal 50, 457e479.

Haibe-Kains, B., Desmedt, C., Sotiriou, C., Bontempi, G., 2008. A
comparative study of survival models for breast cancer
prognostication based on microarray data: does a single gene
beat them all? Bioinformatics (Oxford, England) 24, 2200e2208.

Hlatky, M.A., Greenland, P., Arnett, D.K., Ballantyne, C.M.,
Criqui, M.H., Elkind, M.S., Go, A.S., Harrell Jr., F.E., Hong, Y.,
Howard, B.V., Howard, V.J., Hsue, P.Y., Kramer, C.M.,
McConnell, J.P., Normand, S.L., O’Donnell, C.J., Smith Jr., S.C.,
Wilson, P.W., 2009. Criteria for evaluation of novel markers of
cardiovascular risk: a scientific statement from the American
Heart Association. Circulation 119, 2408e2416.

Ioannidis, J.P., 2005. Why most published research findings are
false. PLoS Medicine 2, e124.

Ioannidis, J.P., Allison, D.B., Ball, C.A., Coulibaly, I., Cui, X.,
Culhane, A.C., Falchi, M., Furlanello, C., Game, L., Jurman, G.,
Mangion, J., Mehta, T., Nitzberg, M., Page, G.P., Petretto, E., van
Noort, V., 2009. Repeatability of published microarray gene
expression analyses. Nature Genetics 41, 149e155.

Kattan, M.W., 2003. Judging new markers by their ability to
improve predictive accuracy. Journal of the National Cancer
Institute 95, 634e635.

Koscielny, S., 2008. Critical review of microarray-based prognostic
tests and trials in breast cancer. Current Opinion in Obstetrics
& Gynecology 20, 47e50.

Koscielny, S., 2010. Why most gene expression signatures of
tumors have not been useful in the clinic. Science
Translational Medicine 2, 14ps2.

Koscielny, S., Arriagada, R., Adolfsson, J., Fornander, T., Bergh, J.,
2009. Impact of tumour size on axillary involvement and
distant dissemination in breast cancer. British Journal of
Cancer 101, 902e907.

Koscielny, S., Michiels, S., 2010. Clinical usefulness of microarrays
for cancer prognosis in 2010eletter. Clinical Cancer Research
16, 6180.

Liu, E.T., 2005. New technologies for high-throughput analysis.
Pharmacogenomics 6, 469e471.

Liu, E.T., Karuturi, K.R., 2004. Microarrays and clinical
investigations. The New England Journal of Medicine 350,
1595e1597.

Lusa, L., McShane, L.M., Reid, J.F., De Cecco, L., Ambrogi, F.,
Biganzoli, E., Gariboldi, M., Pierotti, M.A., 2007. Challenges in
projecting clustering results across gene expression-profiling
datasets. Journal of theNationalCancer Institute 99, 1715e1723.

Marchionni, L., Wilson, R.F., Wolff, A.C., Marinopoulos, S.,
Parmigiani, G., Bass, E.B., Goodman, S.N., 2008. Systematic
review: gene expression profiling assays in early-stage breast
cancer. Annals of Internal Medicine 148, 358e369.

McShane, L.M., Altman, D.G., Sauerbrei, W., Taube, S.E., Gion, M.,
Clark, G.M., 2005. Reporting recommendations for tumor
marker prognostic studies (REMARK). Journal of the National
Cancer Institute 97, 1180e1184.

Michiels, S., Koscielny, S., Hill, C., 2005. Prediction of cancer
outcome with microarrays: a multiple random validation
strategy. Lancet 365, 488e492.

Michiels, S., Koscielny, S., Hill, C., 2007. Interpretation ofmicroarray
data in cancer. British Journal of Cancer 96, 1155e1158.

Miller, L.D., Long, P.M., Wong, L., Mukherjee, S., McShane, L.M.,
Liu, E.T., 2002. Optimal gene expression analysis by
microarrays. Cancer Cell 2, 353e361.

Owzar, K., Barry, W.T., Jung, S.H., Sohn, I., George, S.L., 2008.
Statistical challenges in preprocessing in microarray
experiments in cancer. Clinical Cancer Research 14,
5959e5966.

Pawitan,Y.,Michiels,S.,Koscielny,S.,Gusnanto,A., Ploner,A., 2005.
False discovery rate, sensitivity and sample size for microarray
studies. Bioinformatics (Oxford, England) 21, 3017e3024.
Pepe, M.S., Etzioni, R., Feng, Z., Potter, J.D., Thompson, M.L.,
Thornquist, M., Winget, M., Yasui, Y., 2001. Phases of
biomarker development for early detection of cancer. Journal
of the National Cancer Institute 93, 1054e1061.

Pepe, M.S., Feng, Z., Janes, H., Bossuyt, P.M., Potter, J.D., 2008.
Pivotal evaluation of the accuracy of a biomarker used for
classification or prediction: standards for study design.
Journal of the National Cancer Institute 100, 1432e1438.

Pepe, M.S., Janes, H., Longton, G., Leisenring, W., Newcomb, P.,
2004. Limitations of the odds ratio in gauging the performance
of a diagnostic, prognostic, or screening marker. American
Journal of Epidemiology 159, 882e890.

Perou, C.M., Sorlie, T., Eisen, M.B., van de Rijn, M., Jeffrey, S.S.,
Rees, C.A., Pollack, J.R., Ross, D.T., Johnsen, H., Akslen, L.A.,
Fluge, O., Pergamenschikov, A., Williams, C., Zhu, S.X.,
Lonning, P.E., Borresen-Dale, A.L., Brown, P.O., Botstein, D.,
2000. Molecular portraits of human breast tumours. Nature
406, 747e752.

Popovici, V., Chen, W., Gallas, B.G., Hatzis, C., Shi, W.,
Samuelson, F.W., Nikolsky, Y., Tsyganova, M., Ishkin, A.,
Nikolskaya, T., Hess, K.R., Valero, V., Booser, D., Delorenzi, M.,
Hortobagyi, G.N., Shi, L., Symmans, W.F., Pusztai, L., 2010.
Effect of training-sample size and classification difficulty on
the accuracy of genomic predictors. Breast Cancer Research
12, R5.

Ramasamy, A., Mondry, A., Holmes, C.C., Altman, D.G., 2008. Key
issues in conducting a meta-analysis of gene expression
microarray datasets. PLoS Medicine 5, e184.

Ransohoff, D.F., 2004. Rules of evidence for cancer molecular-
marker discovery and validation. Nature Reviews Cancer 4,
309e314.

Ransohoff, D.F., 2005. Bias as a threat to the validity of cancer
molecular-marker research. Nature Reviews Cancer 5,
142e149.

Ransohoff, D.F., 2007. How to improve reliability and efficiency of
research about molecular markers: roles of phases, guidelines,
and study design. Journal of Clinical Epidemiology 60,
1205e1219.

Ransohoff, D.F., Gourlay, M.L., 2010. Sources of bias in specimens
for research about molecular markers for cancer. Journal of
Clinical Oncology 28, 698e704.

Reimers, M., 2010. Making informed choices about microarray
data analysis. PLoS Computational Biology 6 e1000786.

Shi, L., Campbell, G., Jones, W.D., Campagne, F., Wen, Z.,
Walker, S.J., Su, Z., Chu, T.M., Goodsaid, F.M., Pusztai, L.,
Shaughnessy Jr., J.D., Oberthuer, A., Thomas, R.S., Paules, R.S.,
Fielden, M., Barlogie, B., Chen, W., Du, P., Fischer, M.,
Furlanello, C., Gallas, B.D., Ge, X., Megherbi, D.B.,
Symmans, W.F., Wang, M.D., Zhang, J., Bitter, H., Brors, B.,
Bushel, P.R., Bylesjo, M., Chen, M., Cheng, J., Cheng, J., Chou, J.,
Davison, T.S., Delorenzi, M., Deng, Y., Devanarayan, V.,
Dix, D.J., Dopazo, J., Dorff, K.C., Elloumi, F., Fan, J., Fan, S.,
Fan, X., Fang, H., Gonzaludo, N., Hess, K.R., Hong, H., Huan, J.,
Irizarry, R.A., Judson, R., Juraeva, D., Lababidi, S.,
Lambert, C.G., Li, L., Li, Y., Li, Z., Lin, S.M., Liu, G.,
Lobenhofer, E.K., Luo, J., Luo, W., McCall, M.N., Nikolsky, Y.,
Pennello, G.A., Perkins, R.G., Philip, R., Popovici, V., Price, N.D.,
Qian, F., Scherer, A., Shi, T., Shi, W., Sung, J., Thierry-Mieg, D.,
Thierry-Mieg, J., Thodima, V., Trygg, J., Vishnuvajjala, L.,
Wang, S.J., Wu, J., Wu, Y., Xie, Q., Yousef, W.A., Zhang, L.,
Zhang, X., Zhong, S., Zhou, Y., Zhu, S., Arasappan, D., Bao, W.,
Lucas, A.B., Berthold, F., Brennan, R.J., Buness, A.,
Catalano, J.G., Chang, C., Chen, R., Cheng, Y., Cui, J., Czika, W.,
Demichelis, F., Deng, X., Dosymbekov, D., Eils, R., Feng, Y.,
Fostel, J., Fulmer-Smentek, S., Fuscoe, J.C., Gatto, L., Ge, W.,
Goldstein, D.R., Guo, L., Halbert, D.N., Han, J., Harris, S.C.,
Hatzis, C., Herman, D., Huang, J., Jensen, R.V., Jiang, R.,
Johnson, C.D., Jurman, G., Kahlert, Y., Khuder, S.A., Kohl, M.,

http://dx.doi.org/10.1016/j.molonc.2011.01.002
http://dx.doi.org/10.1016/j.molonc.2011.01.002
http://dx.doi.org/10.1016/j.molonc.2011.01.002


M O L E C U L A R O N C O L O G Y 5 ( 2 0 1 1 ) 1 9 0e1 9 6196
Li, J., Li, L., Li, M., Li, Q.Z., Li, S., Li, Z., Liu, J., Liu, Y., Liu, Z.,
Meng, L., Madera, M., Martinez-Murillo, F., Medina, I.,
Meehan, J., Miclaus, K., Moffitt, R.A., Montaner, D.,
Mukherjee, P., Mulligan, G.J., Neville, P., Nikolskaya, T.,
Ning, B., Page, G.P., Parker, J., Parry, R.M., Peng, X.,
Peterson, R.L., Phan, J.H., Quanz, B., Ren, Y., Riccadonna, S.,
Roter, A.H., Samuelson, F.W., Schumacher, M.M.,
Shambaugh, J.D., Shi, Q., Shippy, R., Si, S., Smalter, A.,
Sotiriou, C., Soukup, M., Staedtler, F., Steiner, G., Stokes, T.H.,
Sun, Q., Tan, P.Y., Tang, R., Tezak, Z., Thorn, B., Tsyganova, M.,
Turpaz, Y., Vega, S.C., Visintainer, R., von Frese, J., Wang, C.,
Wang, E., Wang, J., Wang, W., Westermann, F., Willey, J.C.,
Woods, M., Wu, S., Xiao, N., Xu, J., Xu, L., Yang, L., Zeng, X.,
Zhang, J., Zhang, L., Zhang, M., Zhao, C., Puri, R.K., Scherf, U.,
Tong, W., Wolfinger, R.D., 2010. The MicroArray Quality
Control (MAQC)-II study of common practices for the
development and validation of microarray-based predictive
models. Nature Biotechnology 28, 827e838.

Simon, R., Radmacher, M.D., Dobbin, K., McShane, L.M., 2003.
Pitfalls in the use of DNA microarray data for diagnostic and
prognostic classification. Journal of the National Cancer
Institute 95, 14e18.

Sotiriou, C., Piccart, M.J., 2007. Taking gene-expression profiling to
the clinic: when will molecular signatures become relevant to
patient care? Nat Rev Cancer 7, 545e553.
Steyerberg, E.W., Vickers, A.J., Cook, N.R., Gerds, T., Gonen, M.,
Obuchowski, N., Pencina, M.J., Kattan, M.W., 2010. Assessing
the performance of prediction models: a framework for
traditional and novel measures. Epidemiology (Cambridge,
Mass.) 21, 128e138.

Suzuki, R., Shimodaira, H., 2006. Pvclust: an R package for
assessing the uncertainty in hierarchical clustering.
Bioinformatics (Oxford, England) 22, 1540e1542.

van ’tVeer, L.J.,Dai,H., vandeVijver,M.J.,He,Y.D.,Hart,A.A.,Mao,M.,
Peterse, H.L., van der Kooy, K., Marton, M.J., Witteveen, A.T.,
Schreiber, G.J., Kerkhoven, R.M., Roberts, C., Linsley, P.S.,
Bernards, R., Friend, S.H., 2002. Gene expression profiling predicts
clinical outcome of breast cancer. Nature 415, 530e536.

Winnepenninckx, V., Lazar, V., Michiels, S., Dessen, P., Stas, M.,
Alonso, S.R., Avril, M.F., Ortiz Romero, P.L., Robert, T.,
Balacescu, O., Eggermont, A.M., Lenoir, G., Sarasin, A.,
Tursz, T., van den Oord, J.J., Spatz, A., 2006. Gene expression
profiling of primary cutaneous melanoma and clinical
outcome. Journal of the National Cancer Institute 98, 472e482.

Wirapati, P., Sotiriou, C., Kunkel, S., Farmer, P., Pradervand, S.,
Haibe-Kains, B., Desmedt, C., Ignatiadis, M., Sengstag, T.,
Schutz, F., Goldstein, D.R., Piccart, M., Delorenzi, M., 2008.
Meta-analysis of gene expression profiles in breast cancer:
toward a unified understanding of breast cancer subtyping
and prognosis signatures. Breast Cancer Research 10, R65.

http://dx.doi.org/10.1016/j.molonc.2011.01.002
http://dx.doi.org/10.1016/j.molonc.2011.01.002
http://dx.doi.org/10.1016/j.molonc.2011.01.002

	Multidimensionality of microarrays: Statistical challenges and (im)possible solutions
	Introduction
	Playing the devil’s advocate: the multidimensionality of the problem
	The multidimensionality of the data
	Multidimensional analytical tools and multidimensional solutions
	Experimental design
	Cluster analysis or unsupervised classification
	Development of a prediction rule or supervised classification

	Challenges in the transfer to the clinic
	External validation
	Incremental value
	Implementation in clinical practice: impact studies

	Conclusion
	Role of the funding source
	Conflict of interest
	References


